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1 Introduction

Suppose 𝑋 is an 𝑛 × 𝑚 “tall” data matrix (𝑛 ≥ 𝑚).

Definition 1.1. We say that 𝑋 = 𝑌 𝑇 ′, with 𝑌 an 𝑛 × 𝑝 matrix and 𝑇 an 𝑚 × 𝑝 matrix, is a
factorization of order 𝑝 of 𝑋.

Factorizations, also known as decompositions, of various kinds play a key role in multivariate

data analysis, as well as in theoretical and numerical linear algebra (Stewart (1998)). Prime

examples are the Singular Value Decomposition (SVD) 𝑋 = 𝑌 𝑇 ′ with 𝑌 and 𝑇 both orthogo-

nal1, the QR Decomposition 𝑋 = 𝑌 𝑇 ′ with 𝑌 orthonormal and 𝑇 lower-triangular, and the

Polar Decomposition 𝑋 = 𝑌 𝑇 ′ with 𝑌 orthonormal and 𝑇 positive semi-definite.

Definition 1.2. A factorization 𝑋𝑇 ′ of order 𝑝 of the 𝑛 × 𝑚 matrix 𝑋 is an orthogonal factor

analytic (OFA) factorization of order 𝑝, if 𝑚 < 𝑝 < 𝑛 and 𝑌 ′𝑌 = 𝐼.

Note that 𝑌 is a “tall” matrix (𝑛 ≥ 𝑝), while 𝑇 is “wide” (𝑚 ≤ 𝑝). The order 𝑝 of the

decomposition is consequently larger than the rank of the matrix 𝑋. In order to have a non-

trivial data analysis technique we need constraints on 𝑇, which we write in the general form
𝑇 ∈ 𝒯, with 𝒯 a subset of ℝ𝑚×𝑝, the space of all 𝑚 × 𝑝 matrices.

OFA techniques aim to find a solution of the system

𝑋 = 𝑌 𝑇 ′, (1a)

𝑌 ′𝑌 = 𝐼, (1b)

𝑇 ∈ 𝒯. (1c)

If no exact solution exists an approximate solution must be found.

Mathematically this introduces the problem to find the conditions under which equations

(1a)-(1c) can be solved for 𝑌 and 𝑇, and to describe the set of solutions if the system is

solvable.

Computationally the problem is to define what is meant by “approximately” and to find a

technique that produces such an approximate solution. Typically this is done by defining

a non-negative loss function that measures departure from perfect fit and an algorithm for

minimizing it.

In Orthogonal Common Factor Analysis (OCFA), which is the most important special case of

OFA, the set 𝒯 is a set of partitioned matrices [𝐴 ∣ 𝐷], and there are separate constraints

1A matrix 𝑌 is *orthogonal* if 𝑌 ′𝑌 is diagonal, an orthogonal matrix is *orthonormal* if 𝑌 ′𝑌 = 𝐼.
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𝐴 ∈ 𝒜 and 𝐷 ∈ 𝒟. The matrix of common factor loadings 𝐴 is 𝑚 × 𝑞, with2 𝑞 ∶= 𝑝 − 𝑚,

and the matrix of unique factor loadings 𝐷 is of order 𝑚. There is a corresponding partition of

𝑌 as [𝐹 ∣ 𝑈], with 𝐹 the 𝑛 × 𝑞 matrix of common factor scores and 𝑈 the 𝑛 × 𝑚 matrix of

unique factor scores.

If 𝐴 is unrestricted and 𝐷 is required to be diagonal then the OCFA is exploratory, otherwise

it is confirmatory. If 𝐷 is diagonal then the squares of its diagonal elements are called unique

variances or uniquenesses.

