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Abstract

This paper we discuss characteristics of the least squares loss function for unidimensional

scaling. Some properties of both its local and global minima and the corresponding minimizers.
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1 Introduction

A statistical technique is a map from data-space into representation-space. In the technique discussed
in this paper the data are a pair of matrices containing, respectively, weights and dissimilarities.
Both weights 1/ and dissimilarities A are elements of H"™*", the set of symmetric, non-negative,
and hollow (zero diagonal) matrices of order n. The representations are elements of R", the
p(n — 1)dimensional linear space of all vectors with elements adding up to zero.

Unidimensional Scaling (UDS) of n objects is defined in this paper as the minimization of the loss
function o (e), defined for all X € R" by

o(x) = %Zzwij<5ij_dij(X))25 (D

i=1 j=1

over X € R", where

dij<m> = |z; — (2)

i Yy



is the distance between elements 7 and j of x. Following Kruskal (1964a) and Kruskal (1964b) we
will refer to this loss function as stress, so that equation (1) defines the stress of X. By the way, we
use the symbol := for definitions.

We assume the MDS problem is non-trivial, by which we mean w;, jéi ; > 0 for at least one pair
(i,4) with ¢ # j. We also assume that ¥ is irreducible. A matrix W of order n is reducible if
there exists a permutation matrix P and two matrices W, and W, of orders n; and n,, withn; > 0,

ng > 0, and ny + ny = n, such that

3)

PWP = {Wl 0 } ;

0 W,

If W is reducible then the UDS problem separates into two smaller UDS problems. Thus we can
assume without any real loss of generality that W is not reducible, i.e. irreducible.

An UDS problem is unweighted if w;; = 1 foralli # j. An UDS problem is positive if w, ;0,; > 0
foralli # j. Thus in a positive unweighted UDS problem all off-diagonal dissimilarities are positive.

2 Theory of UDS

2.1 Some Shorthand

We expand the square in definition (1) and use some Multidimensional scaling (MDS) notation orig-
inally introduced by De Leeuw (1977) and De Leeuw and Heiser (1977) to simplify our expressions.
The same notation is used in the MDS textbooks of Borg and Groenen (2005) and Borg, Groenen,
and Mair (2018), and in the documentation for the R package smacof (De Leeuw and Mair (2009),
Mair, Groenen, and De Leeuw (2022)).

First assume, without loss of generality, that

%ZZwijéfj = 1. (4)

=1 j=1
Now define
1 n n
p(z) = B w;;0,51T; — x4, (5)
i=1 j=1
and
1 n n
772(95) = 9 wz‘j<xi - 1’3‘)2' (6)
i=1 j=1

Both p and 7 := /72 are convex and homogeneous of degree one, equal to zero on R" if and only
if z = 0. Thus they are norms.

With definitions (5) and (6) we can write

o(z) =1—2p(x) + n?(x). (7)



The quadratic form in definition (6) can be simplified by defining the matrix V as

vy, = {_lf’jj ff 7 )
ijl w,;;  ifi=j.

Then
0 (z) =z’ Ve, )

and thus
o(x) =1—-2p(x) +z'Vuz. (10)

V' has non-positive off-diagonal elements and its rows and columns add up to zero (i.e. V'is doubly-
centered). By a result usually attributed to Taussky (1949) the irreducibility of W implies that V'is
positive semi-definite of rank n — 1, with only vectors proportional to e in its null space. If z € R"
then 2’V > 0, with ' Va = 0 if and only if z = 0. Thus Vis positive definite on R".

1

Note that in the unweighted case we have V' = n.J, where J := I —n~"ee’ is the centering matrix

that maps R"™ into R"™. Thus in the unweighted case

o(x) =1—2p(x) + nx'z. (11)

V=D—W,withW >0.NowD—W = 0orU := D 2WD 2 < [LAlso (D —W)e =0
and thus DZe is an eigenvector with eigenvalue +1. D :VDz=]—UIfU = KAK’ then
[+U+U? 4+ UP = K(I+A+ A%+ AP)K' = KOK with ¢, = pand ¢, = 2
Thus (I + U + U? + - + U,) — pk k] converges to K'(I — A)TK = (I —U)*. Now
Vi=D":(I-U)"D2

V.= D_— Wwhere D_ = D + €l ## The Shape of Stress

2.1.1 Global Shape

From (1) we see that stress is a continuous function of x, bounded below by zero and unbounded
above. It is also even with o(x) = o(—x) for all z, and coercive, which means that o(z) — oo
as ||| — oo. Combining these characteristics indicates that stress, at least as seen from afar, is
bowl-shaped.

par (mfrow = c(1, 2))
pplot(deltal)

## NULL
cplot(deltal)
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On any half-line starting from the origin stress is a convex quadratic.

Not bowl shaped Local maximum at zero. Only local maximum.

2.1.2 Stressis DC

In optimization we are always looking for convexity, wherever we can find it. Unfortunately stress
is clearly not convex.

From equations (10) and (11) we see that stress is a DC-function, i.e. the difference of two convex

functions. The function 1 + p is non-smooth and not differentiable on any hyperplane with z; = z;
for at least one pair (4, j). The function 72 is quadratic, strictly convex on R", and infinitely many

times continuously differentiable.

It follows from the DC property that stress is locally Lipschitz and almost everywhere twice
differentiable (Hiriart-Urruty (1988), Bacak and Borwein (2011)).

2.2 Building Blocks

In this section we discuss some tools that all formalize orders of points on the line. Why ?

2.2.1 Signatures

It is clear from what we have discussed so far that the ridges in the stress surface are the areas where
p is non-smooth. We will make this precise in later sections. The quadratic 1? is as smooth as
possible.

