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1 Introduction

In squared distance multidimensional scaling we minimize the least squares loss function1

𝜎(𝑋) ∶=
𝑚

∑
𝑘=1

𝑤𝑘(𝛿2
𝑘 − 𝑑2

𝑘(𝑋))2 (1)

over 𝑛 × 𝑝 configurations 𝑋. Here the 𝛿𝑘 are known non-negative pseudo-distances, the

𝑤𝑘 are known positive weights, and the 𝑑𝑘(𝑋) are Euclidean distances. Each index 𝑘 in (1)

corresponds with a pair of indices (𝑖, 𝑗), with both 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛. Thus we try to
find a configuration of 𝑛 points on ℝ𝑝 such that the distances between the points approximate

the corresponding pseudo-distances in the data.

Loss function (1) is traditionally known as sstress. In the ALSCAL program for squared distance

scaling (Takane, Young, and De Leeuw (1977)) a coordinate descent algorithm, in which each

iteration cycle consists of minimizing 𝑛𝑝 univariate quartics, is used to minimize loss. There

have been quite a few alternative algorithms proposed, both in multidimensional scaling (De

Leeuw (1975), Browne (1987), Kearsley, Tapia, and Trosset (1994)) and in low-rank distance

matrix completion (Mishra, Meyer, and Sepulchre (2011)).

The reference section of the present paper does not have publication information on De Leeuw

(1975), in fact not even a URL, because that paper somehow got lost in the folds of time

(Takane (2016)). Proof of its existence are references to it in Takane (1977) and Browne (1987).

At the time it was concluded that the algorithm proposed in De Leeuw (1975), which was

proudly baptized ELEGANT, converged too slowly to be practical. Recent attempts to revive

and improve it are De Leeuw, Groenen, and Pietersz (2016) and De Leeuw (2016). This paper

is another such attempt.

1The symbol ∶= is used for defintions.

2



2 Majorization

The original derivation of the algorithm in De Leeuw (1975) was based on augmentation. The

derivation is reviewed in De Leeuw, Groenen, and Pietersz (2016). For a general discussion of

augmentation, see De Leeuw (1994). Improvements of ELEGANT are possible if we discuss it

in the general framework of majorization , currently more widely known as MM (De Leeuw

(1994), Heiser (1995), Lange (2016)).

We start by changing variables from 𝑋 to 𝐶 = 𝑋𝑋′. Thus

𝜎(𝐶) ∶=
𝑚

∑
𝑘=1

𝑤𝑘(𝛿2
𝑘 − tr 𝐴𝑘𝐶)2. (2)

If 𝑘 indexes pair (𝑖, 𝑗) then 𝐴𝑘 ∶= (𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)′, with 𝑒𝑖 and 𝑒𝑗 unit vectors
2. Thus

squared distances can be expressed as ‖𝑥𝑖 − 𝑥𝑗‖2 = tr 𝑋′𝐴𝑖𝑗𝑋 = tr 𝐴𝑖𝑗𝐶. In these new

variables the MDS problem is now to minimize (2) over all 𝐶 with rank(𝐶) ≤ 𝑝.

It is convenient to define

𝐵 ∶=
𝑚

∑
𝑘=1

𝑤𝑘𝛿2
𝑘𝐴𝑘, (3a)

and

𝑉 ∶=
𝑚

∑
𝑘=1

𝑤𝑘𝑎𝑘𝑎′
𝑘 (3b)

with 𝑎𝑘 ∶= vec(𝐴𝑘). Then 𝜎(𝑐) ∶= 𝐾 − 2𝑏′𝑐 + 𝑐′𝑉 𝑐, with 𝑐 ∶= vec(𝐶) and 𝑏 ∶= vec(𝐵).

To start the quadratic majorization, use 𝑐 = ̃𝑐 + (𝑐 − ̃𝑐). Then
𝜎(𝑐) = 𝜎( ̃𝑐) − 2(𝑐 − ̃𝑐)′(𝑏 − 𝑉 ̃𝑐) + (𝑐 − ̃𝑐)′𝑉 (𝑐 − ̃𝑐), (4a)

and thus

𝜎(𝑐) ≤ 𝜎( ̃𝑐) + 𝜆((𝑐 − ̃𝑐) − 𝑔)′((𝑐 − ̃𝑐) − 𝑔) − 𝜆𝑔′𝑔, (4b)

with 𝜆 the largest eigenvalue of 𝑉 and 𝑔 ∶= 𝜆−1(𝑏 − 𝑉 ̃𝑐). In a majorization step we minimize
(𝑐 − 𝑐)′(𝑐 − 𝑐), where 𝑐 ∶= ̃𝑐 + 𝜆−1(𝑏 − 𝑉 ̃𝑐). ]

Now

𝑉 ̃𝑐 =
𝑚

∑
𝑘=1

𝑤𝑘𝑎𝑘𝑎′
𝑘 ̃𝑐 =

𝑚
∑
𝑘=1

𝑤𝑘𝑎𝑘tr 𝐴𝑘
̃𝐶 =

𝑚
∑
𝑘=1

𝑤𝑘𝑎𝑘𝑑2
𝑘( ̃𝐶), (5)

and thus

vec−1(𝐵 − 𝑉 ̃𝑐) =
𝑚

∑
𝑘=1

𝑤𝑘(𝛿2
𝑘 − 𝑑2

𝑘( ̃𝐶)𝐴𝑘. (6)

Equation (6) shows that in the majorization stepm we need to minimize tr (𝐶 − 𝑋𝑋′)2 with

𝐶 ∶= vec−1(𝑐) over 𝑋.

2Unit vector 𝑒𝑖 has element 𝑖 equal to one and all other elements zero.
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3 Bound

Computing 𝜆 is simplified by noting that the largest eigenvalue of 𝑉 is equal to the largest

eigenvalue of 𝑊 1
2 𝐻𝑊 1

2 , where 𝐻 has elements ℎ𝑘𝑙 = 𝑎′
𝑘𝑎𝑙.

The elements of 𝐻 are all non-negative. Also ℎ𝑘𝑙 is equal to four if 𝑘 = 𝑙 and equal to one if
𝐴𝑘 and 𝐴𝑙 have one index in common, otherwise it is zero. It follows that in the complete case,
with 𝑚 = 𝑛(𝑛 − 1)/2, and in addition if there are unit weights, 𝜆 = 2𝑛. In the incomplete
case, still with unit weights, 𝜆 ≤ 2𝑛.

If it is too expensive to calculate the largest eigenvalue, we can use the bound

𝜆 = max
𝑥

𝑥′𝑊 1
2 𝐻𝑊 1

2 𝑥
𝑥′𝑥

= max
𝑥

𝑥′𝑊 1
2 𝐻𝑊 1

2 𝑥
𝑥′𝑊𝑥

𝑥′𝑊𝑥
𝑥′𝑥

≤ 2𝑛max
𝑘

𝑤𝑘. (7)

This is a major improvement of the bound that is used, either explicitly or implicitly, in De

Leeuw (1975) and De Leeuw, Groenen, and Pietersz (2016), which is

𝜆 ≤ tr 𝑊𝐻 = 4
𝑚

∑
𝑘=1

𝑤𝑘. (8)
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4 Code
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