
On Trivial Solutions in Nonmetric
Scaling
Jan de Leeuw

December 29, 2024

TBD

Table of contents

1 Introduction 2

2 General Results 4
2.1 Raw Loss . 5

2.2 Normalized Loss . 6

2.3 Derivatives . 7

3 Examples 8
3.1 Linear Model . 8

3.2 PCA . 9

3.3 MDS . 10

3.4 Loss Function . 10

3.5 Derivatives . 12

3.6 Second . 15

3.7 MDU . 16

4 Discussion 17

5 Code 18

References 23

1

1 Introduction

Sixty years ago Joseph B. Kruskal introduced the basic framework for constructing nonmetric

scaling techniques (Kruskal (1964a), Kruskal (1964b)). The basic ingredients are

• the parameters 𝕏, a subset of ℝ𝑚,

• the model , a function 𝑓 ∶ 𝕏 ⇒ ℝ𝜈, and
• the data, a partial order ⪯ on 𝐼𝑛 ∶= {1, 2, ⋯ , 𝜈}.

From these basic ingredients we construct some additional entities.

• The quantifications, an isotone cone 𝐾 in ℝ𝜈 with 𝑥 ∈ 𝐾 if 𝑥𝑖 ≤ 𝑥𝑗 whenever 𝑖 ⪯ 𝑗,
and

• the raw least squares loss function 𝜎𝐾 ∶ 𝕏 ⇒ ℝ+, defined as

𝜂𝐾(𝑥) ∶= 1
2

‖𝑓(𝑥) − 𝑃𝐾(𝑓(𝑥))‖2, (1)

• the monotone regression 𝑃𝐾 ∶ ℝ𝑛 ⇒ 𝐾, defined for all 𝑧 ∈ ℝ𝜈 as

𝑃𝐾(𝑧) = argmin
𝑦∈𝐾

‖𝑧 − 𝑦‖2. (2)

The raw nonmetric scaling (NMS) problem for model 𝑓 and data ⪯ is the minimization of 𝜂𝐾
over 𝑥.

Kruskal initially applied this framework to multidimensional scaling (MDS) with symmetric

one-mode data.

• The data are partial order over the dissimilarities between 𝑛 objects,

• the parameters are configurations, sets of 𝑛 points in 𝑝 dimensions, i.e. in ℝ𝑝, and
• the model gives the distances between the 𝑛 points, or a subset of them, in the configu-

ration.

Kruskal realized, of course, that if the parameters 𝕏 are a cone, i.e. if 𝜆𝑥 ∈ 𝕏 whenever 𝑥 ∈ 𝕏
and 𝜆 ≥ 0, then the solution of the raw NMS problem is the trivial solution 𝑥 = 0, i.e. all 𝑛
points of the configuration in the origin. The reason is that distances are positively homogeneous

and, as it turns out, most of the models of interest in NMS are positively homogeneous of some

order, i.e. for all 𝑥 and 𝜆 ≥ 0 we have 𝑓(𝜆𝑥) = 𝜆𝑟𝑓(𝑥) for some 𝑟. For all those models the
raw NMS has the solution 𝑥 = 0, which is trivial in the sense that it does not depend on the
data at all.

As a consequence Kruskal introduced normalized stress, which is

𝜎𝐾𝐿(𝑥) ∶= 𝜂𝐾(𝑥)
𝜂𝐿(𝑥)

.

2

where 𝐿 is another cone of quantifications and 𝜂𝐿 is defined in the same way as 𝜂𝐾, as the
squared distance between 𝑓(𝑥) and 𝐿. Now 𝑥 = 0 will lead to an undefined 𝜎𝐾𝐿, in which
both numerator and denominator are zero. If 𝐿 is the cone consisting only of the origin then

𝜎𝐾𝐿 is stress-1, or stress formula one. If 𝐿 is the cone of all vectors proportional to 𝑒, the
vector with all elements equal to one, then 𝜎𝐾𝐿 is stress-2, or stress formula two. Thus, for

homogeneous models, the NMS problem becomes minimization of one of these 𝜎𝐾𝐿 over

𝕏.

Soon after Kruskal’s original papers Roskam (1968) and Kruskal and Carroll (1969) applied

the same NMS framework to multidimensional unfolding (MDU), i.e. to conditional two-mode

data. Instead of a single partial order over all (𝑛
2) dissimilarities there are 𝑛 separate partial

orders over 𝑚 objects. Now 𝑛(𝑚
2) is very much smaller than (𝑛+𝑚

2), especially if 𝑛 is large and

𝑚 is small, and consequently MDU data have only a small fraction of the ordinal information

of complete MDS data. As a consequence the straightforward application of the Kruskal

framework to MDU failed because the algorithm was able to find non-zero trivial solutions with

perfect stress that were independent of the data. It was necessary to adapt Kruskal’s framework

to the low-information MDU situation. For a historical reviews of the various adaptations since

1964 we refer to De Leeuw (1983), Van Deun et al. (2005) and to the excellent dissertations of

Van Deun (2005) and Frank M. T. A. Busing (2010).