For OCFA the system (1a)-(1c) thus becomes

𝑋 = 𝐹𝐴′ + 𝑈𝐷, (2a)

𝐹 ′𝐹 = 𝐼, (2b)

𝑈 ′𝑈 = 𝐼, (2c)

𝐹 ′𝑈 = 0, (2d)

𝐷 ∈ 𝒟, (2e)

𝐴 ∈ 𝒜. (2f)

Although OCFA will always be in the back of our mind, we will develop equations and

algorithms for the general OFA case 𝑋 = 𝑌 𝑇 with 𝑇 ∈ 𝒯.

1.1 Some Tools

Definition 1.3. Suppose 𝑋 is an 𝑛 × 𝑚 “tall” matrix of rank 𝑟. A “fat” SVD for X is any

decomposition

𝑋 = [𝐾 𝐾⟂] [Λ 0
0 0] [𝐿′ 𝐿′

⟂] . (3)

with

• Λ diagonal and positive definite of order 𝑟 with elements decreasing3 along the diagonal,
• 𝐾 is 𝑛 × 𝑟 with 𝐾′𝐾 = 𝐼,
• 𝐿 is 𝑚 × 𝑟 with 𝐿′𝐿 = 𝐼,
• 𝐾⟂ is 𝑛 × (𝑛 − 𝑟) with 𝐾′

⟂𝐾⟂ = 𝐼,
• 𝐿⟂ is 𝑚 × (𝑚 − 𝑟) with 𝐿′

⟂𝐿⟂ = 𝐼,
• 𝐾′𝐾⟂ = 0,
• 𝐿′𝐿⟂ = 0.

2The symbol ∶= is used for definitions.
3Decreasing means 𝜆1 ≥ ⋯ ≥ 𝜆𝑟
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Remark 1.1. In the “fat” SVD the diagonal matrix Λ of singular values is uniquely defined.

The matrices 𝐾⟂ and 𝐿⟂ have orthonormal bases for the left and the right null-spaces of 𝑋,

and are consequently only unique up to a rotation. The matrices of left and right singular

vectors 𝐾 and 𝐿 have orthonormal bases for the column and row spaces of 𝑋, and are uniquely

defined if and only if the singular values are all different.

Definition 1.4. The Moore-Penrose Inverse of an 𝑛 × 𝑚 matrix 𝑋 is any 𝑚 × 𝑛 matrix 𝑋+

satisfying the four Penrose conditions

1. 𝑋𝑋+ is symmetric,

2. 𝑋+𝑋 is symmetric,

3. 𝑋+𝑋𝑋+ = 𝑋+,
4. 𝑋𝑋+𝑋 = 𝑋.

Theorem 1.1. If 𝑋 has “fat” SVD given by (3) then 𝑌 = 𝑋+ if and only if

𝑌 = [𝐿 𝐿⟂] [Λ−1 0
0 0] [𝐾′

𝐾′
⟂

] . (4)

Proof. To prove sufficiency we merely have to verify that 𝑌 from (4) satisfies the four Penrose

conditions. Necessity (and uniqueness) is a bit more involved. Any 𝑚 × 𝑛 matrix 𝑌 can be

written as

𝑌 = [𝐿 𝐿⟂] [𝑃 𝑄
𝑅 𝑆] [𝐾′

𝐾′
⟂

] . (5)

Thus

𝑋𝑌 = [𝐾 𝐾⟂] [Λ𝑃 Λ𝑄
0 0 ] [𝐾′

𝐾′
⟂

] . (6)

If 𝑌 is a Moore-Penrose Inverse of 𝑋 then 𝑋𝑌 must be symmetric, and thus 𝑄 = 0. Next

𝑌 𝑋 = [𝐿 𝐿⟂] [𝑃Λ 0
𝑅Λ 0] [𝐿′

𝐿′
⟂

] . (7)

If 𝑌 is a Moore-Penrose Inverse of 𝑋 then 𝑌 𝑋 must be symmetric, and thus 𝑅 = 0. Next

𝑋𝑌 𝑋 = [𝐾 𝐾⟂] [Λ𝑃Λ 0
0 0] [𝐿′

𝐿′
⟂

] . (8)

