Differentiating the QR Decomposition

Jan de Leeuw - University of California Los Angeles

Started March 13 2023, Version of March 15, 2023

Abstract

We derive formulas and compute the Jacobian of the QR decomposition. Code in R is given. Analytical and numerical derivatives are compared.

Contents

1 Introduction 1
2 Perturbation 1
3 Jacobian 3
4 Appendix: Code 4
4.1 d_qr.R 4
References 5

Note: This is a working paper which will be expanded/updated frequently. All suggestions for improvement are welcome.

1 Introduction

For the convergence analysis of multivariate methods that iteratively use the QR decomposition $X=Q R$ we need the derivatives of both Q and R with respect to X. There is no claim of originality here, I am sure the results have been derived and published many times before.

2 Perturbation

We assume X is $n \times m$ with $n \geq m$, and of full column rank $r=m$. If $r<m$ the QR decomposition is not uniquely defined, and differentiability becomes problematic.

The Gram-Schmidt algorithm, without pivoting, shows that the QR decomposition is indeed differentiable. If we perturb X to $X+(d X)$, then to the first order Q gets perturbed to $Q+(d Q)$ and
R to $R+(d R)$. In order to find $d Q$ and $d R$ we most solve the equations

$$
\begin{align*}
{[X+(d X)] } & =[Q+(d Q)][R+(d R)] \tag{1}\\
{[Q+(d Q)]^{\prime}[Q+(d Q)] } & =I \tag{2}\\
\operatorname{lt}(R+(d R)) & =0 . \tag{3}
\end{align*}
$$

Here $\operatorname{lt}(A)$ operator replaces the upper triangular part of a square matrix A by zeroes. These equations simplify to

$$
\begin{align*}
(d X) & =Q(d R)+(d Q) R, \tag{4}\\
(d Q)^{\prime} Q+Q^{\prime}(d Q) & =0 \tag{5}\\
\operatorname{lt}(d R) & =0 \tag{6}
\end{align*}
$$

Equation (5) says that $(d Q)^{\prime} Q$ is anti-symmetric, and (6) says $d R$ is upper triangular. Write $d Q=Q A+Q_{\perp} B$, with Q_{\perp} an orthonormal basis for the null space of X.

If we premultiply both sides of equation (4) by Q^{\prime} and postmultiply by R^{-1} we have

$$
\begin{equation*}
A+(d R) R^{-1}=Q^{\prime}(d X) R^{-1} \tag{7}
\end{equation*}
$$

where A is anti-symmetric. It follows that

$$
\begin{equation*}
\operatorname{lt}(A)=\operatorname{lt}\left(Q^{\prime}(d X) R^{-1}\right) \tag{8}
\end{equation*}
$$

which gives the lower-triangular part of A and by anti-symmetry the upper-triangular part as well. Subtraction A from both sides of (7) gives $(d R) R^{-1}$ and thus $d R$.
Finally premultiplying (4) by Q_{\perp}^{\prime} and postmultiplying by R^{-1} gives

$$
\begin{equation*}
B=Q_{\perp}^{\prime}(d X) R^{-1} \tag{9}
\end{equation*}
$$

and thus $d Q$.
The computations of $d Q$ and $d R$ are implemented in the R (R Core Team (2022)) function d_qr(), which takes arguments X and Y to form the perturbation $Z=X+Y$. Thus $d X=Y$ and the differentials are evaluated at X.

Here is a small example with some random matrices.

```
set.seed(12345)
x <- matrix(rnorm(30), 10, 3)
y <- matrix(rnorm(30), 10, 3) / 100
h <- d_qr(x, y)
```

To show the quality of the linear approximation we compare QR decomposition $Z=Q_{Z} R_{Z}$ with $X=Q_{X} R_{X}$. But first the approximation of order zero. The sum of the absolute values of $Q_{Z}-Q_{X}$ is 0.1316906 and that of $R_{Z}-R_{X}$ is 0.0698008 . For the linear approximation the sum of the absolute values of $Q_{Z}-\left(Q_{X}+d Q\right)$ is 0.0014707 and that of $R_{Z}-\left(R_{X}+d R\right)$ is 0.0014424 .

3 Jacobian

To compute partial derivatives of Q and R with respect to X we use $Y=d X$ with a single element equal to one, and the rest zero. By taking each of the $n m$ elements in turn, we find the partials and we can collect them in the Jacobian. For our small example there are 30 elements in X and there are 39 elements in R and Q. Thus the Jacobian is 39×30. Of course the partials of the lower triangle of R are always zero.

The computation of the Jacobian is in the R function $\mathrm{p} _\mathrm{qr}()$. To check our results we have also written p_qr_num(), which computes the Jacobian by using the numerical differentiation from the numDeriv package (Gilbert and Varadhan (2019)). As figure 1 shows, both numerical and analytic Jacobians are the same.

```
par(pty="s")
pfor <- p_qr(x)
pnum <- p_qr_num(x)
plot(pnum, pfor)
```


Figure 1: Numerical and Analytic Jacobians

4 Appendix: Code

4.1 d_qr.R

```
lt <- function(x) {
    n <- nrow(x)
    x[outer(1:n, 1:n, "<")] <- 0
    return(x)
}
```

d_qr <- function(x, y) \{
n <- nrow (x)
m <- ncol (x)
z <- $\mathrm{x}+\mathrm{y}$
$\mathrm{qrx}<-\mathrm{qr}(\mathrm{x})$
qx <- qr.Q(qrx)
$r x<-q r . R(q r x)$
$\mathrm{qrz}<-\mathrm{qr}(\mathrm{z})$
qz <- qr.Q(qrz)
rz <- qr.R(qrz)
qp <- qr.Q(qr(cbind(qx, $\operatorname{diag(n))))[,~-(1:m)]~}$
ri <- solve(rx)
v <- crossprod(qx, y \%*\% ri)
a <- lt(v) - t(lt(v))
b <- crossprod(qp, y \%*\% ri)
dq <- qx \%*\% a + qp \% $\% \%$ b
dr <- (v - a) \%*\% rx
return(list(
qx $=q x$,
$r x=r x$,
$q z=q z$,
rz = rz,
$d q=d q$,
$d r=d r$
))
\}
p_qr <- function(x) \{
n <- nrow (x)
m <- ncol(x)
$\mathrm{qrx}<-\mathrm{qr}(\mathrm{x})$
qx <- qr.Q(qrx)
rx <- qr.R(qrx)
ri <- solve(rx)

```
    qp <- qr.Q(qr(cbind(qx, diag(n))))[, -(1:m)]
    g <- matrix(0, (n * m) + m - 2, n * m)
    for (i in 1:n) {
        for (j in 1:m) {
            k <- i + (j - 1) * n
            v <- outer(qx[i, ], ri[j, ])
            a <- lt(v) - t(lt(v))
            b <- outer(qp[i, ], ri[j, ])
            dq <- qx %*% a + qp %*% b
            dr <- (v - a) %*% rx
            g[, k] <- c(as.vector(dq), as.vector(dr))
        }
    }
    return(g)
}
p_qr_num <- function(x) {
    n <- nrow(x)
    m <- ncol(x)
    f <- function(x, n = n, p = m) {
        xm <- matrix(x, n, p)
        qx <- qr(xm)
        q<- as.vector(qr.Q(qx))
        r <- as.vector(qr.R(qx))
        return(c(q, r))
    }
    g <- jacobian(f, as.vector(x), n = n, p = m)
    return(g)
}
```


References

Gilbert, P., and R. Varadhan. 2019. numDeriv: Accurate Numerical Derivatives. https://CRAN.Rproject.org/package=numDeriv.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