In this paper we are interested in the initial modification of the NMS framework proposed by

Roskam (1968) and Kruskal and Carroll (1969). The loss function is partitioned into separate

normalized loss functions for each row. In this partitioning both 𝜂𝐾 and 𝜂𝐿 are zero for each

row at a trivial solution, and thus stress-2 is undefined for each row. Define stress-3, or stress

formula three, as

𝜎𝑃𝑄(𝑥) =
𝑛

∑
𝑖=1

‖𝑓𝑖(𝑥) − 𝑃𝑖(𝑓𝑖(𝑥))‖2

‖𝑓𝑖(𝑥) − 𝑄𝑖(𝑓𝑖(𝑥))‖2 ,

where 𝑃𝑖 and 𝑄𝑖 are the monotone regressions that project on cones 𝐾𝑖 and 𝐿𝑖. There is now
a separate model 𝑓𝑖 ∶ 𝕏 ⇒ ℝ𝑚𝑖 for each 𝑖.

It was shown by De Leeuw (1983) that this modification of the basic framework is still

problematic, because the partitioned loss function is behaving quite normally near trivial points

and can have solutions with arbitrarily small loss that are indistinguishable from trivial solutions.

De Leeuw (1983) is somewhat tentative and not very explicit about both the results and the

proofs. We want to make our treatment of the trivial solution problem both more explicit and

more general. Although MDU motivated study of the problem, we build up the theory for more

general models and their loss functions.

3

2 General Results

The monotone regression has two properties which are crucial for the results in this paper.

1. If 𝑒 has all elements equal to one and 𝜆 ≥ 0 then 𝑃𝐾(𝑥 + 𝜆𝑒) = 𝑃𝐾(𝑥) + 𝜆𝑒 (shift
invariance).

2. If 𝜆 ≥ 0 then 𝑃𝐾(𝜆𝑥) = 𝜆𝑃𝐾(𝑥) (homogeneity). This is actually true for all cone
projections.

In this paper we deal with a specific class of models which are differentiable and nallow for

trivial solutions.

1. There is an 𝑥0 ∈ ℝ𝑚 such that 𝑓(𝑥0) = 𝜆𝑒, with 𝜆 ≥ 0 and with 𝑒 ∈ ℝ𝑛 the vector

with all elements equal to one.

2. The model 𝑓 is differentiable at 𝑥0, and the Jacobian at 𝑥0 is 𝐽.

We give five examples of such models.

1. A linear model.

2. Principal Component Analysis (PCA) of a symmetric matrix.

3. A small MDS four-point example in two dimensions.

4. MDS of 𝑛 points in 𝑛 − 1 dimensions, with 𝑥0 a regular simplex.
5. MDU with 𝑥0 one of the trivial solutions.

It is clear that 𝜂𝐾 and 𝜂𝐿 are both equal to zero at 𝑥0, and thus 𝜎𝐾𝐿 is undefined at 𝑥0. We

are interested in the behavior of 𝜎𝐾𝐿 near 𝑥0.

4

2.1 Raw Loss

Theorem 2.1. For all 𝛿

𝜂𝐾(𝑥0 + 𝜖𝛿) = 1
2

𝜖2‖𝐽𝛿 − 𝑃𝐾(𝐽𝛿)‖2 + 𝑜(𝜖2). (3)

Proof.

𝑃𝐾(𝑓(𝑥0 + 𝜖𝛿)) = 𝑃𝐾(𝑓(𝑥0) + 𝜖𝐽𝛿 + 𝑜(𝜖)) =
= 𝑃𝐾(𝜆𝑒 + 𝜖𝐽𝛿 + 𝑜(𝜖)) =
= 𝜆𝑒 + 𝑃𝐾(𝜖𝐽𝛿 + 𝑜(𝜖)) =
= 𝜆𝑒 + 𝜖𝑃𝐾(𝐽𝛿 + 𝑜(1)) =
= 𝜆𝑒 + 𝜖𝑃𝐾(𝐽𝛿) + 𝑜(1).

which uses the shift-invariance and homogeneity of the monotone regression mentioned in the

introduction, as well as its continuity. In addition

𝑓(𝑥0 + 𝜖𝛿) = 𝑓(𝑥0) + 𝜖𝐽𝛿 + 𝑜(𝜖) = 𝜆𝑒 + 𝜖(𝐽𝛿 + 𝑜(1)).

Thus

𝑓(𝑥0 + 𝜖𝛿)) − 𝑃𝐾(𝑓(𝑥0 + 𝜖𝛿)) = 𝜖(𝐽𝛿 − 𝑃𝐾(𝐽𝛿)) + 𝑜(1)) = 𝜖(𝐽𝛿 − 𝑃𝐾(𝐽𝛿)) + 𝑜(𝜖),

and Equation 3 follows.

Note that Theorem 2.1 applies to any partial order, or more generally to any cone with 𝑃𝐾(𝑥 +
𝜆𝑒) = 𝑃𝐾(𝑥) + 𝜆𝑒 and 𝑃𝐾(𝜆𝑥) = 𝜆𝑃𝐾(𝑥) for 𝜆 ≥ 0. Theorem 2.1 also remains unchanged

if we use a positive definite 𝑊 to define a weighted least squares norm.

