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Abstract

Optimal scaling methods transform variables by using a basis for the subspace or
a frame for the cone of admissible transformations. In this note we argue that for
polynomials and monotone polynomials the Bernstein basis should be used.

1 Introduction

The more recent versions of the Gifi system for descriptive multivariate analysis have the
option to replace the crisp binary indicator matrices that form a basis for the space of
quantifications or transformations of a variable by fuzzy indicators ( Rijckevorsel and De
Leeuw (1988), De Leeuw and Mair (2009)). A fuzzy indicator is a non-negative matrix with
all its row sums equal to one. A crisp indicator is the special case in which the entries are
all zero or one.
Currently in the Gifi programs the fuzzy indicators are computed by using a B-spline basis
for the piecewise polynomials on a given knot sequence. Fitting polynomial transformations
is still done by using a basis of monomials, which generally does not produce an indicator.
Both splines and polynomials can be restricted to be non-negative, monotone, and convex
or concave.
In this note we propose the Bernstein polynomials as an alternative basis for the polynomials
of a fixed degree. They have the major advantage that they define a fuzzy indicator, and,
like the B-splines, they are shape-preserving, which means they reproduce monotonicity and
convexity/concavity.

2 Bernstein Polynomials

A Bernstein polynomial of degree n at 0 ≤ x ≤ 1 is of the form

βn(x) =
n∑

k=0
αkbn,k(x) (1)
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where the (n + 1) polynomials

bn,k(x) :=
(

n

k

)
xk(1 − x)n−k (2)

are the Bernstein basis of decree n at x (Lorenz (1953), Bustamante (2017)).
Statisticians and mathematicians familiar with the binomial distribution will see at a glance
from (2) that 0 ≤ bn,k(x) ≤ 1. In addition bn,k(x) = 0 if and only if x = 0 and bn,k(x) = 1 if
and only if x = 1. Moreover

n∑
k=0

bn,k(x) = 1. (3)

Thus a Bernstein basis defines a fuzzy indicator.
Here is a one-line R function to compute a Bernstein basis.

bernsteinR <- function (n, x, k = 0:n) {
return(outer (x, k, function(a, b) dbinom(b, n, a)))

}

For the eleven equally spaced points between zero and one (inclusive), and for degree 3,
bernsteinR() gives

## [,1] [,2] [,3] [,4]
## [1,] 1.000 0.000 0.000 0.000
## [2,] 0.729 0.243 0.027 0.001
## [3,] 0.512 0.384 0.096 0.008
## [4,] 0.343 0.441 0.189 0.027
## [5,] 0.216 0.432 0.288 0.064
## [6,] 0.125 0.375 0.375 0.125
## [7,] 0.064 0.288 0.432 0.216
## [8,] 0.027 0.189 0.441 0.343
## [9,] 0.008 0.096 0.384 0.512
## [10,] 0.001 0.027 0.243 0.729
## [11,] 0.000 0.000 0.000 1.000

The corresponding Vandermonde matrix with monomials is

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0.0 0.00 0.000 0.0000
## [2,] 1 0.1 0.01 0.001 0.0001
## [3,] 1 0.2 0.04 0.008 0.0016
## [4,] 1 0.3 0.09 0.027 0.0081
## [5,] 1 0.4 0.16 0.064 0.0256
## [6,] 1 0.5 0.25 0.125 0.0625
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## [7,] 1 0.6 0.36 0.216 0.1296
## [8,] 1 0.7 0.49 0.343 0.2401
## [9,] 1 0.8 0.64 0.512 0.4096
## [10,] 1 0.9 0.81 0.729 0.6561
## [11,] 1 1.0 1.00 1.000 1.0000

Both matrices span the same space, the four dimensional space of third degree polynomials.
One important difference between the two is that the Bernstein basis is better conditioned
than the Vandermonde basis. The ratio of the largest to the smallest singular value of the
two matrices above is 4.7723371457 for Bernstein and 59.3359273583 for Vandermonde.
Another, and perhaps even more important, difference in the Gifi (and any other optimal
scaling) context is that the polynomial βn from (1) is monotone increasing if α0 ≤ α1 ≤
· · · ≤ αn and convex if αk+1 ≤ 1

2(αk + αk+2) for all k = 0, · · · , n − 2 (or, equivalently,
αk −αk+1 ≤ αk+1 −αk+2. For monotone decreasing and concave just reverse the inequalities.
One possible problem with computing the Bernstein basis is that x must be in the closed
unit interval. We can deal with that in two ways. First, we can linearly rescale the variable
to be transformed so that it is between zero and one. A third degree polynomial of a
linear transformed variable is still a third degree polynomial. Linear rescaling also preserves
monotonicity and convexity. Secondly, and actually equivalently, we could redefine the
Bernstein polynomials so that they can be computed for any closed interval [a, b]. Note
that that the Bernstein basis is a basis for all polynomials of a fixed degree, not just for
polynomials on a finite interval [0, 1] (or [a, b]).