Further analysis of p. Our next step is to simplify the expression (5) for p. For this we use signatures.

If z € R™ then S(z) is the signature of x if s,;(z) = sign(w; — x;). A signature S is a hollow
anti-symmetric matrix with elements —1, 0, and +1. Thus S” = —S and diag(.S) = 0. Signatures
also must satisfy transitivity: if s;, = s;,; = 1 for some h then s,; = 1. Or, equivalenty, for a
signature S there is a permutation matrix P such that PSP’ has all +1 elements above the diagonal
and thus all —1 below the diagonal.



The set of all 7 X n signatures is §,,. Now n objects can be partitioned into r tie-blocks in .S (n, )
different ways, where S(n, ) is the Stirling number of the second kind. The 7 tie blocks can
be ordered in ! different ways, and so the number of different signatures is the Fubini number
F(n)=>_"_ rlS(n,r) (see, for example, Good (1975)).

A signature S is strict if there are no ties, i.e. if s;; = +1 forall 4 = j. Strict signatures define
the set S;7. There are n! different strict signatures, corresponding with the n! permutations of
I, :={1,2,--- ,n}. For later use we also define the set 87" of all hollow antisymmetric matrices
with off-diagonal elements 41 which are not necessarily transitive and the set &' of all hollow
matrices with elements 41 which are not necessarily transitive or antisymmetric. Here are the
number of elements in each of these sets for n = 1, ---, 10. I left out the last three elements in the
final column because they would blow the table off the page.

i " ST ST ST
I I 1 1
3 2 2 4
13 6 8 64
75 24 64 4096
541 120 1024 1048 576
4683 720 32768 1073741824
47293 5040 2097 152 4398 046 511 104
545835 40 320 268 435 456
7087261 362880 68719476 736
102247 563 3628 800 35 184 372 088 832 ]

2.2.2 Permutations and Rankings

There is a one-one correspondence between strict signatures and permutations 7 of {1,2, -+, n}.
There is also a one-one correspondence between signatures and rankings which may have ties.

2.2.3 Isotone Cones
Suppose 7 is a permutation of {1, 2, -, n}, and K () is the set of all z € R™ such that
Tr(1) S Tr(z) <0 S Ty (12)

K (7) is a pointed polyhedral closed convex cone in R™ with apex at the origin. There are n! such
isotone cones. Their union is all of R™.

The extreme rays of K () are the n — 1 half-lines defined by

Tr1) < Tr2) = Tr3) = = Trin-1) = Tx(n) (13)
Tr(1) = Tr2) < Tr3) = = Trin—1) = Lr(n)> (14)

(15)
Tr(1) = Tr2) = Tr(z) = = Trin—1) < Tp(n)- (16)



a <- matrix(0, 4, 5)
diag(a) <- -1

alouter(1:4,1:5,function(x, y) x -y == -1)] <- 1
print(a)
#t (,11 [,2]1 [,3] [,4] [,8]

## [1,] -1 1 0 0 0
# [2,] o -1 1 0 0
## [3,] 0 o -1 1 0
## [4,] 0 0 o -1 1

g <- scdd(makeH(-a, ¢(0,0,0,0), c(1,1,1,1,1), 0))
b <- g$output[,3:7]
print (b)

## (,11 [,2]1 [,3] [,4] [,5]
## [1,] -4.0 1.0 1 1.0 1.0
## [2,] -1.56 -1.5 1 1.0 1.0
## [3,] -1.0 -1.0 -1 1.5 1.5
## [4,] -1.0 -1.0 -1 -1.0 4.0

h <- scdd(makeH(-a,c(0,0,0,0),c(1,1,1,1,1),0))
print (h)

## $output

## (,11 [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 0 0-4.0 1.0 1 1.0 1.0
##t [2,] 0 0-1.5-1.5 1 1.0
## [3,] 0 0-1.0-1.0 -1 1.5
## [4,] 0 0-1.0-1.0 -1 -1.0
## attr(,"representation")

## [1] uVu

N
S 01 O

The cone K (7) has an interior K °(7), consisting of all x with
Tr) < Triz)y <" < Trin) (17)

and it has a boundary 0 K (), consisting of the faces for which one or more of the elements of =
are equal. Different cones are not necessarily disjoint, because some cones have some of their faces
in common. For example an x with z; = x, < x5 is both in K(1,2,3) and K (2,1, 3).



(Negative Polar Cone)

(g w,) S 7, (18)
() S 3, (19
(20)

1
5(‘(1777,71 + xn) < Ty_2, (21)
v, <a, . (22)

2.3 Fixed Order

Consider the problem of findfing the infimum of ¢ over all x in the interior X 2 of one the isotone
cones.

inf = min
zeX (}( LASN/
2.4 Augmentation and Majorization
p is piecewise linear, o is piecewise quadratic

For all x € R™ we have
|z, — $j| = 5@3(37)(371 - xj) (23)

and for all (z,y) in R" @ R"
|lz; — $j| 2> Szg(?J)(l‘z - 33]') (24)

with equality if and only if either z; = x; or 5,;(x) = s;;(y) or both, i.e. if and only s7;(z) =
s;j(2)s;;(y). We can also combine (23) and (24) to

|z, — 24| = ?1};%751 i (y)(z; — ;). (25)
|z, — x| = _1£g§+1 s(z; —x;) = Se{rilil?:l}s(xi — ;). (26)

The basic difference between UDS and MDS in more than one dimension is that (26) must be
replaced by

lz; — ;| = ;}?yale Y (x; — ;) (27)

Notation

& u, T
Rho



Tau is a step function.
Bounds on 7
VI =(V+4Liee)™t —Lee

Now define, using signatures, a vector valued function i : R" = R" as
n
= ZwijCSijSij(x) = Z{wij5ij | z; < T} — Z{wij5ij | x; > T}, (28)
Jj=1 J J

and another such function 7(x) := V*pu(z), with V' the Moore-Penrose inverse of V. In the
unweighted case 7(z) = p(x)/n. Using the elementwise (or Hadamard) matrix product X we see
that 4(z) is the vector of row-sums of the anti-symmetric matrix W x A x S(z). Thus

() = VHW x A x S(x))e. (29)

In MDS we call 7(x) the Guttman transform of x to honor Louis Guttman, who first defined it
for the unweighted UDS case in Guttman (1968, section 23).