The result in Theorem 2.1 can also be expressed in terms of (one-sided) directional derivatives.

We have

𝑑𝑔𝐾(𝑥0; 𝛿) ∶= lim
𝜖↓0

𝑔𝐾(𝑥0 + 𝜖𝛿) − 𝑔𝑘(𝑥0)
𝜖

= 0,

and

𝑑2𝑔𝐾(𝑥0; 𝛿) ∶= lim
𝜖↓0

𝑔𝐾(𝑥0 + 𝜖𝛿) − 𝑔𝑘(𝑥0) − 𝑑𝑔𝐾(𝑥0; 𝛿)
1
2𝜖2 = ‖𝐽𝛿 − 𝑃𝐾(𝐽𝛿)‖2.

5

2.2 Normalized Loss

Theorem 2.2. For all 𝛿 with 𝐽𝛿 ∉ 𝐿

lim
𝜖↓0

𝜎𝐾𝐿(𝑥0 + 𝜖𝛿) = 𝜔𝐾𝐿(𝛿), (4)

with

𝜔𝐾𝐿(𝛿) ∶= ‖𝐽𝛿 − 𝑃𝐾(𝐽𝛿)‖2

‖𝐽𝛿 − 𝑃𝐿(𝐽𝛿)‖2 . (5)

Proof. This is immediate from Theorem 2.1.

Since ℎ(𝑥0) is undefined the result of Theorem 2.2 cannot be interpreted in terms of directional

derivatives. Equation 4 can be understood as a variant of l’Hôpital’s rule, in which both

the function values and the first (directional) derivatives in the numerator and denominator

vanish.

6

2.3 Derivatives

After approximating the function values of the non-metric loss function near a trivial solution,

we can also approximate the derivatives.

Theorem 2.3.

lim
𝜖↓0

𝜖𝒟ℎ(𝑥0 + 𝜖𝛿) = 𝒟𝜔(𝛿).

Proof. Start with the standard formula for the derivative of a quotient.

𝒟ℎ(𝑥) = 𝒟𝑔𝐾(𝑥) − ℎ(𝑥)𝒟𝑔𝐿(𝑥)
𝑔𝐿(𝑥)

,

and thus

𝒟ℎ(𝑥 + 𝜖𝛿) = 𝒟𝑔𝐾(𝑥 + 𝜖𝛿) − ℎ(𝑥 + 𝜖𝛿)𝒟𝑔𝐿(𝑥 + 𝜖𝛿)
𝑔𝐿(𝑥 + 𝜖𝛿)

. (6)

Now both 𝑔𝑘 and 𝑔𝐿 are differentiable, with

𝒟𝑔𝐾(𝑥) = (𝑓(𝑥) − 𝑃𝐾(𝑓(𝑥))′𝒟𝑓(𝑥) (7)

and with a corresponding result for 𝒟𝑔𝐿(𝑥). Thus, using Equation 7,

𝒟𝑔𝐾(𝑥0 + 𝜖𝛿) = 𝜖(𝐽𝛿 − 𝑃𝐾(𝐽𝛿))′𝐽 + 𝑜(𝜖). (8)

In the same way

𝒟𝑔𝐿(𝑥0 + 𝜖𝛿) = 𝜖(𝐽𝛿 − 𝑃𝐿(𝐽𝛿))′𝐽 + 𝑜(𝜖). (9)

Now substitute Equation 8, Equation 9, and Equation 4 in Equation 6 and gather terms. This

gives eventually

lim
𝜖↓0

𝜖𝒟ℎ(𝑥0 + 𝜖𝛿) = {(𝐽𝛿 − 𝑃𝐾(𝐽𝛿)) − 𝜔(𝛿)(𝐽𝛿 − 𝑃𝐿(𝐽𝛿))}′𝐽
1
2‖𝐽𝛿 − 𝑃𝐿(𝐽𝛿)‖2 , (10)

and the right hand side of Equation 10 is the derivative of 𝜔 at 𝛿.

Note this result is somewhat non-standard, because of the 𝜖 on the left hand side. We do not

have convergence of the derivative of ℎ at 𝑥0 + 𝜖𝛿, in fact the derivative diverges if 𝜖 ↓ 0. But
we have convergence of 𝜖 times the derivative.

7

3 Examples

3.1 Linear Model

Suppose 𝐴 is an 𝑛 × 𝑚 matrix and there is a 𝑥 − _0 such that 𝐴𝑥0 = 𝑒. For instance the first
column of 𝐴 could be an intercept, and 𝑥0 = 𝑒1, or the rows of 𝐴 could add up to one and

𝑥0 = 𝑒, as in compositional or confusion data.

We have

𝑃𝐾(𝐴(𝑥0 + 𝜖𝛿)) = 𝑒 + 𝜖𝑃𝐾(𝐴𝛿)
without any approximations or residuals. Thus

𝜎𝑆(𝑥0 + 𝜖𝛿) = 𝜔𝑆(𝛿) = ‖𝐴𝛿 − 𝑃𝐾(𝐴𝛿)‖2

‖𝐴𝛿 − 𝑃𝐿(𝐴𝛿)‖2 .

