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The majorization algorithm to minimize raw stress is extended to minimization

of normalized stress (stress formula one).
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1 Introduction

Themajorization algorithm tominimizeKruskal’s raw stress (Kruskal (1964a), Kruskal (1964b))

defined as

𝜎(𝑋) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2 (1)

is by now well-known. It has been the default method to minimize Equation 1 for almost 50

years, and its convergence properties have been studied in considerable detail. We refer to De

Leeuw and Heiser (1980) and De Leeuw (1988) for theory, and to De Leeuw and Mair (2009)

and Mair, Groenen, and De Leeuw (2022) for implementations.

In non-metric MDS we have to normnalize stress in order to prevent trivial zero solutions. The

two common normalizations are stress formula one

𝜎1(𝑋) ∶=
∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)

, (2)

and stress formula two

𝜎2(𝑋) ∶=
∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗(𝑑2
𝑖𝑗 − 𝑑(𝑋))2

, (3)

with 𝑑 the weighted mean of the 𝑑𝑖𝑗.

Majorizing normalized stress is more complicated than minimizing raw stress. For stress

formula two a majorization algorithm was proposed by De Leeuw (2024), using a combination

of the usual stress majorization based on Cauchy-Schwartz and the fractional programming

method of Dinkelbach (1967). In this short paper we apply the same ideas to stress formula

one.
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2 Majorization

Define

𝜔(𝑋, 𝑌 ) ∶= 𝜎(𝑋) − 𝜎1(𝑌 )𝜂2(𝑋),
{#eq:omegadef} where 𝜎 is defined in Equation 1, 𝜎1 is defined in Equation 2, and

𝜂2(𝑋) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋). (4)

Note that 𝜎1(𝑋) = 𝜎(𝑋)/𝜂2(𝑋). It is clear that

• for all non-zero 𝑋, 𝑌 we have 𝜔(𝑋, 𝑌 ) < 0 if and only if 𝜎1(𝑋) < 𝜎1(𝑌 ),
• for all non-zero 𝑋, 𝑌 we have 𝜔(𝑋, 𝑌 ) = 0 if and only if 𝜎1(𝑋) = 𝜎1(𝑌 ).

This is sometimes called Dinkelbach majorization, because the basic step of converting a ratio

of two functions to a weighted difference of the two is due to Dinkelbach (1967).

We now use standard MDS notation and define

𝜙(𝑋, 𝑌 ) ∶= 1 − 2 tr 𝑋′𝐵(𝑌 )𝑌 + (1 − 𝜎1(𝑌 ))tr 𝑋′𝑉 𝑋, (5)

with

𝐵(𝑌 ) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
𝛿𝑖𝑗

𝑑𝑖𝑗(𝑌 )
𝐴𝑖𝑗 (6)

and

𝑉 ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗𝐴𝑖𝑗 (7)

and

𝐴𝑖𝑗 ∶= (𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)′, (8)

i.e. 𝐴𝑖𝑗 is symmetric, doubly centered, positive semi-definite, of rank one, with elements (𝑖, 𝑖)
and (𝑗, 𝑗) equal to +1, elements (𝑖, 𝑗) and (𝑗, 𝑖) equal to −1, and all other elements zero. Note

that 𝜂2(𝑋) = tr 𝑋′𝑉 𝑋. In Equation 5 we have assumed, without loss of generality, that the

weighted sum of squares of the the 𝛿𝑖𝑗 is one.

Now, by standard MDS majorization,

• 𝜔(𝑋, 𝑌 ) ≤ 𝜙(𝑋, 𝑌 ), and
• 𝜔(𝑋, 𝑋) = 𝜙(𝑋, 𝑋) = 0.
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Suppose 𝜎1(𝑌 ) < 1. Define 𝑌 + as the minimizer of 𝜂 over 𝑋 for fixed 𝑌 and suppose

𝑌 + ≠ 𝑌. Now
𝜔(𝑌 +, 𝑌 ) ≤ 𝜙(𝑌 +, 𝑌 ) < 𝜙(𝑌 , 𝑌 ) = 0, (9)

and thus 𝜎1(𝑌 +) < 𝜎1(𝑌 ). It follows that the iterative algorithm

𝑋(𝑘+1) = 1
1 − 𝜎1(𝑋(𝑘))

𝑉 +𝐵(𝑋(𝑘))𝑋(𝑘) (10)

is convergent.

We assumed 𝜎1(𝑋(𝑘)) < 1 for all 𝑘. As in De Leeuw (2024), this causes no loss of generality.

Start the non-metric MDS iterations with any 𝑋(0) and compute the optimal 𝛿𝑖𝑗 by projecting

𝑑(𝑋(0)) on the code of admissible (usually monotone) transformations. This guarantees

𝜎1(𝑋(0)) < 1, and because the algorithm generates a decreasing sequence of stress values

𝜎1(𝑋(𝑘)) < 1 for all 𝑘.

We also assumed that 𝑋(𝑘+1) ≠ 𝑋(𝑘). This again causes no loss of generality because we can
simply stop the iterations if 𝑋(𝑘+1) = 𝑋(𝑘), i.e. if we have reached a fixed point. At a fixed
point the gradient of 𝜎1 is zero.

3 Unnormalized iterations

The Guttman transform Γ(𝑋) ∶= 𝑉 +𝐵(𝑋)𝑋 is homogeneous of degree zero. Thus if 𝑋̃(𝑘) =
Γ𝑘(𝑋0) is the sequence of unnormalized Guttman transforms then

𝑋(𝑘+1) = 1
1 − 𝜎1(𝑋̃(𝑘))

𝑋̃(𝑘), (11)

and the algorithm in Equation 10 generates the same sequence, up to proportionality, as the

unnormalized Guttman transforms. This remains true if Guttman transforms are alternated with

optimal scaling steps that minimize stress over the 𝛿𝑖𝑗 for given 𝑋.
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