
Differentiating the QR Decomposition

Jan de Leeuw - University of California Los Angeles

Started March 13 2023, Version of March 15, 2023

Abstract

We derive formulas and compute the Jacobian of the QR decomposition. Code in R is given.

Analytical and numerical derivatives are compared.

Contents

1 Introduction 1

2 Perturbation 1

3 Jacobian 3

4 Appendix: Code 4

4.1 d_qr.R . 4

References 5

Note: This is a working paper which will be expanded/updated frequently. All suggestions for

improvement are welcome.

1 Introduction

For the convergence analysis of multivariate methods that iteratively use the QR decomposition

𝑋 = 𝑄𝑅we need the derivatives of both𝑄 and𝑅with respect to𝑋. There is no claim of originality

here, I am sure the results have been derived and published many times before.

2 Perturbation

We assume 𝑋 is 𝑛 × 𝑚 with 𝑛 ≥ 𝑚, and of full column rank 𝑟 = 𝑚. If 𝑟 < 𝑚 the QR

decomposition is not uniquely defined, and differentiability becomes problematic.

The Gram-Schmidt algorithm, without pivoting, shows that the QR decomposition is indeed differ-

entiable. If we perturb 𝑋 to 𝑋 + (𝑑𝑋), then to the first order 𝑄 gets perturbed to 𝑄 + (𝑑𝑄) and

1

𝑅 to 𝑅 + (𝑑𝑅). In order to find 𝑑𝑄 and 𝑑𝑅 we most solve the equations

[𝑋 + (𝑑𝑋)] = [𝑄 + (𝑑𝑄)][𝑅 + (𝑑𝑅)], (1)

[𝑄 + (𝑑𝑄)]′[𝑄 + (𝑑𝑄)] = 𝐼, (2)

lt(𝑅 + (𝑑𝑅)) = 0. (3)

Here lt(𝐴) operator replaces the upper triangular part of a square matrix 𝐴 by zeroes. These

equations simplify to

(𝑑𝑋) = 𝑄(𝑑𝑅) + (𝑑𝑄)𝑅, (4)

(𝑑𝑄)′𝑄 + 𝑄′(𝑑𝑄) = 0, (5)

lt(𝑑𝑅) = 0. (6)

Equation (5) says that (𝑑𝑄)′𝑄 is anti-symmetric, and (6) says 𝑑𝑅 is upper triangular. Write

𝑑𝑄 = 𝑄𝐴 + 𝑄⟂𝐵, with 𝑄⟂ an orthonormal basis for the null space of 𝑋.

If we premultiply both sides of equation (4) by 𝑄′ and postmultiply by 𝑅−1 we have

𝐴 + (𝑑𝑅)𝑅−1 = 𝑄′(𝑑𝑋)𝑅−1, (7)

where 𝐴 is anti-symmetric. It follows that

lt(𝐴) = lt(𝑄′(𝑑𝑋)𝑅−1), (8)

which gives the lower-triangular part of 𝐴 and by anti-symmetry the upper-triangular part as well.

Subtraction 𝐴 from both sides of (7) gives (𝑑𝑅)𝑅−1 and thus 𝑑𝑅.

Finally premultiplying (4) by 𝑄′
⟂ and postmultiplying by 𝑅−1 gives

𝐵 = 𝑄′
⟂(𝑑𝑋)𝑅−1, (9)

and thus 𝑑𝑄.

The computations of 𝑑𝑄 and 𝑑𝑅 are implemented in the R (R Core Team (2022)) function d_qr(),

which takes arguments 𝑋 and 𝑌 to form the perturbation 𝑍 = 𝑋 + 𝑌. Thus 𝑑𝑋 = 𝑌 and the

differentials are evaluated at 𝑋.