Again this is an exact, although not very interesting, relationship. At a trivial solution the linear

loss function for 𝐴𝑥 is replaced by the linear loss function for 𝐴𝛿.

8

3.2 PCA

Suppose𝐶 is a square symmetric matrix that we want to approximate by the outer product𝑋𝑋′.
Take 𝐶0 = 𝑒𝑒′. Now (𝑒+𝜖𝛿)(𝑒+𝜖𝛿)′ = 𝑒𝑒′ +𝜖(𝑒𝛿′ +𝛿𝑒′)+𝑜(𝜖) and thus 𝐽𝛿 = 𝑒𝛿′ +𝛿𝑒′,
or

{𝐽𝛿}𝑖𝑗 = 𝛿𝑖 + 𝛿𝑗 + 𝑜(𝑒).

More generally 𝑐𝑖𝑗 = tr 𝑋′𝐸𝑖𝑗𝑋 with 𝐸𝑖𝑗 = 1
2(𝑒𝑖𝑒′

𝑗 + 𝑒𝑗𝑒′
𝑖). Thus 𝐽𝑖𝑗,𝑘𝑠 = 𝒟𝑐𝑖𝑗(𝑋) =

{𝐸𝑖𝑗𝑋}𝑘𝑠 and 𝐽𝛿 is
1
2
tr 𝑋′𝐸𝑖𝑗Δ = 1

2
{𝑥′

𝑖𝛿𝑗 + 𝑥′
𝑗𝛿𝑖}

Take 𝐶0 = 𝑒𝑒′. Now (𝑒+𝜖𝛿)(𝑒+𝜖𝛿)′ = 𝑒𝑒′ +𝜖(𝑒𝛿′ +𝛿𝑒′)+𝑜(𝜖) and thus 𝐽𝛿 = 𝑒𝛿′ +𝛿𝑒′,
or

{𝐽𝛿}𝑖𝑗 = 𝛿𝑖 + 𝛿𝑗 + 𝑜(𝑒).

9

3.3 MDS

𝐽(𝑋0)Δ = 1
𝑑𝑖𝑗(𝑋0)

tr 𝑋′
0𝐴𝑖𝑗Δ

Our next example is the local behavior of Kruskal’s stress-formula-two near a regular simplex

in 𝑛 dimensions. In a regular simplex all interpoint distances are equal. This example does

not have much practical relevance, because full-dimensional regular simplexes only happen

in artificial MDS examples. But it does serve as the basis for the MDU results in the next

section.

Define 𝑑(𝑋) as the vector of the 1
2𝑛(𝑛 − 1) distances 𝑑𝑖𝑗(𝑋) with 𝑖 < 𝑗. Matrix 𝑋0 has the

coordinates of the unit simplex, i.e. it is scalar square matrix which is 1
2
√

2 times the identity,
for which 𝑑(𝑋0) = 𝑒.

Stress-formula-two is

𝜎𝑆(𝑋) ∶= 𝜎𝐾(𝑋)
𝜎𝐿(𝑋)

, (11)

where

𝜎𝐾(𝑋) ∶= 1
2

‖𝑑(𝑋) − 𝑃𝐾(𝑑(𝑋))‖2, (12)

and

𝜎𝐿(𝑋) = 1
2

‖𝑑(𝑋) − 𝑃𝐿(𝑑(𝑋))‖2. (13)

In Equation 12, which defines raw stress, we project on the monotone regression cone. In

Equation 13 𝑃𝐿 projects on the cone of vectors proportional to 𝑒, i.e. 𝑃𝐿 takes the average of

the elements of 𝑑(𝑋). Cone 𝐿 is smaller than cone 𝐾, and thus 0 ≤ 𝜎𝑆(𝑋) ≤ 1. Note that
both 𝜎𝑅(𝑋0) and 𝜎𝐿(𝑋0) are zero, so 𝜎𝑆(𝑋0) is undefined.

3.4 Loss Function

We use Theorem 2.2 to approximate stress near the regular simplex. I apologize for using

superscripted delta for Kronecker’s symbol and subscripted delta for the perturbation.

Theorem 3.1. For all Δ

𝜎𝑆(𝑋0 + 𝜖Δ) = 𝜔𝑆(Δ) + 𝑜(𝜖2), (14)

where

𝜔𝑠(Δ) ∶= ‖𝜉(Δ) − 𝑃𝐾(𝜉(Δ))‖2

‖𝜉(Δ) − 𝑃𝐿(𝜉(Δ))‖2 , (15)

and

𝜉𝑖𝑗(Δ) ∶= 𝛿𝑖𝑖 + 𝛿𝑗𝑗 − 𝛿𝑖𝑗 − 𝛿𝑗𝑖. (16)

10

Proof. In view of Theorem 2.2 we need an expression for 𝐽𝛿. We first find 𝐽, using double
indexing.

{𝐽}𝑖𝑗,𝑘𝑙 = 𝒟𝑘𝑙𝑑𝑖𝑗(𝑋0) = (𝑥0
𝑖𝑙 − 𝑥0

𝑗𝑙)(𝛿𝑖𝑘 − 𝛿𝑗𝑘) = 1
2

√
2(𝛿𝑖𝑙 − 𝛿𝑗𝑙)(𝛿𝑖𝑘 − 𝛿𝑗𝑘).

