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Abstract

Modifications of the smacof algorithm for multidimensional scaling are proposed that

provide a convergent majorization algorithm for Kruskal’s stress formula two.

1



Contents

1 Introduction 3

2 Problem 4

3 Notation 5

4 Majorization 6

5 Derivatives 9

6 Examples 10

6.1 Ekman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 De Gruijter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Appendix: Code 14

7.1 stress2.R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

References 16

Note: This is a working paper which will be expanded/updated frequently. All suggestions for

improvement are welcome.

2



1 Introduction

The loss function minimized in the current non-metric and non-linear R implementations of the

smacof programs for MDS (De Leeuw and Mair (2009), Mair, Groenen, and De Leeuw (2022)) is

Kruskal’s original normalized stress (Kruskal (1964a), Kruskal (1964b)). It is defined as

𝜎1(𝑋) ∶=
∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋)2)

∑ ∑ 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)

. (1)

In equation (1) we assume throughout that dissimilarities 𝛿𝑖𝑗 and weights 𝑤𝑖𝑗 are non-negative, and,
without loss of generality, that the weights add up to one. The double summation is over all pairs

of indices (𝑖, 𝑗) with 𝑖 > 𝑗, i.e, over the elements below the diagonal of the matrices Δ, 𝑊, and

𝐷(𝑋).

In Kruskal (1965) a different loss function was used in the context of using monotone transformations

when fitting a linear model. In MDS this loss function is

𝜎2(𝑋) ∶=
∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋)2)

∑ ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − 𝑑(𝑋))2
, (2)

where

𝑑(𝑋) = ∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑗(𝑋). (3)

In Kruskal and Carroll (1969), in the section written by Kruskal (p. 652), we see

In several of my scaling programs, I refer to these expressions as “stress formula one”

and “stress formula two”, respectively. Historically, stress formula one was the only

badness-of-fit function used for some time. Stress formula two has been used more

recently and I now tend to recommend it.

Another early adopter (Roskam (1968), p. 34) says

While the original formula is adequate for completely ordered B-data, we found it is

not adequate with completely ordered A-data.

The distinction between A-data and B-data comes from Coombs (1964). For B-data the 𝛿𝑖𝑗 are
dissimilarties between pairs of elements of a single set, while for A-data they are dissimilarities

between two different sets, a row-set and a column-set. Moreover both Kruskal and Roskam

found that having the variance of the distances in the denominator of stress has major advantages

for conditional A-data, in which only comparisons of dissimilarities with in the same row are

meaningful.

In this paper we will extend the theory and algorithm of smacof to stress formula two. We emphasize

that normalized loss functions such as stress formula one and stress formula two should are only

used in non-linear or nor-metric MDS problems. In metric MDS problems raw stress, without any

normalization, can be used.
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2 Problem

We want to minimize Kruskal’s stress formula two from (2) over the 𝑛 × 𝑝 configuration matrices

𝑋.

It is convenient to have some notation for the numerator and denominator of the two stress formulas.

𝜎𝑅(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2, (4a)

𝜂2
1(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗𝑑2

𝑖𝑗(𝑋), (4b)

𝜂2
2(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − 𝑑(𝑋))2, (4c)

Kruskal terms 𝜎𝑅 from definition (4a) the raw stress.

There have not been any systematic comparisons of the two stress formulas, and the solutions they

lead to, that I am aware of. Kruskal (in Kruskal and Carroll (1969), p. 652) says

For any given configuration, of course, stress formula two yields a substantially larger

value than stress formula one, perhaps twice as large in many cases. However, in typical

multidimensional scaling applications, minimizing stress formula two typically yields

very similar configurations to minimizing stress formula one.

We can get some idea about the difference in scale of the two loss functions from the results

𝜎1(𝑋)
𝜎2(𝑋)

= 𝜂2
2(𝑋)

𝜂2
1(𝑋)

≥ min
𝑋

𝜂2
2(𝑋)

𝜂2
1(𝑋)

(5)

De Leeuw and Stoop (1984) show that in the one-dimensional case with 𝑝 = 1 and with all 𝑤𝑖𝑗
equal, this implies

𝜎1(𝑋) ≥ 1
3

𝑛 − 2
𝑛

𝜎2(𝑋). (6)

Thus in this special case 𝜎1 is three to nine times as large as 𝜎2. In general the bound in equation
(6) depends on the weights, on the dimensionality 𝑝, and on the order 𝑛 of the problem.