If 𝑌 is a Moore-Penrose Inverse of 𝑋 then 𝑋𝑌 𝑋 must be equal to 𝑋, and thus 𝑃 = Λ−1.
Finally

𝑌 𝑋𝑌 = [𝐿 𝐿⟂] [𝑃Λ𝑃 𝑃Λ𝑄
𝑅Λ𝑃 𝑅Λ𝑄] [𝐿′

𝐿′
⟂

] . (9)

If 𝑌 is a Moore-Penrose Inverse of 𝑋 then 𝑅 and 𝑄 are zero, and we must have 𝑌 𝑋𝑌 = 𝑌,
which implies 𝑆 = 0.

6



Definition 1.5. Suppose 𝑋 is an 𝑛 × 𝑚 “tall” matrix. Suppose 𝒴 is the set of all 𝑛 × 𝑚
matrices with 𝑌 ′𝑌 = 𝐼. Then the Procrustus Transformation of 𝑋 is defined as

Π𝒴(𝑋) ∶= argmin
𝑌 ∈𝒴

SSQ(𝑋 − 𝑌 ) = argmax
𝑌 ∈𝒴

tr 𝑌 ′𝑋.

Theorem 1.2. Suppose 𝑋 is an 𝑛 × 𝑚 “tall” matrix of rank 𝑟 with “fat” SVD given by (3).

Then

Π𝒴(𝑋) ∶= {𝑌 ∣ 𝑌 = 𝐾𝐿′ + 𝐾⟂𝑆𝐿′
⟂}

with 𝑆 any (𝑛 − 𝑟) × (𝑚 − 𝑟) matrix satisfying 𝑆′𝑆 = 𝐼.

Corollary 1.1. If 𝑋 is an 𝑛 × 𝑚 “tall” matrix of rank 𝑟 with “fat” SVD given by (3) then

max
𝑌 ∈𝒴

tr 𝑌 ′𝑋 = tr Λ,

and the maximum is attained for any 𝑌 ∈ Π𝑌(𝑋).

Definition 1.6. The positive semidefinite square root of a positive semidefinite 𝐴 is positive

semidefinite

matrix 𝐵 with 𝐵2 = 𝐴.

Theorem 1.3. A positive semi-definite matrix 𝐴 has a unique positive semidefinite square root

𝐴1
2 .

Proof. The “fat” SVD of 𝐴 (which is identical here to the eigenvalue decomposition) is

𝐴 = [𝐾 𝐾⟂] [Λ 0
0 0] [𝐾′

𝐾′
⟂

] . (10)

Any other symmetric matrix of the same size as 𝐴 can be written as

𝐵 = [𝐾 𝐾⟂] [ 𝑃 𝑄
𝑄′ 𝑅] [𝐾′

𝐾′
⟂

] , (11)

with 𝑃 and 𝑅 symmetric. Thus

𝐵2 = [𝐾 𝐾⟂] [ 𝑃 2 + 𝑄𝑄′ 𝑃𝑄 + 𝑄𝑅
𝑄′𝑃 + 𝑅𝑄′ 𝑄′𝑄 + 𝑅2] [𝐾′

𝐾′
⟂

] (12)

Now 𝐵2 = 𝐴 implies 𝑄′𝑄 + 𝑅2 = 0, which implies 𝑄 = 0 and 𝑅 = 0. Also 𝑃 2 = Λ, and
thus

𝐴1
2 = [𝐾 𝐾⟂] [Λ1

2 0
0 0] [𝐾′

𝐾′
⟂

] (13)
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Definition 1.7. 𝑋 = 𝑌 𝑆 is a polar decomposition of the 𝑛 × 𝑚 matrix 𝑋 if 𝑌 ′𝑌 = 𝐼 and 𝑆
is positive semidefinite.

Theorem 1.4. 𝑋 = 𝑌 𝑆 is a polar decomposition if and only if𝑆 = (𝑋′𝑋)1
2 and 𝑌 ∈ Π𝒴(𝑋).