Thus 𝐽𝛿 is

{𝐽𝛿}𝑖𝑗 = 1
2

√
2

𝑛
∑
𝑘=1

𝑝

∑
𝑙=1

(𝛿𝑖𝑙 − 𝛿𝑗𝑙)(𝛿𝑖𝑘 − 𝛿𝑗𝑘)𝛿𝑘𝑙 = 1
2

√
2(𝛿𝑖𝑖 + 𝛿𝑗𝑗 − 𝛿𝑖𝑗 − 𝛿𝑗𝑖).

Equation 15 defines a Kruskal-type non-metric loss function for the linear model defined by

Equation 16. And, of course, 0 ≤ 𝜔(Δ) ≤ 1. Thus for small epsilon we have a configuration
which cannot be distinguished from a regular simplex, but for which stress-formula-two is very

close to 𝜔(Δ). And if we have a Δ for which 𝜔(Δ) is close to zero, then stress-formula-two
will be close to zero too, although the configuration 𝑋0 + 𝜖Δ is very much like a regular

simplex.

There is an interesting case of Equation 14 which deserves to be mentioned separately.

Corollary 3.1. If Δ = 𝑍𝑍′ for some 𝑛 × 𝑝 matrix 𝑍, then

lim
𝜖↓0

𝜎𝑆(𝑋0 + 𝜖Δ) = ‖𝑑2(𝑍) − 𝑃𝐾(𝑑2(𝑍))‖2

‖𝑑2(𝑍) − 𝑃𝐿(𝑑2(𝑍))‖2 , (17)

where 𝑑2(𝑍) has the squared distances 𝑑2
𝑖𝑗(𝑍).

Proof. If Δ = 𝑍𝑍′ then 𝜉𝑖𝑗(Δ) = 𝑑2
𝑖𝑗(𝑍).

Thus if Δ = 𝑍𝑍′ the approximation 𝜔(Δ) is actually an example of the sstress non-metric
scaling formula used in ALSCAL (Takane, Young, and De Leeuw (1977)). Finding a 𝑍 with a

low value of sstress means finding a configuration that looks like a regular simplex and has a

low value of stress-formula-two.

Here is a numerical example of a regular simplex in ten dimensions, actually of course in

a nine-dimensional subspace. We choose Δ using the R statement

outer(1:10, 1:10) / 10)

11

where 𝑧 is the vector with elements 1 to 10. We vary epsilon from 10−1 to 10−8. The cone 𝐾
is the set of non-decreasing vectors. The sigma column gives stress-formula-two and the omega

column, which does not vary with epsilon, gives the approximation from Equation 17.

Table 1: Stress-formula-two and Approximation

epsilon sigma omega

1e-01 0.957591846280264 0.962931881332623

1e-02 0.962509060289917 0.962931881332623

1e-03 0.962895792316799 0.962931881332623

1e-04 0.962928342184946 0.962931881332623

1e-05 0.962931528123117 0.962931881332623

1e-06 0.962931846016105 0.962931881332623

1e-07 0.962931877754530 0.962931881332623

1e-08 0.962931880468995 0.962931881332623

We see that the sigma get closer to omega if 𝜖 gets smaller. Numerically we cannot go much
smaller than 𝜖 = 10−8, because rounding errors will take over and the approximation will get
worse. In this example the omega is larger than the actual values of stress, which increase with

decreasing epsilon. In the next example omega is smaller then the values of stress, which now

decrease with decreasing epsilon. In this second example Δ is given by the R statement

matrix(1:100 %% 9, 10, 10)

Table 2: Stress-formula-two and Approximation

epsilon sigma omega

1e-01 0.877002555781771 0.845814132104455

1e-02 0.848177795762601 0.845814132104455

1e-03 0.846058360474781 0.845814132104455

1e-04 0.845838672180776 0.845814132104455

1e-05 0.845816587323383 0.845814132104455

1e-06 0.845814377637802 0.845814132104455

1e-07 0.845814156611029 0.845814132104455

1e-08 0.845814134507446 0.845814132104455

3.5 Derivatives

Intro

12

Theorem 3.2.

𝜖𝒟𝜎𝑆(𝑋0 + 𝜖Δ) = 𝒟𝜔𝑆(𝑋0 + 𝜖Δ) + 𝑜(𝜖)

Proof.