As a qualitative statement, supported to some extent by the computations of De Leeuw and Stoop

(1984), we can say that minimizing 𝜎1 will tend to give optimal configurations in which distances

have less variance than those in configurations that minimize 𝜎2. One thing is for sure, however. If
𝑋 is a regular simplex in 𝑛 − 1 dimensions then 𝜎2 is not even defined. Or, to put it differently, if

all 𝛿𝑖𝑗 are equal the minimum of 𝜎2 in 𝑛 − 1 dimensions does not exist.
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3 Notation

Now for some notation. As in standard MDS theory (De Leeuw (1977), De Leeuw and Heiser

(1977), De Leeuw (1988)) we use the matrices

𝐴𝑖𝑗 ∶= (𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)′, (7)

where 𝑒𝑖 are unit vectors with element 𝑖 equal to one and the other 𝑛 − 1 elements equal to zero.

Thus 𝐴𝑖𝑗 has elements (𝑖, 𝑖) and (𝑗, 𝑗) equal to +1, elements (𝑖, 𝑗) and (𝑗, 𝑖) equal to −1, and all
other elements equal to zero. The usefulness of the 𝐴𝑖𝑗 in MDS derives mainly from the formula

𝑑2
𝑖𝑗(𝑋) = tr 𝑋′𝐴𝑖𝑗𝑋. (8)

Using the 𝐴𝑖𝑗 we now define other matrices, also standard in MDS,

𝑉 ∶= ∑ ∑ 𝑤𝑖𝑗𝐴𝑖𝑗, (9a)

𝐵(𝑋) ∶= ∑ ∑ 𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑋)
𝐴𝑖𝑗. (9b)

Note that 𝐵 is a matrix-valued function, not a single matrix. For completeness also define

𝜂2(Δ) ∶= ∑ ∑ 𝑤𝑖𝑗𝛿2
𝑖𝑗. (10)

Specifically because we are dealing with stress formula two we also need the non-standard definition

𝑀(𝑋) ∶= 𝑑(𝑋) ∑ ∑
𝑤𝑖𝑗

𝑑𝑖𝑗(𝑋)
𝐴𝑖𝑗. (11)

In both definitions (9b) and (11) the summation is over pairs (𝑖, 𝑗) with 𝑑𝑖𝑗(𝑋) > 0. Of course we
can also omit all pairs from the summation for which 𝑤𝑖𝑗 = 0.
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4 Majorization

In this section we construct a convergent majorization algorithm (De Leeuw (1994)) (also known as

an MM algorithm, Lange (2016)) to minimize stress formula two.

The first step is to turn the minimization of a ratio of two functions into the iterative minimization

of a difference of the two functions. This is a classical trick in fractional programming, usually

attributed to Dinkelbach (1967). Define

𝜔(𝑋, 𝑌 ) ∶= ∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2 − 𝜎(𝑌 ){∑ ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − 𝑑(𝑋))2} (12)

Lemma 4.1. If 𝜔(𝑋, 𝑌 ) < 𝜔(𝑌 , 𝑌 ) = 0 then 𝜎(𝑋) < 𝜎(𝑌 ).

Proof. This is embarassingly simple. Direct substitution shows 𝜔(𝑋, 𝑋) = 0 for all 𝑋. Also

𝜔(𝑋, 𝑌 ) < 0 if and only if

∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2 < 𝜎(𝑌 ){∑ ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − 𝑑(𝑋))2} (13)

Dividing both sides by {∑ ∑ 𝑤𝑖𝑗(𝑑𝑖𝑗(𝑋) − 𝑑(𝑋))2} shows that 𝜎(𝑋) < 𝜎(𝑌 ).

It follows from lemma 4.1 that if we are in iteration 𝑘, with tentative solution 𝑋(𝑘), then finding
any 𝑋(𝑘+1) such that 𝜔(𝑋(𝑘+1), 𝑋(𝑘)) < 0 will decrease stress. We will accomplish this in our

algorithm by performing one or more majorization steps decreasing 𝜔(𝑋, 𝑋(𝑘)).