The elements of both x(x) and 7(x) always add up to zero, and both p(z) and 7(z) only depend
on the order of the elements of x, not on their actual numerical values. Thus if S(z) = S(y) we
also have 7(x) = 7(y). It consequenty makes sense to define 74 for each S € §,, as

T := VT (W x A x S)e. (30)

Some more shorthand is useful. For each pair (x, y) we define

5( Zzwm ijS .I‘ —Zy sz:u’z (31)

=1 j=
Then
p(x) =&z, x) = 2"V (x), (32)
p(x) = &z, y) = z'V1(y), (33)
with equality in (33) if and only if s,;(z)s,;(y) = +1 for all (i, j) with w,;0,;8,;(z) # 0. In a

positive UDS problem with a strict S(x) this means we have equality if and only if S(z) = S(y).

The corresponding result for stress is that for all (z, y)

o(x)=1-22'"Vr(x)+2'Vz, (34)
o(x) <1—22"V7r(y) +2'Vuz, (35)
or, equivalently,
o(x) =minl —22'V7(y) + 2’ V. (36)
y

This representation is somewhat wasteful, because the minimum is over all y € R™. But since 7(y)
only depends on the order of the y we may as well use

o(x) = glelzsn 1—22"Vrg+a' V. (37)



where 7¢ is given by definition (30). In fact, we can even sharpen equation (37) to

o(x) = min 1 —22'V7rg+a'Vz, (38)
Sesk

because if z; = z; it does not matter what we use for s;;(z) in (24), so we might as well choose .S

et
ins;.

2.4.1 Defays Theorem

Define w, the squared length of the Guttman transform, as

w(x) :=71(x)'V1(z). 39)

Theorem 2.1 (Defays (1978)). If T maximizes w then T minimizes o. Also 0(ZT) = 1 — w(T).

Proof. Completing the square gives
ox)=1+(z—71(x))V(r—71(x)) —0(x). (40)

If there is an z that gives the global minimum of the second term n?(x — 7(z)) and the global
maximum of w then that x certainly gives the global minimum of o. We first maximizing the third
term ¢, which gives us 7(x ), and then minimize the second term by setting x, = 7(z ). O

There were inklings of theorem 2.1 in Guttman (1968) and there is an informal version of it in De
Leeuw and Heiser (1977), but the first complete analysis is the influential paper of Defays (1978).
Theorem 2.1 separates the UDS problem into two steps. The first step finds the optimal signature,
i.e. the optimal order of the x,, and the second step trivially assigns optimal numerical values to the
€T

7

2.4.2 Minimin

mino(z) =minmin1 + 2'Vx — 22'V7(y) =

T r oy
minminl 4+ z'Vz — 22'Vr(y) =
y x
min 1 —7(y)'Vi7(y) =1 —max7(y)' V7 (y). (41)
y y
Toland duality
Subdiff of p

N N ]0 if (y —t,) € K,
*(y) = max2_ 1y’ 'z — p(x) = max max z’(y — t;.) = max ’
p*(y) Y@ — p(x) = max max (y — 1) = may { too  otherwise.

10



. K °
p*<y) — 0 1f<y_tk> S ﬂk:l Kk;a
+o0o0  otherwise.

1
(1) (y) = maxy'z — &'V = 2y'V'y
x
The polar cone of the monotone cone is the Shur cone, which codes the majorization order.

If X is a basis for the monotone code, then Y = — X+ = —X(X’X) ! is a basis for the polar
cone.

2.5 Analysis

Instead of combinatorial now calculus.

The absolute value function is not differentiable at zero in the usual sense. Consequently d;;(z) =
|z, — x; and o are not differentiable at z when x; = x; for one or more pairs (4,7). Thus the
Fermat rule that at local minimum x__ the derivative of o is zero does not make sense if some of the
elements of  are equal. In order to find necessary conditions for a local minimum we switch to

(one-sided) directional derivatives, defined as

Do(z;y) = lim oo + Gye) — J(aj), (42)

where € approaches zero from the right, i.e. € only takes positive values.

Theorem 2.2 (De Leeuw (1984)). The directional derivative of o at x in the direction vy is
n n
Do(z;y) = —2 {?/(f(iﬁ) — V) + Z Z{wij5ij|yi - yj| | dij(x) = 0}} . (43)
i=1 j=1
Proof. We have the result
7’ (x + ey) =17 (x) + 26y Vo + 2y Vy. (44)

Thus
Dn?(z;y) =2y'Va

and for small enough € we have the exact result

p(z +ey) = p(x) + ey’&(x) + GZ Z{wijdz’j‘yi —y;l [z = z;} (45)
v g

Dp(w;y) =y'Vr(z) + Z Z{wijéiﬂ%‘ - yj| | @; = xj}
i g

Combining equations (44) and (45) gives the required result. 0

11



2.5.1 Stationary Points

An z for which £(z) — Vo = 0, or x = 7(x), is a stationary point.

Theorem 2.3 (De Leeuw(1977)). If  is a stationary point then n*(x) < 1.