∑
𝑖

∑
𝑗

𝑟𝑖𝑗{𝐽}𝑖𝑗,𝑘𝑠 = 1
2

√
2 ∑

𝑖
∑

𝑗
𝑟𝑖𝑗(𝛿𝑖𝑠−𝛿𝑗𝑠)(𝛿𝑖𝑘−𝛿𝑗𝑘) = 𝛿𝑘𝑠 ∑

𝑗
𝑟𝑘𝑗−𝑟𝑘𝑠 = ∑

𝑖<𝑗
𝑟𝑖𝑗𝐴𝑖𝑗

∑
𝑖

∑
𝑗

{𝐽𝛿}𝑖𝑗{𝐽}𝑖𝑗,𝑘𝑠 = ∑
𝑖

∑
𝑗

{𝐽}𝑖𝑗,𝑘𝑠𝛿𝑘𝑠 = 1
2

∑
𝑖

∑
𝑗

(𝛿𝑖𝑖+𝛿𝑗𝑗−𝛿𝑖𝑗−𝛿𝑗𝑖)(𝛿𝑖𝑠−𝛿𝑗𝑠)(𝛿𝑖𝑘−𝛿𝑗𝑘)

To show how well the derivates of 𝜔 approximate those of 𝜎 at 𝑋0 + 𝜖Δ we use 𝑛 = 4 and Δ
equal to

[,1] [,2] [,3] [,4]
[1,] 1 2 0 1
[2,] 2 0 1 2
[3,] 0 1 2 0
[4,] 1 2 0 1

The derivative of 𝜔 at Δ is

[,1] [,2] [,3] [,4]
[1,] 0.1666666667 -0.0833333333 -0.0833333333 0.0000000000
[2,] -0.0833333333 0.0000000000 0.0000000000 0.0833333333
[3,] -0.0833333333 0.0000000000 0.0000000000 0.0833333333
[4,] 0.0000000000 0.0833333333 0.0833333333 -0.1666666667

The next three matrices give 𝜖𝒟𝜎(𝑋0 + 𝜖Δ) for 𝜖 equal to 1e-2, 1e-4 and 1e-6.

[,1] [,2] [,3] [,4]
[1,] 0.1656849540 -0.0799710700 -0.0865322836 0.0008112829
[2,] -0.0834765853 0.0009825449 -0.0011638146 0.0836881185
[3,] -0.0830335304 -0.0011267899 0.0009806252 0.0831497861
[4,] 0.0008251618 0.0801153150 0.0867154729 -0.1676491876

13

[,1] [,2] [,3] [,4]
[1,] 0.1666568458 -0.0832996158 -0.0833654141 0.0000081834
[2,] -0.0833349681 0.0000098210 -0.0000114596 0.0833366097
[3,] -0.0833300624 -0.0000114559 0.0000098208 0.0833316945
[4,] 0.0000081848 0.0833012507 0.0833670528 -0.1666764876

[,1] [,2] [,3] [,4]
[1,] 0.1666665684 -0.0833329962 -0.0833336541 0.0000000819
[2,] -0.0833333497 0.0000000982 -0.0000001146 0.0833333661
[3,] -0.0833333006 -0.0000001146 0.0000000982 0.0833333170
[4,] 0.0000000819 0.0833330125 0.0833336705 -0.1666667649

One interesting aspect of this simplex example is that we can easily find aΔwhere the derivative

of 𝜔 is zero. The matrix 𝐽 is 6 × 16 and there are plenty of 𝛿 such that 𝐽𝛿 = 𝑦 for any 𝑦. We

choose 𝑦 is (1, 2, ⋯ , 6), which is in the correct order.

We choose a symmetric solution Δ.

[,1] [,2] [,3] [,4]
[1,] +3.0 +3.5 +3.5 +0.0
[2,] +3.5 +5.0 +3.5 +0.0
[3,] +3.5 +3.5 +6.0 +0.0
[4,] +0.0 +0.0 +0.0 +0.0

The derivatives of 𝜔 at this Δ are indeed zero. If we choose 𝜖 equal to 1𝑒 − 6 then the distances
for 𝑋0 + 𝜖Δ are

1 2 3
2 1.000001
3 1.000001 1.000003
4 1.000002 1.000004 1.000004

Note that these are in the correct order, and thus 𝜎(𝑋0 + 𝜖Δ) is zero, and so are the its
derivatives. We have found a solution 𝑋 with zero stress, which is practically indistinguishable

from a regular tetrahedron and which has a derivative equal to zero. Any iterative algorithm

would stop happily at this point, instead of keeping away from it because it is indistinguishable

from a solution with stress equal to 0/0.

For the simplex example there is a more direct way to accomplish the same result. Take a

distance matrix 𝐷 with all distances equal to one. The Torgerson transform (minus one half

14

times the doubly-centered squared distances) is of rank 𝑛 − 1 and has three eigenvalues equal
to 1

2 . Take a second hollow symmetric non-negative matrix 𝐸 with elements in the “correct”

order and perturb to 𝐷(𝜖) = 𝐷 + 𝜖𝐸. Then the elements of 𝐷(𝜖) are in the correct order and
for small enough positive epsilon the Torgerson transform will still be of rank 𝑛 − 1 with three
positive eigenvalues. Stress-formula-two and its derivatives will be zero at the classic scaling

solution, which will be as indistinguishable as you like from a regular simplex.