Proof. 𝑋 = 𝑌 𝑆 implies 𝑋′𝑋 = 𝑆2, and thus 𝑆 is the unique square root of 𝑋′𝑋. Suppose

𝑋 has “fat” SVD given by (3). Any 𝑛 × 𝑚 matrix 𝑌 can be written as

𝑌 = [𝐾 𝐾⟂] [𝑃 𝑄
𝑅 𝑆] [𝐿′

𝐿′
⟂

] . (14)

Also

𝑆 = [𝐿 𝐿⟂] [Λ 0
0 0] [𝐿′

𝐿′
⟂

] (15)

Thus

𝑌 𝑆 = [𝐾 𝐾⟂] [𝑃Λ 0
𝑅Λ 0] [𝐿′

𝐿′
⟂

] . (16)

This is equal to 𝑋 if and only if 𝑃 = 𝐼 and 𝑅 = 0. Taking this into account

𝑌 ′𝑌 = [𝐿 𝐿⟂] [ 𝐼 𝑄
𝑄′ 𝑄′𝑄 + 𝑆′𝑆] [𝐿′

𝐿′
⟂

] . (17)

which is equal to the identity if and only if 𝑄 = 0 and 𝑆′𝑆 = 𝐼.

1.2 Fundamental Theorem

In this section we look at finding exact solutions of the “full” system of equations (1a)-(1c).

As we will see, the basic solvability result, which we call the “Fundamental Theorem of Factor

Analysis”, following Kestelman (1952), also has computational consequences.

We start by considering the “reduced” OFA system, using 𝐶 ∶= 𝑋′𝑋,

𝐶 = 𝑇 𝑇 ′, (18a)

𝑇 ∈ 𝒯. (18b)

Solvability of the reduced system is a necessary condition for solvability of the full system

(1a)-(1c).

Most factor analysis procedures are two-step methods. In the first step they find an approximate

solution 𝑇 to the reduced system, and then use this 𝑇 to find an approximate solution 𝑌 to the

full system. The two steps may actually use two different loss functions, the first one to assess

the fit of 𝐶 = 𝑇 𝑇 ′ and the second one the fit of 𝑋 = 𝑌 𝑇 ′. This practice is motivated, and to
some extent justified, by the following theorem, first proved by Garnett (1919).
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Theorem 1.5. The full system (1a)-(1c) is solvable if and only if the reduced system (18a)-(18b)

is solvable.

Proof. Necessity is trivial. For sufficiency we have to prove that if 𝑇 is any solution of the

reduced system then there is a 𝑌 such that (𝑇 , 𝑌 ) satisfies the full system. Our proof uses the
“fat” singular value decomposition (SVD) of the 𝑛 × 𝑚 matrix 𝑋, assumed to be of rank 𝑟,
which is

𝑋𝑛×𝑚 = [𝐾1
𝑛×𝑟 𝐾0

𝑛×(𝑛−𝑟)] [ Λ𝑟×𝑟 0𝑟×(𝑚−𝑟)
0(𝑛−𝑟)×𝑟 0(𝑛−𝑟)×(𝑚−𝑟)

] [𝐿1
𝑚×𝑟 𝐿0

𝑚×(𝑚−𝑟)]
′
. (19)

The singular values in Λ𝑟×𝑟 are positive and decrease along the diagonal. Subscripts are used
to indicate the dimension of the matrices.

From 𝐶 = 𝑇 𝑇 ′ we know that a “fat” SVD of 𝑇 is

𝑇𝑚×𝑝 = [𝐿1
𝑚×𝑟 𝐿0

𝑚×(𝑚−𝑟)] [ Λ𝑟×𝑟 0𝑟×(𝑝−𝑟)
0(𝑚−𝑟)×𝑟 0(𝑚−𝑟)×(𝑝−𝑟)

] [𝑀1
𝑝×𝑟 𝑀0

𝑝×(𝑝−𝑟)]
′
, (20)

for some square orthonormal 𝑀.