Proof. 1f&(z) — Vo = 0 then p(x) = n*(x). Thus o(z) = 1 —n*(z) and thus n?(z) < 1. O
Theorem 2.3 is important because it shows that minimizing o is the same thing as minimizing o
over the compact convex set {z|n?(z) < 1}.

Theorem 2.4. Stress has a single local maximum at x = 0

Proof. From ... Do(0,y) > 0 for all y # 0. Thus stress has a strict local maximum at zero. If
there was a local maximum at = # 0 then o would also have a local maximum at the line through 2

and the origin. But on that line o(A\z) = 1 — 2Ap(z) + A\?n?(z), which is a convex quadratic with
no local maxima. O

2.5.2 Local Minima

Stress has a local minimum at x if there is a neighborhood N (x) such that o(x) < o(y) for all
y € N(x). The local minimum is strict if actually o(x) < o(y) forally € N(z). A local
minimum at z is isolated if there is a neighborhood N (z) which contains no other local minima.
Al isolated local minima are strict.

The following necessary condition for a local minimum of stress is due to De Leeuw (1984), who
proves it for MDS. It is a key MDS result, and even more so for UDS.

Theorem 2.5 (De Leeuw(1984)). If stress has a local minimum at x if and only if

1. x is a stationary point, and

2. d;j(z) > 0 forall (i, j) for which w,;;6,; > 0.
Proof. If x is not stationary, i.e. if x # 7(x), then there is an y such that 4’V (7(x) — z)) > 0.
And thus by (43) Do (x;y) < 0.

If o has a local minimum at x we must have Do (x;y) > 0 for all y. Thus also

Do (z;y) + Do(z; — Zz{wzg%lyz y;l [ dij(z) =0} >0 (46)

=1 j=

for all y, which implies that for all k£ we must have w, ;6,; = 0 for all 4, j with d;;(x) = 0., [

All local minima of stress are isolated.
There are at most 1! local minima.

If stress has a local minimum at z then d,;(z) = 0 only if w;;0,; = 0. Note we do not say that

w, ;6;; = 0 implies that at a local minimum d, ;(x) = 0.

12



Corollary 2.1. In UDS problems o is differentiable at all local minima.

Proof. This is immediate for positive UDS problems. But even if a problem is not positive we have

Zz{wm | wz] ¥ > 0}

le

By the same reasoning as before we now have d,;(z) > 0 at local minima for all (i, j) for which
w;;6;; > 0. If d;;(z) = 0 then w;;0;; = 0 and the (i, j) term simply does not enter into the
summation deﬁmng p(x). O

Local minima are stationary points, but stationary points are not necessarily local minima. Suppose
we have an unweighted UDS with

0 21
A=1|2 0 1].
1 10
Consider x; = x5 = —% and x5 = % Then
00 —1
S(z)y=10 0 —1],
11 0
and 7(z) = (—3,—3, 2). Thus 2 = 7(z) and z is stationary, but it cannot be a local minimum
because ; = x,. If, for example, we choose a direction y as (—1,1,0) then Do(z;y) =
—2815|y; — Yo| = —4 and thus y is a descent direction at .

Suppose z, minimizes g, and is on the boundary. If d;;(z) = 0 then §,; = 0. Suppose S, and S,
are adjacent. Then ¢, = ¢, and thus ¢, and g, are the same. Thus strict local minimum.

010
A=1]1 01
010

x = (+3,2,+3). Then
0 +1 0
S(x)y=|{-1 0 —1
0 +1 O
Now 7(x) = x and thus x is a stationary point, even though it has d5(x) = 0.

From equation (38) we see that o is the minimum of N = n! strictly convex quadratic functions,
all of them with the same quadratic part 2’ V'z.

13



2.6 Subdifferentials
Ip(z) ={y|y= (W x A x S(z))e}

where S is any matrix with

—1<s;(x)<+1 ifz; ==z

% J:

515(x) = {sign(xi — ) ifz, #x;,

## Conjugate
'ty ifx € Ky,
p(z) = 3
'ty ifxe Ky
/ N /
p*(y) =supa’y — p(x) = max sup 2’V (y — )
T k=1 zek,
0 ify — 7, € KY,
sup 'V (y — 1) = nY Tk b
zeK, +o00  otherwise.
Thus n
p*(y) = 0iffy € | J{t, + K;}
k=1
In terms of projections on the cone.
In terms of polar norm.
N
= "t
p(z) naxL tr

dp(z) = conv{t,|z't, = p(x)}
## Polar Norm
x'Vy K x'Vy

p°(y) = sup = max sup —,
(%) - p(m) k=1 gex, T Vi

2.7 Moreau-Yoshida regularization of rho
, 11 , N , 11 /
ex(y) =infp(z) + 5 (e—y)V(z —y) = min inf 2"V, + &=y Viz—y)
11

: % / . 11 / 1 /
[nin ﬁ{(ﬂf—y) V(z—y)+2 2’V } = [nin §X{x_<y_)‘7-k>> V(x_(y_/\Tk>)}_§)‘TkVTk

), = proj, (y — A7y,)

14



2.8 Ratio of Norms
De Leeuw (1977)

3 Algorithms for UDS

3.1 Local Optimization
3.1.1 Majorization (MM) Algorithm
De Leeuw (1994) Heiser (1995) Lange, Hunter, and Yang (2000) Lange (2016)

Using a superscipt for iteration number we$lange can now define the majorization algorithm for
UDS with the update formula

pk+1) argmin {1 — 2x’§($(k)) + 2V} = 7-(x(k)>7 (47)
xT

unless z®) = 7(2(®)), in which case we stop the algorithm.

Theorem 3.1 (De Leeuw and Heiser (1977)). The majorization algorithm (47) converges to a
Stationary point in a finite number of steps.