We should note that as a general strategy we cannot use finding 𝑋(𝑘+1) by minimizing 𝜔(𝑋, 𝑋(𝑘))
over 𝑋. If the minimum exists this will work, but in general 𝜔(•, 𝑋(𝑘)) may be unbounded below,

and the minimum may not exist. This is easily seen from the example 𝑓(𝑥) = 𝑥′𝐴𝑥/𝑥′𝑥 for

which Dinkelbach’s maneuver gives 𝑔(𝑥, 𝑦) = 𝑥′𝐴𝑥 − 𝑓(𝑦)𝑥′𝑥. The minimum of 𝑔 over 𝑥 is

zero if 𝑓(𝑦) is equal to 𝜆min(𝐴), the smallest eigenvalue of 𝐴, which is actually the minimum of

𝑓. If 𝑓(𝑦) > 𝜆𝑚𝑖𝑛(𝐴) the minimum does not exist (the infimum is −∞). We can ignore the case

𝑓(𝑦) < 𝜆𝑚𝑖𝑛(𝐴). because that is impossible. But if 𝑓(𝑦) > 𝜆𝑚𝑖𝑛(𝐴) any 𝑥 with 𝑥′𝑥 = 1 other

than the eigenvector corresponding with the minimum eigenvalue satisfies 𝑔(𝑥, 𝑦) < 0 and thus

𝑓(𝑥) < 𝑓(𝑦).

Baxk to stress formula two. From definitions (9a), (9b), (10), and (11)

𝜔(𝑋, 𝑌 ) = 𝜂2(Δ) + (1 − 𝜎(𝑌 ))tr 𝑋′𝑉 𝑋 − 2 tr 𝑋′𝐵(𝑋)𝑋 + tr 𝑋′𝑀(𝑋)𝑋 (14)

Lemma 4.2. For all 𝑋 and 𝑌

tr 𝑋′𝐵(𝑋)𝑋 ≥ tr 𝑋′𝐵(𝑌 )𝑌 , (15)

with equality if 𝑋 = 𝑌.

Proof. By Cauchy-Schwartz

𝑑𝑖𝑗(𝑋) ≥ 1
𝑑𝑖𝑗(𝑌 )

tr 𝑋′𝐴𝑖𝑗𝑌 (16)

Multiplying both sides by 𝑤𝑖𝑗𝛿𝑖𝑗 and summing proves the lemma.
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Lemma 4.3. For all 𝑋 and 𝑌

tr 𝑋′𝑀(𝑋)𝑋 ≤ tr 𝑋′𝑀(𝑌 )𝑋, (17)

with equality if 𝑋 = 𝑌.

Proof. Start with the trivial result

∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑗(𝑋) = ∑ ∑
𝑤𝑖𝑗

𝑑𝑖𝑗(𝑌 )
𝑑𝑖𝑗(𝑋)𝑑𝑖𝑗(𝑌 ). (18)

By Cauchy-Schwartz

𝑑(𝑋) ≤ √∑ ∑
𝑤𝑖𝑗

𝑑𝑖𝑗(𝑌 )
𝑑2

𝑖𝑗(𝑋)√∑ ∑
𝑤𝑖𝑗

𝑑𝑖𝑗(𝑌 )
𝑑2

𝑖𝑗(𝑌 ) (19)

Squaring both sides proves the lemma.

We are now ready for the main result.

Theorem 4.1. Suppose 𝜎2(𝑋(0)) ≤ 1. The update

𝑋(𝑘+1) = {(1 − 𝜎2(𝑋(𝑘)))𝑉 + 𝜎2(𝑋(𝑘))𝑀(𝑋(𝑘))}+𝐵(𝑋(𝑘))𝑋(𝑘) (20)

defines a convergent majorization algorithm.

Proof. Using the definitions in equations (9a), (9b), (10), and (11) define

𝜉(𝑋, 𝑌 ) ∶= 𝜂2(Δ) + (1 − 𝜎(𝑌 ))tr 𝑋′𝑉 𝑋 − 2tr 𝑋′𝐵(𝑌 )𝑌 + 𝜎(𝑌 )tr 𝑋′𝑀(𝑌 )𝑋. (21)

From lemmas 4.2 and 4.3 𝜔(𝑋, 𝑌 ) ≤ 𝜉(𝑋, 𝑌 ) with equality if 𝑋 = 𝑌. In particular

𝜔(𝑋(𝑘+1), 𝑋(𝑘)) ≤ 𝜉(𝑋(𝑘+1), 𝑋(𝑘)). (22a)

The update 𝑋(𝑘+1) minimizes 𝜉(𝑋, 𝑋(𝑘)) and thus

𝜉(𝑋(𝑘+1), 𝑋(𝑘)) ≤ 𝜉(𝑋(𝑘), 𝑋(𝑘)) = 𝜔(𝑋(𝑘), 𝑋(𝑘)). (22b)

Combining equations (22a) and (22b), and using lemma 4.1, shows that also 𝜎2(𝑋(𝑘+1)) ≤
𝜎2(𝑋(𝑘)).