Write 𝑌 as

𝑌𝑛×𝑝 = [𝐾1
𝑛×𝑟 𝐾0

𝑛×(𝑛−𝑟)] [
𝑉 11

𝑟×𝑟 𝑉 10
𝑟×(𝑝−𝑟)

𝑉 01
(𝑛−𝑟)×𝑟 𝑉 11

(𝑛−𝑟)×(𝑝−𝑟)
] [𝑀1

𝑝×𝑟 𝑀0
𝑝×(𝑝−𝑟)]

′
, (21)

where the partitioned matrix 𝑉 in the middle must satisfy 𝑉 ′𝑉 = 𝐼.

Now 𝑋 = 𝑌 𝑇 ′ becomes

[ Λ𝑟×𝑟 0𝑟×(𝑚−𝑟)
0(𝑛−𝑟)×𝑟 0(𝑛−𝑟)×(𝑚−𝑟)

] =

[
𝑉 11

𝑟×𝑟 𝑉 10
𝑟×(𝑝−𝑟)

𝑉 01
(𝑛−𝑟)×𝑟 𝑉 11

(𝑛−𝑟)×(𝑝−𝑟)
] [ Λ𝑟×𝑟 0𝑟×(𝑚−𝑟)

0(𝑝−𝑟)×𝑟 0(𝑝−𝑟)×(𝑚−𝑟)
] , (22)

which implies

𝑉 = [ 𝐼𝑟×𝑟 0𝑟×(𝑝−𝑟)
0(𝑛−𝑟)×𝑟 𝑆(𝑛−𝑟)×(𝑝−𝑟)

] (23)

where 𝑆 satisfies 𝑆′𝑆 = 𝐼, but is otherwise arbitrary.

From (21) and (23) we see that

𝑌 = 𝐾1𝑀 ′
1 + 𝐾0𝑆𝑀 ′

0 (24)

provides us with the required solution of the full system.
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If the non-zero singular values of 𝑋, and consequently of 𝑇, are all different then 𝐾1 and 𝑀1
are uniquely determined. Matrices 𝐾0 and 𝑀0 consist of orthonormal bases for the null-spaces
of 𝑋 and 𝑇, which are only determined up to rotations. They do not have to come from an

SVD, they can be computed more efficiently by QR decomposoition or by reducing the matrix

to row/column echelon form. We can select any one of these bases and absorb the rotations

in the arbitrary matrix 𝑆. The fundamental theorem implies that for any solution 𝑇 ∈ 𝒯 of

𝐶 = 𝑇 𝑇 ′ there is a nonlinear manifold of solutions 𝑌 of 𝑋 = 𝑌 𝑇 ′. Even if 𝑇 is identified, 𝑌
is not. This is the factor indeterminacy problem, which has haunted the field for more than 100

years. (Steiger and Schönemann (1978)).
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2 Least Squares Factor Analysis

2.1 ULS

There are several OFA techniques that use least squares loss functions4. The oldest and most

obvious one is

𝜎(𝑇 ) = SSQ(𝐶 − 𝑇 𝑇 ′), (25)

where SSQ() stands for the unweighted sum of squares. Minimizing (??) is the Unweighted

Least Squares (ULS) method of orthogonal factor analysis.

For OCFA (25) becomes

𝜎(𝐴, 𝐷) = SSQ(𝐶 − 𝐴𝐴′ − 𝐷2). (26)

An alternating least squares technique to minimize (26) was first proposed by Thomson (1934).

It alternates minimizing the loss function (26) over 𝐷 for the current 𝐴 and minimizing over 𝐴
for the current𝐷. Of course ULS only finds an approximate solution to the reduced system, and

it leaves open the question on how to compute the factor scores 𝑌. Alternative algorithms for
minimizing (26) are MINRES of Harman and Jones (1966) and the Newton-Raphson technique

of Derflinger (1969) and Jöreskog and Van Thillo (1971).