3 C Program

The computation in R of the Bernstein basis, although nice and compact, may not be very
efficient. First, because it is in R, although the function we gave does not contain loops and
mainly consists of calls to compiled C routines. Secondly, because evaluating many binomial
cofficients can be done more efficiently by the recursive algorithm

bk,n(x) = (1 − x)bk,n−1(x) + xbk−1,n−1(x) (4)

So we wrote the function bernsteinC() in C, in addition to R glue bernsteinRC() that calls
the C routine from R. Code is in the appendix.
Timing for a case with 10001 rows and degree equal to 100 suggests that in this (unrealisti-
cally) large example the C code can be up to two times as fast.

x <- seq(0, 1, length = 10001L)
microbenchmark(bernsteinR(100L, x), bernsteinRC(100L, x))

## Unit: milliseconds
## expr min lq mean median uq
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## bernsteinR(100L, x) 89.481986 96.3420930 104.29504663 101.7340405 109.074921
## bernsteinRC(100L, x) 42.488728 47.9699705 54.75641064 52.0734435 56.832769
## max neval
## 149.341235 100
## 115.959002 100

For 1000 rows and a polynomial of degree 10 we find a somewhat larger speedup factor.

x <- seq(0, 1, length = 1001L)
microbenchmark(bernsteinR(10L, x), bernsteinRC(10L, x))

## Unit: microseconds
## expr min lq mean median uq max
## bernsteinR(10L, x) 861.011 1107.1415 1325.52097 1281.6085 1512.491 2193.515
## bernsteinRC(10L, x) 200.180 303.7880 455.67482 426.7385 586.075 993.073
## neval
## 100
## 100

For a tiny example with 11 rows and a polynomial of degree 4 the code in R actually wins,
because for this case the overhead of the .C() interface dominates the computing time.

x <- seq(0, 1, length = 11L)
microbenchmark(bernsteinR(4L, x), bernsteinRC(4L, x), times = 1000)

## Unit: microseconds
## expr min lq mean median uq max neval
## bernsteinR(4L, x) 10.498 19.891 32.241239 27.642 38.0650 146.987 1000
## bernsteinRC(4L, x) 32.299 50.527 68.935569 61.492 77.9025 242.467 1000

A Glue in R

dyn.load("bernstein.so")

bernsteinRC <- function (d, x) {
n <- length(x)
m <- n * (d + 1L)
h <- .C(

"bernsteinC",
d = as.integer(d),
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n = as.integer(length(x)),
x = as.double(x),
y = as.double(rep(0, m))

)
return(matrix(h$y, n, d + 1))

}

B Code in C

void bernsteinC(int *pd, int *pn, double *px, double *py);

#define VINDEX(i) ((i)-1)
#define MINDEX(i, j, n) ((i)-1) + ((j)-1) * (n)

/******************************************************************************/

void bernsteinC(int *pd, int *pn, double *px, double *py) {
int n = *pn, d = *pd;
double x = 0;
for (int k = 1; k <= n; k++) {

x = px[VINDEX(k)];
if (d == 0) {

py[MINDEX(k, 1, n)] = 1.0;
} else if (0 < d) {

py[MINDEX(k, 1, n)] = (1 - x);
py[MINDEX(k, 2, n)] = x;

for (int i = 3; i <= (d + 1); i++) {
py[MINDEX(k, i, n)] = x * py[MINDEX(k, i - 1, n)];
for (int j = i - 1; 2 <= j; j--) {

py[MINDEX(k, j, n)] = ((1 - x) * py[MINDEX(k, j, n)] +
x * py[MINDEX(k, j - 1, n)]);

}
py[MINDEX(k, 1, n)] = (1 - x) * py[MINDEX(k, 1, n)];

}
}

}
return;

}
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