In order to make our proof work we had to guarantee that for all 𝑘

(1 − 𝜎2(𝑋(𝑘)))𝑉 + 𝜎2(𝑋(𝑘))𝑀(𝑋(𝑘)) ≳ 0, (23)

because otherwise the minimum of 𝜉(•, 𝑋(𝑘)) does not exist. If 𝜎2(𝑋(𝑘)) ≤ 1 the matrix in

inequality (23) is a convex combination of two positive semi-definite matrices, and is thus positive

semi-definite. And because of the theorem it is sufficient to assume that 𝜎2(𝑋(0)) ≤ 1, because
subsequent 𝑋(𝑘) will have stress formula two values than smaller than the value for 𝑋(0). We need
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to start our majorization algorithm with a sufficiently good initial estimate of 𝑋. A random start

may not work.

From the practical point of view the condition 𝜎2(𝑋(0)) ≤ 1 is not really important. As the

introduction of this paper says, in metric MDS we do not use 𝜎2. But even in metric MDS the

Torgerson initial estimate usually takes 𝜎2 well below one. In non-linear or non-metric scaling the

𝛿𝑖𝑗 are optimal transformations or quantifications. If the optimum transformation is better than the

optimal constant transformation the condition 𝜎2(𝑋(𝑘)) ≤ 1 is automatically satisfied for all 𝑘.
And even if the optimum transformation is the constant transformation we still have 𝜎2(𝑋(𝑘)) = 1
and inequality (23) is satisfied.
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5 Derivatives

The derivatives of stress formula two are

𝒟𝜎2(𝑋) = 𝒟𝜎𝑅(𝑋) − 𝜎2(𝑋)𝒟𝜂2
2(𝑋)

𝜂2
2(𝑋)

(24)

Now

𝒟𝜎𝑅(𝑋) = −2 ∑ ∑ 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))𝒟𝑑𝑖𝑗(𝑋), (25a)

𝒟𝜂2
2(𝑋) = 2 ∑ ∑ 𝑤𝑖𝑗𝒟𝑑2

𝑖𝑗(𝑋) − 2𝑑(𝑋) ∑ ∑ 𝑤𝑖𝑗𝒟𝑑𝑖𝑗(𝑋), (25b)

and

𝒟𝑑𝑖𝑗(𝑋) = 1
𝑑𝑖𝑗(𝑋)

𝐴𝑖𝑗𝑋. (26)

And thus, using definitions (9a), (9b), and (11)

𝒟𝜎𝑅(𝑋) = 2(𝑉 − 𝐵(𝑋))𝑋, (27a)

𝒟𝜂2
2(𝑋) = 2(𝑉 − 𝑀(𝑋))𝑋. (27b)

It follows that 𝒟𝜎2(𝑋) = 0 if and only if

𝑋 = {(1 − 𝜎2(𝑋))𝑉 + 𝜎2(𝑋)𝑀(𝑋)}+𝐵(𝑋)𝑋. (28)

We can summarize the results of our computations in this section.

Theorem 5.1. 𝑋 is a fixed point of the majorization iterations if and only if 𝒟𝜎2(𝑋) = 0.
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6 Examples

Although we mentioned in the introduction that it is unusual to use stress formula two in metric

MDS problems we will nevertheless give some metric examples to illustrate the algorithm. In both

examples we start with the Torgerson initial solution which takes the initial 𝜎2 way below one.

6.1 Ekman

Our first example are the obligatory color data from Ekman (1954). The stress2 program produces

the following sequence of 𝜎2 values and converges in 28 iterations.