3.6 Second

Suppose we have 𝑛 = 4 and the four model functions 𝑑12(𝑋), 𝑑23(𝑋), 𝑑34(𝑋), and 𝑑14(𝑋).
Thus 𝑑13(𝑋) and 𝑑24(𝑋) are missing. For 𝑋0 we use the matrix

⎡
⎢⎢
⎣

0 0
1 0
1 1
0 1

⎤
⎥⎥
⎦

These are the four corners of a square, for which the four distances in the model are all equal to

one. As in the previous example

{𝐽}𝑖𝑗,𝑘𝑠 = 𝒟𝑘𝑠𝑑𝑖𝑗(𝑋0) = (𝑥0
𝑖𝑠 − 𝑥0

𝑗𝑠)(𝛿𝑖𝑘 − 𝛿𝑗𝑘),

which is a 4 × 8 matrix. Also

{𝐽𝛿}𝑖𝑗 =
4

∑
𝑘=1

(𝑥0
𝑖𝑠 − 𝑥0

𝑗𝑠)(𝛿𝑖𝑘 − 𝛿𝑗𝑘)𝛿𝑘𝑠 =
2

∑
𝑠=1

(𝑥0
𝑖𝑠 − 𝑥0

𝑗𝑠)(𝛿𝑖𝑠 − 𝛿𝑗𝑠)

Or

{𝐽𝛿}12 = −(𝛿11 − 𝛿21),
{𝐽𝛿}23 = −(𝛿22 − 𝛿32),
{𝐽𝛿}34 = +(𝛿31 − 𝛿41),
{𝐽𝛿}14 = −(𝛿12 − 𝛿42).

Again, it is easy to choose 𝛿 such that the {𝐽𝛿}𝑖𝑗 are in the correct order, it is also easy to
choose them such that {𝐽𝛿} is zero and both 𝜔𝑆 and 𝜎𝑆 are undefined.

15

3.7 MDU

Our theorems also apply to a generalization of what we could call Roskam’s stress, giving

credit to Roskam (1968), although this stress was proposed at the same time by Kruskal and

Carroll (1969).

In MDU there are two configurations 𝑋 and 𝑌 and

𝜎(𝑋, 𝑌) =
𝑛

∑
𝑖=1

‖𝑑(𝑥𝑖, 𝑌) − 𝑃 𝐾
𝑖 (𝑑(𝑥𝑖, 𝑌))‖2

‖𝑑(𝑥𝑖, 𝑌) − 𝑃 𝐿
𝑖 (𝑑(𝑥𝑖, 𝑌))‖2

o

‖𝑑 − 𝑃𝐾(𝑑)‖2 = 𝜖2

𝑟2
𝑖

‖𝑧′
0 ̃𝜂𝑗 − 𝑃𝑖(𝑧′

0 ̃𝜂𝑗)‖2 + 𝑜(𝜖2)

16

4 Discussion

Interpretation

For squared distance models: same formulas

17

5 Code

Code is written in R (R Core Team (2024)). We use the monotone() function from F. M. T. A.

Busing (2022) for the monotone regressions and the numerical differentiation routines from

Gilbert and Varadhan (2019) to check our formulas.

library(monotone)
library(numDeriv)

functions y1() and y2() generate perturbations for any n

y1 <- function(n) {
return(outer(1:n, 1:n) / n)

}

y2 <- function(n) {
return(matrix(1:(n^2) %% (n - 1), n, n))

}

perturbLoss() computes stress and omega for any perturbation

perturbLoss <- function(n, eps, y) {
x <- sqrt(1 / 2) * diag(n)
z <- x + eps * y
dz <- as.vector(dist(z))
mz <- monotone(dz)
nz <- mean(dz)
sr <- sum((dz - mz)^2) / 2
sl <- sum((dz - nz)^2) / 2
ss <- sr / sl
dy <- NULL
for (j in 1:(n - 1)) {

for (i in (j + 1):n) {
ey <- y[i, i] + y[j, j] - y[i, j] - y[j, i]
dy <- c(dy, sqrt(1 / 2) * ey)

}
}
my <- monotone(dy)
ny <- mean(dy)
ey <- sum((dy - my)^2)

18

fy <- sum((dy - ny)^2)
ty <- 0.5 * ey * eps^2
qy <- 0.5 * fy * eps^2
sy <- ey / fy
return(c(ss, sy))

}

perturbDerivatives() computes dsigma near a
trivial solution and the approximation
domega

perturbDerivatives <- function(n, eps, y) {
s <- sqrt(1 / 2)
x <- s * diag(n)
z <- x + eps * y
dz <- as.vector(dist(z))
mz <- monotone(dz)
nz <- mean(dz)
sr <- sum((dz - mz)^2) / 2
sl <- sum((dz - nz)^2) / 2
ss <- sr / sl
b1 <- b2 <- matrix(0, n, n)
k <- 1
for (j in 1:(n - 1)) {

for (i in (j + 1):n) {
b1[i, j] <- b1[j, i] <- -(dz[k] - mz[k])
b2[i, j] <- b2[j, i] <- -(dz[k] - nz)
k <- k + 1

}
}
diag(b1) <- -rowSums(b1)
diag(b2) <- -rowSums(b2)
gz is the analytical expression for Dsigma(X0+eps * Delta)
gz <- ((b1 %*% z) - ss * (b2 %*% z)) / sl
dy <- NULL
for (j in 1:(n - 1)) {

for (i in (j + 1):n) {
ey <- y[i, i] + y[j, j] - y[i, j] - y[j, i]
dy <- c(dy, sqrt(1 / 2) * ey)