2.2 GLS

2.3 MLS

Also for OCFA Young (1940) and Whittle (1952) propose minimizing the weighted least

squares loss function

𝜎(𝐴, 𝐷, 𝐹) = tr (𝑋 − 𝐹𝐴′)𝐷−2(𝑋 − 𝐹𝐴′)′, (27)

which has the disadvantage that it assumes 𝐷 is known and the advantage that the problem

becomes a form of principal component analysis (PCA) in which the solution can be computed

with a single singular value decomposition.

It is tempting to use a block method to minimize (27), alternating finding the optimum 𝐹 and

𝐴 for fixed 𝐷, and then repeating this iteratively with the new 𝐷 equal to

𝐷2 = 𝑛−1diag (𝑋 − 𝐹𝐴′)′(𝑋 − 𝐹𝐴′). (28)

4We use SSQ() for the unweighted sum of squares of a matrix or vector.
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This in fact corresponds to alternating minimization of the loss function

𝜎(𝐴, 𝐷, 𝐹) = 𝑛 log det(𝐷2) + tr (𝑋 − 𝐹𝐴′)𝐷−2(𝑋 − 𝐹𝐴′)′. (29)

But (29) is the negative likelihood loss function for the fixed factor model proposed by Lawley

(1941), and we know this loss function is unbounded below, does not have a minimum, and

converges to a perfect but trivial solution which has 𝑝 of the uniquenesses in 𝐷2 equal to zero
(Anderson and Rubin (1956)).

The file lsfa.R in the repository has a function lsfa() to do an ULS for OCFA. It needs an

initial estimate of 𝐷, for which we can take diag−1(𝐶−1). Then it applies a small number of
Thomson iterations before switching to Newton iterations. First and second derivatives are

taken from De Leeuw (2025). Eigenvalue/eigenvector calculations use the RSpectra package

(Qiu and Mei (2024)).

2.4 MDFA

A more direct way of fitting the full OCFA model was discussed (independently and around

the same time) in the dissertation of Sočan (2003) and in the conference chapter of De Leeuw

(2004) (presented at the conference in 2002). Recently this technique has become known

asMatrix Decomposition Factor analysis (MDFA). Socan attributes MDFA (which they call

Direct Factor Analysis) to a 2001 personal communication and some unpublished notes of their

advisor Henk Kiers.

In MDFA the least squares loss function is

𝜎(𝑌 , 𝑇 ) ∶= SSQ(𝑋 − 𝑌 𝑇 ′), (30)

which must be minimized over 𝑌 ′𝑌 = 𝐼 and 𝑇 ∈ 𝒯.

MDFA was not immediately accepted as an alternative factor analysis technique. It made

its first journal appearance in a series of papers by Unkel and Trendafilov, based largely on

Unkel’s dissertation (Unkel (2009)). Over the years they contributed a “robust” version of

MDFA (Unkel and Trendafilov (2010)) and a version for a “wide” data matrix 𝑋 (Trendafilov

and Unkel (2011)). There is a nice review of their contributions in Unkel and Trendafilov

(2010), with an update in Trendafilov, Unkel, and Krzanowski (2013).

There have been additional important contributions to MDFA in Adachi (2012), Adachi and

Trendafilov (2018), Stegeman (2016), Terada (2025), and Yamashita (2025). We will discuss

these recent contributions in various places in our present paper. When googling MDFA, keep

in mind that Adachi initially used Data-Fitting Factor Analysis, while Stegeman used the Data

Factor Model.
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3 MDFA Algorithms

3.1 Algorithm A

The Alternating Least Squares (ALS) algorithm proposed for MDFA by both Kiers (in Sočan

(2003)) and De Leeuw (2004) alternates finding the optimum 𝑌 for given 𝑇 and the optimum 𝑇
for given 𝑌.