Proof. We have s,;(y)(z; — x;) < s;;(x)(z; — x;). Thus, for all (z,y).

p(x) > 2't(y). (48)
It follows that
o(x) <1—-22"Vr(y)+a' V. (49)
for all pairs (x, y), and thus
o(x*H)) <1 — 2{zFDV V() 4+ 2 (2P). (50)

Because of the minimization in the update rule (47)
1 —2{z™ DV V1 (™) 4 n2(2®) < 1 = 2{zFV V() 4 02 (z®) = o(2®).  (51)

unless z'%) = T(w(k) ), in which we case we stop anyway. Thus either we stop or, from inequalities
(50) and (51),

o(zF) < o(z®). (52)
Since 7(x) only depends on the order of x, and since by result (52) an order can never repeat, this
ends the proof. |
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3.1.2 Projection Algorithm
3.2 Global Optimization

3.2.1 Integer Programming

3.2.2 Permutation Algorithm

De Leeuw (2005) Mair and De Leeuw (2015)
Theorem 3.2 (De Leeuw and Heiser (1977)). Suppose

d(m)

x(m) = argmin (x — 7(m))'V(x — 7(7))
rzeK(m)

then
min o(x) = minl + d(7) — 7(7)"' V71 (7)
zeR"™ TeEP
If  is in the interior of the cone K then
o(x)=1-22"Vrig+a'Ve=1+ (z —715)'V(r — ) + T VTg
If x is on the boundary of the cone
Thus minimizing z over int(/ ) can be done by minimizing
n(x—Tg) = (x—7x)' V(e — 7).
. f 2 . _ . 2 o
peinf 7@ = Tg) = minn(@ = 7r)
and the last problem is a weighted least squares monotone regression problem, which has a unique
solution Py (7).

3.3 Smoothing
Pliner (1986)
Moreau-Yoshida

3.4 Penalizing Full-dimensional Scaling

4 Small Examples

In this section we illustrate the developments so far with five small examples A, .-+, A of dissim-
ilarity matrices. They are

012370107701 17(701277010
10 3|10 1|1 0 1|1 0 4] (1 0 O
23 0/[101O0/1[1 1012401000
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In all examples the UDS is unweighted, but A, and A are not positive. The matrices are scaled
using (4), so that all stationary points are in the region with n?(z) < 1. We use two orthonormal
basis vectors z; and 2, that span R?, and use for the coordinates of our plots the coefficients of the
linear combinations (v, 8) in & = az; + Bz,. Thus n?(x) = 3(a? + B?).

We make two plots for each example. The first plot shows the circle ?(z) = 1 and the six cones
corresponding with the six permutations of the three coordinates. We then show a single iteration of
the majorization algorithm. Six starting points (small black points) are chosen. Each of the six x;, is
then connected with 7(x;,) (large blue point). Prefect fit with o(x) = 0 is indicated by a point on
the circle, the closer the («, 3) point is to the circle, the better the fit.

The second plot is a straightforward contour plot of o, again with the six cones drawn in. Because of
our choice of coordinates in each cone o is a circular quadratic around its minimum. in the middle
of the circle arc where the six cones intersect the unit circle. and the set of x with n?(z) = 1 is the
circle of radius %\/5

Dissimilarities A; can be fitted exactly in one dimension (with x; between x5 and x3). Figures 1
and 2 show six local minima, in three mirror image pairs, in one of each of the six cones. The pair
on the circle are the global minima, with o equal to zero.

[ INSERT FIGURES 1 AND 2 ABOUT HERE ]

A, can also be fitted perfectly in one dimension, but with x; = x4, because d,5 = 0. Figures 3
and 4 show four local minima, with the global minima on the circle. The global minima are in the
intersection of two of the cones, on the line with x; = x5. This illustrates that local minima are not
necessarily in the interior of one of the cones.

[ INSERT FIGURES 3 AND 4 ABOUT HERE ]

A, has a perfect MDS fit in two dimensions (an equilateral triangle), but not in one dimension. It
does have complete symmetry, which means that all six cones produce local minima with the same
value of ¢ and the same numerical values in x (in different permutations). This is shown in figures
5 and 6.

[ INSERT FIGURES 5 AND 6 ABOUT HERE ]

Matrix A, violates the triangle inequality because d95 > 05, + 015. There is no MDS perfect fit in
any dimensionality. It looks from 7 if the point in the cone x, < z; < x5 is on the circle, and thus
must have zero stress, but actually o(z) = .0159 and n?(z) = .9841. Close, but no cigar. Also
the point on the half line x; = x, < x3 is not a stationary point, and thus not a local minimum.
The next step of the majorization algorithm will move to the point in z, < z; < x5, which is
both stationary and a local minimum. The contour plot in figure 8 shows the irregularities at the
intersections of the cones, where stress is not differentiable and has a ridge of saddle points. Thus
for A, there are only four local minima.
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[ INSERT FIGURES 7 AND 8 ABOUT HERE

|

Dissimilarties A5 also violates the triangle inequality. Figures 9 and 10 show there is only one mirror
pair of local minima, which are thus the global minima. The majorization algorithm finds a global
minimum in one step, no matter where we start. Note that in this example stress is differentiable

everywhere, except on the line z; = z5.

[ INSERT FIGURES 9 AND 10 ABOUT HERE

5 Extensions

5.1 Inverse Unidimensional Scaling

Thus, more formally,
MDS(mp)TL . [Hn><n ® [ann = Enxp

is defined by

MDS, (W,A) :=argmino(z) ={y € R" | o(y) = min o(z)}.

z€R™ zeR™

Suppose o has a local minimum at z.