}

19

}
my <- monotone(dy)
ny <- mean(dy)
ey <- sum((dy - my)^2) / 2
fy <- sum((dy - ny)^2) / 2
oy <- ey / fy
b1 <- b2 <- matrix(0, n, n)
k <- 1
for (j in 1:(n - 1)) {

for (i in (j + 1):n) {
b1[i, j] <- b1[j, i] <- -(dy[k] - my[k])
b2[i, j] <- b2[j, i] <- -(dy[k] - ny)
k <- k + 1

}
}
diag(b1) <- -rowSums(b1)
diag(b2) <- -rowSums(b2)
gy us the analytic expression for Domega(y)
gy <- s * (b1 - oy * b2) / fy
return(list(

ss = ss,
oy = oy,
gz = gz,
gy = gy

))
}

nStressDerivative computes the derivative of stress formula two
using numerical differentiation

nStressDerivative <- function(n, eps, y) {
numFunc <- function(z, n) {

z <- matrix(z, n, n)
dz <- as.vector(dist(z))
mz <- monotone(dz)
nz <- mean(dz)
sr <- sum((dz - mz)^2) / 2
sl <- sum((dz - nz)^2) / 2
ss <- sr / sl

}

20

s <- sqrt(1 / 2)
x <- s * diag(n)
z <- x + eps * y
return(matrix(jacobian(numFunc, as.vector(z), n = n), n, n))

}

nOmegaDerivative computes the derivative of omega
using numerical differentiation

nOmegaDerivative <- function(n, eps, y) {
numFunk <- function(z, n) {

z <- matrix(z, n, n)
dy <- NULL
for (j in 1:(n - 1)) {

for (i in (j + 1):n) {
dy <- c(dy, z[i, i] + z[j, j] - z[i, j] - z[j, i])

}
}
my <- monotone(dy)
ny <- mean(dy)
sr <- sum((dy - my)^2) / 2
sl <- sum((dy - ny)^2) / 2
ss <- sr / sl

}
s <- sqrt(1 / 2)
x <- s * diag(n)
z <- x + eps * y
return(matrix(jacobian(numFunk, as.vector(y), n = n), n, n))

}

matrixPrint() is a small utility to print a rectangular matrix

matrixPrint <- function(x,
digits = 10,
width = 15,
format = "f",
flag = "") {

print(noquote(
formatC(

x,

21

digits = digits,
width = width,
format = format,
flag = flag

)
))

}

22

References

Busing, F. M. T. A. 2022. “Monotone Regression: A Simple and Fast O(n) PAVA Implemen-

tation.” Journal of Statistical Software 102 (Code Snippet 1).

Busing, Frank M. T. A. 2010. “Advances in Multidimensional Unfolding.” PhD thesis, Leiden

University. https://scholarlypublications.universiteitleiden.nl/access/item%3A2837800/

view.

De Leeuw, J. 1983. “On Degenerate Multidimensional Unfolding Solutions.” Research Report.

Leiden, The Netherlands: Department of Data Theory FSW/RUL.

Gilbert, P., and R. Varadhan. 2019. numDeriv: Accurate Numerical Derivatives. https:

//CRAN.R-project.org/package=numDeriv.

Kruskal, J. B. 1964a. “Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric

Hypothesis.” Psychometrika 29: 1–27.

———. 1964b. “Nonmetric Multidimensional Scaling: a Numerical Method.” Psychometrika

29: 115–29.

Kruskal, J. B., and J. D. Carroll. 1969. “Geometrical Models and Badness of Fit Functions.”

In Multivariate Analysis, Volume II, edited by P. R. Krishnaiah, 639–71. North Holland

Publishing Company.

R Core Team. 2024. R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Roskam, E. E. 1968. “Metric Analysis of Ordinal Data in Psychology.” PhD thesis, University

of Leiden.

Takane, Y., F. W. Young, and J. De Leeuw. 1977. “Nonmetric Individual Differences in

Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling

Features.” Psychometrika 42: 7–67.

Van Deun, K. 2005. “Degeneracies in Unfolding.” PhD thesis, KU Leuven. https://www.

academia.edu/455100/Degeneracies_in_unfolding.

Van Deun, K., P. L. F. Groenen, W. J. Heiser, F. M. T. A. Busing, and L. Delbeke. 2005.

“Interpreting Degenerate Solutions in Unfolding by Use of the Vector Model and the

Compensatory Distance Model.” Psychometrika 70: 45–69.

23

https://scholarlypublications.universiteitleiden.nl/access/item%3A2837800/view
https://scholarlypublications.universiteitleiden.nl/access/item%3A2837800/view
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
https://www.R-project.org/
https://www.academia.edu/455100/Degeneracies_in_unfolding
https://www.academia.edu/455100/Degeneracies_in_unfolding

	Introduction
	General Results
	Raw Loss
	Normalized Loss
	Derivatives

	Examples
	Linear Model
	PCA
	MDS
	Loss Function
	Derivatives
	Second
	MDU

	Discussion
	Code
	References