Finding the optimum 𝑇 for given 𝑌 is straightforward. We complete the square, as in

𝜎(𝑌 , 𝑇 ) = tr 𝐶 + tr(𝑇 − 𝑋′𝑌 )′(𝑇 − 𝑋′𝑌 ) − tr 𝑌 ′𝐶𝑌 . (31)

Thus the optimum 𝑇 for given 𝑌 is obtained by projecting the 𝑚 × 𝑝 matrix 𝑋′𝑌 on the set of

matrices 𝒯. We shall use Π𝒯() for the unweighted least squares projection on 𝒯.

𝑇 ← Π𝒯(𝑋′𝑌 )

For exploratory OCFA this gives

[𝐴 ∣ 𝐷] ← [𝑋′𝐹 ∣ diag(𝑋′𝑈)] . (32)

For confirmatory MDFA in which we require some loadings to be equal to each other and/or to

to fixed constants finding Π𝒯(𝑋′𝑌 ) is still a simple linear least squares problem. If there are
inequality constraints we need some form of quadratic programming.

Expanding loss gives

𝜎(𝑌 , 𝑇 ) = tr 𝐶 + tr 𝑇 ′𝑇 − 2 tr 𝑌 ′𝑋𝑇 . (33)

To compute the optimal 𝑌 for given 𝑇we have to maximize tr 𝑌 ′𝑋𝑇 over all 𝑛×𝑝 orthonormal
𝑌. We start with some general lemmas. Remember that the trace norm (a.k.a. the nuclear

norm) ‖𝑍‖𝜏 of a matrix 𝑍 is the sum of its singular values. The trace norm is also equal to the

sum of the square roots of the eigenvalues of 𝑍′𝑍 and thus equal to the trace of (𝑍′𝑍)1/2.

Lemma 3.1. If 𝑍 and 𝑌 are 𝑛 × 𝑝 with 𝑌 ′𝑌 = 𝐼 then

tr 𝑌 ′𝑍 ≤ ‖𝑍‖𝜏. (34)

Proof. The stationary equations are 𝑍 = 𝑌 𝑀 with 𝑌 ′𝑌 = 𝐼 and 𝑀 a symmetric matrix

of Lagrange multipliers of order 𝑝. It follows that 𝑀2 = 𝑍′𝑍 and thus 𝑀 is the (unique)

positive semi-definite symmetric square root (𝑍′𝑍)1/2 At the maximum 𝑍 = 𝑌 𝑀 implies

tr 𝑌 ′𝑍 = tr 𝑀 = ‖𝑋‖𝜏.
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Note that Lemma 3.1 does not say that the optimizing 𝑌 is unique. We get more insight from

an alternative and more constructive proof (also taken from De Leeuw (2004), Appendix). It

uses the “fat” singular value decomposition of the 𝑛 × 𝑝 matrix 𝑍 of rank 𝑟.

Lemma 3.2. If the 𝑛 × 𝑝 matrix 𝑍 with rank 𝑟 has the “fat” SVD

𝑍 = [𝐾 𝐾⟂] [Λ 0
0 0] [𝐿′

𝐿′
⟂

] , (35)

then the 𝑛 × 𝑝 orthonormal 𝑌 maximizes tr 𝑌 ′𝑍 if and only if

𝑌 = 𝐾𝐿′ + 𝐾⟂𝑆𝐿′
⟂, (36)

for some (𝑛 − 𝑟) × (𝑝 − 𝑟) matrix 𝑆 with 𝑆′𝑆 = 𝐼.

Proof. Partition the columnwise orthonormal 𝑛 × 𝑝 matrix 𝑌 in the same way as 𝑍.