{A Ve =t(x)}
{W,A | Vz=t(x)}

Example n = 3, w;; =1

(—1,0,1) is a stationary point for any A

forany 0 < 6 < 3.1f0 = 2then A = D(z) and o(x) = 0

06 3
A@_[e ; 3}

(—1,—1,2) is a stationary point for

330

(53)

(54)

forany 0 > 0. If @ = 0 then A = D(x) and o(x) = 0. This is not a counterexample to De Leeuw
(1984), because his result requires ¢ > 0. But it does show that we can have d,;(x) = 0 at a local

minimum. It also shows that stationary points may not be local minima.
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Question: are there more local minima for these A(¢). Consider the 3 permutations z; < xy < s,
T < X3 < Ty, and x5 < 77 < Ty

Suppose

0 a b
A=la 0 ¢
b ¢ 0

What are all possible local minima ? Assume wlg that a = 1.

And stationary points ?

T < Xy < Ty

0 —1 —1

S=1|+1 0 -1

+1 +1 O
—a—b<a—c<b+ec

al <- matrix(c(-2,-1,1,1,-1,-2),2,3,byrow = TRUE)

vl <- scdd(makeH(rbind(-diag(ncol(al)),al),rep(0, ncol(al) + nrow(al))))[[1]]
attr(vl, "representation") <- NULL

print(vi[, -(1:2)])

# (,11 [,2] [,3]
## [1,] 0 1 0
## [2,] 1 1 0
## [3,] 2 0 1
## [4,] 1 0 2
## [5,] 0 1 1

)

0 01 011710 2 077010777001
0 0 1 0 0](2 0 1](1 0 2| ({0 0 1
1 00 1 00]01O0][02O0]1(110O0

0 —1 —1
S=1|4+1 0 +1].

+1 -1 0
—a—b<b—c<a+ec

Ty < 33 < Tq

a2 <- matrix(c(-1,-2,1,-1,1,-2), 2, 3, byrow = TRUE)
scdd (makeH(rbind(-diag(ncol(a2)),a2),rep(0, ncol(a2) + nrow(a2))))

## $output

## (,11 [,2]1 [,3] [,4] [,5]
## [1,] 0 0 0 2 1
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## [2,] 0 0 1 0 0
## [3,] 0 0 1 1 0
## [4,] 0 0 1 0 1

1 2

## [5,] o 0 0
## attr(,"representation")
## [1] uvu

Ty < X < Tgy

0 —1 +1

S=1|+1 0 +1

-1 —1 0
—b—c<—-a+b<a+c

a3 <- matrix(c(1,-2,-1,-2,1,-1),2,3,byrow = TRUE)
scdd (makeH(rbind(-diag(ncol(a3)),a3) ,rep(0, ncol(a3) + nrow(a3))))

## $output

## (,11 [,2] [,31 [,4] [,5]
## [1,] 0 0 0 0
## [2,] 0 0 2

## [3,] 0 0 1

## [4,] 0 0 1

## [5,] 0 0 0

## attr(,"representation")
## [1] "v"

a4 <- matrix(c(-2,-1,-1,1,1,0,
1,-2,0,-2,-1,1,
0,1,-1,1,-1,-2),3,6,byrow = TRUE)
v4 <- scdd(makeH(rbind(-diag(ncol(a4)),ad),rep(0, ncol(ad4) + nrow(ad))))[[1]]
attr(v4, "representation") <- NULL
vd <- v4[,-(1:2)]

=N O
_, O R, O K

ab2 <- matrix(c(-1,-1,-1,0,0,0,
1,0,0,-1,-1,0,
0,1,0,1,0,-1,
0,0,1,0,1,1), 4, 6, byrow = TRUE)

b52 <- c(-12,-4,4,12)

h5<-makeH(rbind (-diag(6)) ,rep(0, 6),a52,b52)
v5 <- scdd(h5)

print (h5)

## (,11 [,2]1 [,3] [,4] [,8] [,6] [,7]1 [,8]

#  [1,] 1 -12 1 1 1 0 0 0
# [2,] 1 -4 -1 0 0 1 1 0
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##  [3,]
##  [4,]
## [5,]
##  [6,]
##  [7,]
##  [8,]
##  [9,]
## [10,] 0 0 0
## attr(,"representation")
## [1] "H"

12

O O O O O - K~
O O O O O
SO O O O+ OO
O O O O+ OO
SO O O~ OO
O O, O O O O
O, O O O O
_ O O O O O

print (v5)

## $output

#it (,11 [,2] [,3] [,4] [,8] [,6] L[,7] [,8]
## [1,] 0 1 12 0 0 16 0o 12
## [2,] 12 0 4 12 0
## [3,] 4 12 0
## [4,] 4 0
## [5,] 12 8
## [6,] 12 12
## [7,] 0 1 0 0 12 0
## attr(,"representation")

## [1] "v"

De Leeuw (2019)

SO O O O O

1
1
1
1
1

O O O

O O 00 © O
S O O O
o o n »

5.2 Nonmetric Unidimensional Scaling

A= Z 0.T,
s=1

with #, > 0. When is z a solution. If the row sums of ZZ: L 0s(W x T, x S(x) are monotone
with z. This gives a bunch of homogeneous linear inequalities in 6.

o(.0) = 133y (6,(6) [, — )2

i=1 j=1

Additive constant, as in Heiser et al.

6 Data Examples

6.1 Vegetables
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data (vegetables, package = "psychTools")
veg <- abs(qnorm(as.matrix(veg)))

w <- 1 - diag(9)

veg <- 2 * veg / sqrt(sum(w * veg * veg))

vstress <- NULL
vitel <- NULL
vx <- matrix(0, 0, 9)
for (i in 1:10000) {
h <- udsmm(veg, w, sample(1:9, 9), verbose = FALSE)
vstress <- c(vstress, h$f)
vitel <- c(vitel, h$itel)
vx <- rbind(vx, h$x)

}

The minimum value of stress found was 0.035301, which was found 940 times.