Here is a small example with some random matrices.

set.seed(12345)
x <- matrix(rnorm(30), 10, 3)
y <- matrix(rnorm(30), 10, 3) / 100
h <- d_qr(x, y)

To show the quality of the linear approximation we compare QR decomposition 𝑍 = 𝑄𝑍𝑅𝑍
with 𝑋 = 𝑄𝑋𝑅𝑋. But first the approximation of order zero. The sum of the absolute values of

𝑄𝑍 −𝑄𝑋 is 0.1316906 and that of 𝑅𝑍 −𝑅𝑋 is 0.0698008. For the linear approximation the sum of

the absolute values of 𝑄𝑍 − (𝑄𝑋 + 𝑑𝑄) is 0.0014707 and that of 𝑅𝑍 − (𝑅𝑋 + 𝑑𝑅) is 0.0014424.

2

3 Jacobian

To compute partial derivatives of 𝑄 and 𝑅 with respect to 𝑋 we use 𝑌 = 𝑑𝑋 with a single element

equal to one, and the rest zero. By taking each of the 𝑛𝑚 elements in turn, we find the partials and

we can collect them in the Jacobian. For our small example there are 30 elements in 𝑋 and there are

39 elements in 𝑅 and 𝑄. Thus the Jacobian is 39 × 30. Of course the partials of the lower triangle
of 𝑅 are always zero.

The computation of the Jacobian is in the R function p_qr(). To check our results we have also

written p_qr_num(), which computes the Jacobian by using the numerical differentiation from the

numDeriv package (Gilbert and Varadhan (2019)). As figure 1 shows, both numerical and analytic

Jacobians are the same.

par(pty="s")
pfor <- p_qr(x)
pnum <- p_qr_num(x)
plot(pnum, pfor)

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

pnum

pf
or

Figure 1: Numerical and Analytic Jacobians

3

4 Appendix: Code

4.1 d_qr.R

lt <- function(x) {
n <- nrow(x)
x[outer(1:n, 1:n, "<")] <- 0
return(x)

}

d_qr <- function(x, y) {
n <- nrow(x)
m <- ncol(x)
z <- x + y
qrx <- qr(x)
qx <- qr.Q(qrx)
rx <- qr.R(qrx)
qrz <- qr(z)
qz <- qr.Q(qrz)
rz <- qr.R(qrz)
qp <- qr.Q(qr(cbind(qx, diag(n))))[, -(1:m)]
ri <- solve(rx)
v <- crossprod(qx, y %*% ri)
a <- lt(v) - t(lt(v))
b <- crossprod(qp, y %*% ri)
dq <- qx %*% a + qp %*% b
dr <- (v - a) %*% rx
return(list(

qx = qx,
rx = rx,
qz = qz,
rz = rz,
dq = dq,
dr = dr

))
}

p_qr <- function(x) {
n <- nrow(x)
m <- ncol(x)
qrx <- qr(x)
qx <- qr.Q(qrx)
rx <- qr.R(qrx)
ri <- solve(rx)

4

qp <- qr.Q(qr(cbind(qx, diag(n))))[, -(1:m)]
g <- matrix(0, (n * m) + m ^ 2, n * m)
for (i in 1:n) {
for (j in 1:m) {

k <- i + (j - 1) * n
v <- outer(qx[i,], ri[j,])
a <- lt(v) - t(lt(v))
b <- outer(qp[i,], ri[j,])
dq <- qx %*% a + qp %*% b
dr <- (v - a) %*% rx
g[, k] <- c(as.vector(dq), as.vector(dr))

}
}
return(g)

}

p_qr_num <- function(x) {
n <- nrow(x)
m <- ncol(x)
f <- function(x, n = n, p = m) {

xm <- matrix(x, n, p)
qx <- qr(xm)
q <- as.vector(qr.Q(qx))
r <- as.vector(qr.R(qx))
return(c(q, r))

}
g <- jacobian(f, as.vector(x), n = n, p = m)
return(g)

}

References

Gilbert, P., and R. Varadhan. 2019. numDeriv: Accurate Numerical Derivatives. https://CRAN.R-

project.org/package=numDeriv.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing. https://www.R-project.org/.

5

https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
https://www.R-project.org/

	Introduction
	Perturbation
	Jacobian
	Appendix: Code
	d_qr.R

	References