## itel 1 sold 0.1577255150 snew 0.1321216983
## itel 2 sold 0.1321216983 snew 0.1207395499
## itel 3 sold 0.1207395499 snew 0.1156260670
## itel 4 sold 0.1156260670 snew 0.1135043532
## itel 5 sold 0.1135043532 snew 0.1126543441
## itel 6 sold 0.1126543441 snew 0.1123159800
## itel 7 sold 0.1123159800 snew 0.1121798388
## itel 8 sold 0.1121798388 snew 0.1121239038
## itel 9 sold 0.1121239038 snew 0.1121002964
## itel 10 sold 0.1121002964 snew 0.1120900307
## itel 11 sold 0.1120900307 snew 0.1120854276
## itel 12 sold 0.1120854276 snew 0.1120833009
## itel 13 sold 0.1120833009 snew 0.1120822904
## itel 14 sold 0.1120822904 snew 0.1120817979
## itel 15 sold 0.1120817979 snew 0.1120815523
## itel 16 sold 0.1120815523 snew 0.1120814273
## itel 17 sold 0.1120814273 snew 0.1120813627
## itel 18 sold 0.1120813627 snew 0.1120813287
## itel 19 sold 0.1120813287 snew 0.1120813107
## itel 20 sold 0.1120813107 snew 0.1120813010
## itel 21 sold 0.1120813010 snew 0.1120812957
## itel 22 sold 0.1120812957 snew 0.1120812929
## itel 23 sold 0.1120812929 snew 0.1120812913
## itel 24 sold 0.1120812913 snew 0.1120812904
## itel 25 sold 0.1120812904 snew 0.1120812899
## itel 26 sold 0.1120812899 snew 0.1120812897
## itel 27 sold 0.1120812897 snew 0.1120812895
## itel 28 sold 0.1120812895 snew 0.1120812894

The optimum configuration is in figure 1, which can be compared with the solution minimizing

raw stress (which is identical up to a scale factor with the solution minimizing stress formula one)

in figure 2. The raw stress solution reaches stress formula one equal to 0.5278528 in 32 iterations.

The two optimal configurations are virtually identical.
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Figure 1: Ekman Metric Stress 2 Solution
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Figure 2: Ekman Metric Raw Stress Solution
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6.2 De Gruijter

The Ekman data have an excellent fit in two dimensions and the optimum configuration is extremely

stable over variations in MDSmethods. The data from De Gruijter (1967) on the similarities between

nine Dutch political parties in 1966 have a worse fit, and less stability.

The solution minimizing stress formula two has a loss of 0.3482919 and uses 230 iterations. Minimiz-

ing raw stress finds stress 9.4408856 and uses 244 iterations. The optimal configurations in figures

3 and 4 are similar, but definitely not the same. Specifically the position of D66 (a “pragmatic”

party, ideologically neither left nor right, established only in 1966, i.e. in the year of the De Gruijter

study) differs a lot between solutions.
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Figure 3: Gruijter Metric Stress 2 Solution
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7 Appendix: Code

7.1 stress2.R

stress2 <-
function(delta,

wmat = 1 - diag(nrow(delta)),
ndim = 2,
itmax = 1000,
eps = 1e-10,
verbose = TRUE) {

itel <- 1
n <- nrow(delta)
wmat <- wmat / sum(wmat)
vmat <- -wmat
diag(vmat) <- -rowSums(vmat)
xold <- torgerson(delta, ndim)
dold <- as.matrix(dist(xold))
enum <- sum(wmat * delta * dold)
eden <- sum(wmat * dold ^ 2)
lbda <- enum / eden
dold <- lbda * dold
xold <- lbda * xold
aold <- sum(wmat * dold)
sold <- sum(wmat * (delta - dold) ^ 2) / sum(wmat * (dold - aold) ^ 2)
repeat {

mmat <- -aold * wmat / (dold + diag(n))
diag(mmat) <- -rowSums(mmat)
bmat <- -wmat * delta / (dold + diag(n))
diag(bmat) <- -rowSums(bmat)
umat <- ((1 - sold) * vmat) + (sold * mmat)
uinv <- solve(umat + 1/n) - 1/n
xnew <- uinv %*% bmat %*% xold
dnew <- as.matrix(dist(xnew))
anew <- sum(wmat * dnew)
snew <- sum(wmat * (delta - dnew) ^ 2) / sum(wmat * (dnew - anew) ^ 2)
if (verbose) {
cat(

"itel ",
formatC(itel, format = "d"),
"sold ",
formatC(sold, digits = 10, format = "f"),
"snew ",
formatC(snew, digits = 10, format = "f"),
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"\n"
)

}
if ((itel == itmax) || ((sold - snew) < eps)) {
break

}
sold <- snew
dold <- dnew
xold <- xnew
aold <- anew
itel <- itel + 1

}
return(list(

x = xnew,
s = snew,
d = dnew,
b = bmat,
m = mmat,
w = wmat,
a = anew,
u = umat,
itel = itel

))
}

torgerson <- function(delta, ndim) {
dd <- delta ^ 2
rd <- apply(dd, 1, mean)
rr <- mean(dd)
cc <- -.5 * (dd - outer(rd, rd, "+") + rr)
ec <- eigen(cc)
xx <- ec$vectors[, 1:ndim] %*% diag(sqrt(ec$values[1:ndim]))
return(xx)

}
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