[ INSERT FIGURE 11 ABOUT HERE ]

## vitel
#it 2 3 4 5 6 7 8 9 10
## 421 2529 3094 2163 1065 478 125 76 49

The minimum stress is 0.035301. In 15484 out of the 362880 starts we found stationary points.
Because the UDS problem is positive these are all local minima and they are all in the interior of
different cones !!not so!!deltas

6.2 Genes

genes <- as.matrix(read.table('"nextperm/genes.R"))

weights <- as.matrix(read.table("nextperm/weights.R"))/1000
genes <- genes + t(genes)

weights <- weights + t(weights)

The minimum value of stress found was 0.007077, which was found 559 times.

[ INSERT FIGURE 12 ABOUT HERE ]

## gitel
## 2 3 4 5
## 592 7663 1744 1

The minimum stress is 0.007077. In 2380 out of the 40320 starts we found stationary points.
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6.3 Plato

data(Plato7, package = "smacof")
plato <- as.matrix(dist(sqrt(t(Plato7))))
weights <- 1 - diag(7)

The minimum value of stress found was 0.121515, which was found 10 times.

[ INSERT FIGURE 13 ABOUT HERE
## pitel

## 2 3

## 0942 58

The minimum stress is 0.121515. In 5016 out of the 5040 starts we found stationary points.

6.4 Morse Code

A Figures
B Appendix: Code

B.1 udsplots.R

deltal <- matrix(c(0, 1, 2
delta2 <- matrix(c(0, 1, 0, 1
delta3d <- 1 - diag(3)
deltad4 <- matrix(c(0, 1, 2
delta5 <- matrix(c(0, 1, 0, 1

0), 3, 3)
0), 3, 3)

\,'_L
L
M
owN
M

-

0), 3, 3)
0), 3, 3)

=
LeL
N
op
N

-

pplot <- function(delta) {
delta <- delta / sqrt(sum(delta = 2) / 2)
z <- matrix(c(-1, 1, 0, -1, -1, 2), 3, 2)
z <- apply(z, 2, function(x)

x / sqrt(sum(x ~ 2)))
a <- seq(-1, 1, length
b <- seq(-1, 1, length
funk <- function(a, b) {

n <- length(a)

m <- length(b)

s <- matrix(0, n, m)

for (i in 1:n) {

for (j in 1:m) {
x <- alil * z[, 1] + b[j] * z[, 2]

100)
100)
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x2 <x1<x3 x1<x2<x3

x3<x2<x1 x3 <xl<x2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a

Figure 1: Cones for Deltal
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-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 2: Local Minima for Deltal
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x2 <x1<x3 x1<x2<x3

x3<x2<x1 x3 <xl<x2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a

Figure 3: Cones for Delta2
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x2 <x1<x3 x1<x2<x3

x3<x2<x1 x3 <xl<x2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a

Figure 5: Cones for Delta3
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Figure 6: Local Minima for Delta3
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-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4

a

Figure 7: Cones for Delta4
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-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Figure 8: Local Minima for Delta4
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x2 <x1<x3 x1<x2<x3

x3<x2<x1 x3 <xl<x2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

a

Figure 9: Cones for Delta5
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-0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4 -0.2 0.0 0.2

Figure 10: Local Minima for Delta5
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Frequency

800

600

400

200

I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6

vstress

Figure 11: Stress Histogram for Vegetables, 10000 runs

34



Frequency

1000 1500 2000

500

I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

gstress

Figure 12: Stress Histogram for Genes, 10000 runs
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Frequency

200 300 400 500 600

100

I I I I I
0.0 0.1 0.2 0.3 0.4

pstress

Figure 13: Stress Histogram for Plato, 10000 runs
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d <- abs(outer(x, x, "-"))
s[i, j] <- sum((delta - d) =~ 2) / 2
+
+
return(s)
}
s <- funk(a, b)
persp(

theta = 30,

phi = 30,

zlab = "stress",

col = "RED",

ticktype = "detailed"
)

return()

}

mplot <- function(delta) {
delta <- delta / sqrt(sum(delta = 2) / 2.0)
par(pty = "s")

plot(
oF
xlim = c(-.6, .6),
ylim = c(-.6, .6),
xlab = "a",
ylab = "b",
type = "n"

)

abline(0, -sqrt(3) / 3, col = "RED", lwd = "3")
abline(0, sqrt(3) / 3, col = "RED", lwd = "3")
abline(v = 0, col = "RED", 1lwd = "3")
z <- matrix(c(-1, 1, 0, -1, -1, 2), 3, 2)
z <- apply(z, 2, function(x)
x / sqrt(sum(x ~ 2)))
y <- matrix(0, 6, 2)
saa <- sqrt(1 / 3)
sbb <- saa / 2
y[2, 1] <- saa
y[5, 1] <- -saa
y[1, 1 <- c(sbb, .5)
y[3, 1 <- c(sbb, -.5)

37



y[6, 1 <- c(-sbb,

.5)

y[4, 1 <= c(-sbb, -.5)
points(y, pch = 16)
text(.5 * y[1,
text(.5 * y[2,

text (.5 * y[3,
text (.5 * y[4,
text (.5 * y[5,
text(.5 * y[6,

1],
1],
1],
1],
11,
1],

cir <- seq(-2 * pi,

lines(sqrt(1 / 3.0) =*

o o1 01 o1 01 O
* ¥ X X ¥ ¥ *

2

x <- tcrossprod(z, y)
for (i in 1:6) {

<- x[, 1i]

y[1, 21, "x1
y[2, 21, "x1
vI3, 21, "x3
vl4, 21, "x3
y[5, 2], "x2

yI6, 21, "x2 <

pi,

length =

<- sign(outer(v, v, "-"))

<- rowSums(s * delta) / 3.0

<- drop(t %*% z)

<- sign(outer(t, t, "-"))

rowSums(s * delta) / 3.0
<= drop(t %*% z)
<- sign(outer(t, t, "-"))

<- rowSums(s * delta) / 3.0

O ¢ T cd n p g
N
|

<- drop(t %*% z)
points(matrix(a, 1, 2), pch
points(matrix(b, 1, 2), pch

points(matrix(c, 1, 2),

col = "BLUE",
cex = 1.5,
pch = 16)

16)
16)

lines(rbind(y[i,], a), lwd = 2)
lines(rbind(a, b), lwd = 2)
lines(rbind(a, c), lwd = 2)

cplot <- function(delta) {

par(pty = "s")
delta <- delta / sqrt(sum(delta ~ 2) / 2.0)

a <- seq(-.6,
<- seq(-.6,

N N B T

<- matrix (0,
<- matrix(c(-1, 1, O,
<- apply(z, 2, function(x)

100,

.6, length
.6, length

100)

_1,

100)
100)

-1, 2), 3, 2)
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x3
x1
x2
x3
x1
100)
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x3",
x2",
x2",
x1",
x1",
x3",

cex =
cex =

cex
cex
cex
cex

.5)
.5)
.5)
.5)
.5)
.5)

sin(cir), sqrt(l / 3.0) * cos(cir))



x / sqrt(sum(x ~ 2)))
for (i in 1:100) {
for (j in 1:100) {
x <- ali]l * z[, 1] + b[j] * z[, 2]
d <- abs(outer(x, x, "-"))
hli, j] <- sum((delta - d) =~ 2) / 2
}
+
contour(a, b, h, nlevels = 100, col = "BLUE")
abline(v = 0, col = "RED", lwd = 2)
abline(0, -sqrt(3) / 3, col = "RED", lwd = "3")
abline(0, sqrt(3) / 3, col = "RED", lwd = "3")
cir <- seq(-2 * pi, 2 * pi, length = 100)
lines(sqrt(l1 / 3.0) * sin(cir), sqrt(l / 3.0) * cos(cir))

B.2 udsmm.R

udsmm <- function (delta, w , x, itmax = 10, eps = le-10, verbose = TRUE) {
n <- length(x)
delta <- delta / sqrt(sum(w * (delta ~ 2)) / 2)
xold <- x - mean(x)

dold <- abs(outer(xold, xold, "-"))
fold <- sum(w * (delta - dold) ~ 2) / 2
v <- —w

diag(v) <- -rowSums(v)
vv <- solve(v + (1 / n)) - (1 / n)

itel <- 1

repeat {
sold <- sign(outer(xold, xold, "-"))
xnew <- drop(vv %*’% rowSums(w * delta * sold))
dnew <- abs(outer(xnew, xnew, "-"))

fnew <- sum(w * (delta - dnew) ~ 2) / 2
tnrm <- sum(xnew * (v %*, xnew))
if (verbose) {
cat("itel ", formatC(itel, digits
"fold ", formatC(fold, digits

2, format = "d"),
10, format = "f"),

"fnew ", formatC(fnew, digits = 10, format = "f"),
"tnrm ", formatC(tnrm, digits = 10, format = "f"),
n \nll

)

}
if (((fold - fnew) < eps) || (itel == itmax)) {
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break
}
itel <- itel + 1
xold <- xnew
fold <- fnew
}
return(list(x = xnew, f = fnew, itel = itel))

}

B.3 nextperm.R

next.perm <-
function(x)
.C("permNext", as.double(x), as.integer(length(x))) [[1]]

are.monotone <- function(delta, w, x, y) {
n <- nrow(delta)
mon <- TRUE
for (j in 1:(n - 1)) {
for (i in (j + 1):n) {
dx <- sign(x[i] - x[j1)
dy <- sign(y[i] - y[j1)
if ((wli, j] * deltali, j] * dx * dy) < 0) {
mon <- FALSE
+
}
}

return(mon)

uniscale <-
function(delta,
w = 1 - diag(nrow(delta)),
verbose = FALSE) {
n <- nrow(delta)
delta <- delta / sqrt(sum(w * (delta ~ 2)) / 2)

m<- 0

k <- 0
fmin <- Inf
x <- 1:n

v <- -w

diag(v) <- -rowSums(v)
v <- solve(v + (1 / n)) - (1 / n)
repeat {
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k <-k +1
s <- sign(outer(x, x, "-"))
t <- drop(v %*% rowSums(delta * w * s))
if (are.monotone(delta, w, x, t)) {
m<-m+1
d <- abs(outer(t, t, "-"))
f <- sum(w * (delta - d) = 2) / 2
if (verbose) {
print(c(m, f, fmin, max(t), min(t)))
}
if (f < fmin) {
fmin <- £
xmin <- t
}
}
if (all(x == (n:1)))
return(list(
xmin = xmin,
fmin = fmin,
m=nm,
k =k
))

X <- next.perm(x)

B.4 nextPerm.c

void swap(double *, int, int);
void permNext(double *, int *);

void swap(double *x, int i, int j) {
double temp;
temp = x[il;

x[1i]
x[j]

x[jl;
temp;

void permNext(double *x, int *nn) {
int n = *nn;
int i =n - 1;
while (x[i - 1] >= x[i]) i--;
if (i == 0) return;
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int j = n;
while (x[j - 1] <= x[i - 1]) j--;
swap(x, i -1, j - 1);
j= o
i++;
while (i < j) {

swap(x, i -1, j - 1);

j—s
i++;
}
}
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