𝑌 = [𝐾 𝐾⟂] [𝑃 𝑄
𝑅 𝑆] [𝐿′

𝐿′
⟂

] , (37)

where the four-block partitioned 𝑛 × 𝑝 matrix in the middle of (37) must be columnwise

orthonormal. Now tr 𝑌 ′𝑋 = tr Λ𝑃 and the constraint on the 𝑟 × 𝑟 matrix 𝑃 is that 𝑃 ′𝑃 ≲ 𝐼
in the Loewner5 sense (because we must have 𝑃 ′𝑃 + 𝑅′𝑅 = 𝐼). It follows that the diagonal
elements of 𝑃 must be less than or equal to one, and thus the maximum of tr 𝑌 ′𝑋 is tr Λ,
uniquely attained for 𝑃 = 𝐼. But 𝑃 = 𝐼 implies that at the maximum 𝑅 = 0 and 𝑄 = 0, and
𝑆 is any (𝑛 − 𝑟) × (𝑝 − 𝑟) matrix with 𝑆′𝑆 = 𝐼. Thus the optimum 𝑌 is as given by (36).

We can now apply the lemmas to minimizing the loss in (33). This generalizes the fundamental

theorem of factor analysis to the case of imperfect fit.

Theorem 3.1. If the 𝑛 × 𝑝 matrix 𝑋𝑇 has rank 𝑟 with 𝑟 ≤ 𝑚 < 𝑝 < 𝑛 and “fat” singular

value decomposition

𝑋𝑇 = [𝐾 𝐾⟂] [Λ 0
0 0] [𝐿′

𝐿′
⟂

] , (38)

then the maximum of tr 𝑌 ′𝑋𝑇 over 𝑛 × 𝑝 orthonormal 𝑌 is ‖𝑋𝑇 ‖𝜏, attained for all 𝑌 with

𝑌 = 𝐾𝐿′ + 𝐾⟂𝑆𝐿′
⟂, (39)

where 𝑆 is any (𝑛 − 𝑟) × (𝑝 − 𝑟) matrix with 𝑆′𝑆 = 𝐼.

5𝐴 ≲ 𝐵 means 𝐴 − 𝐵 positive semi-definite.
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Proof. Directly from Lemma 3.2.

It is important to see that in MDFA we cannot use 𝑌 = 𝐾𝐿′, because then 𝑌 ′𝑌 = 𝐿𝐿′,
which is of rank 𝑟 ≤ 𝑝 and thus not equal to the identity if 𝑟 < 𝑝. Also note that formula
(39) is identical to formula (24) in the fundamental theorem. This is not surprising, since both

compute the optimal 𝑌 for given 𝑇. The fundamental theorem merely adds that the optimal 𝑌
makes loss equal to zero if 𝐶 = 𝑇 𝑇 ′.

In factor analytic literature it is often said that the factor scores 𝑌 have the “determinate” part

𝐾𝐿′ and the “indeterminate” part 𝐾⟂𝑆𝐿′
⟂. There are some simple rank conditions which

imply that the indeterminate part does not play a role in Algorithm A, which uses𝑋′𝑌 to update

𝑇, and in the fitted values, which use 𝑌 𝑇 ′. And consequently in the loss function values, which
use 𝑇 ′𝑋′𝑌.

Corollary 3.1. If 𝑋𝑇 has rank 𝑚 and 𝑌 = 𝐾𝐿′ + 𝐾⟂𝑆𝐿′
⟂ then

1. 𝑋′𝑌 = 𝑋′𝐾𝐿′ = 𝐶𝑇 (𝑇 ′𝐶𝑇 )−1/2.

2. 𝑌 𝑇 ′ = 𝐾𝐿′𝑇 ′ = 𝑋𝑇 (𝑇 ′𝐶𝑇 )−1/2𝑇 ′.

Proof. If 𝑋𝑇 is of rank 𝑚 then both 𝑋 and 𝑇 are of rank 𝑚. We know that 𝐾′
⟂𝑋𝑇 = 0.

Because rank(𝑇 ) = 𝑚 this implies 𝑋′𝐾⟂ = 0. This proves part one. Because rank(𝑋) = 𝑚
and 𝑋𝑇 𝐿⟂ = 0 we have 𝐿′

⟂𝑇 = 0. This proves part two.

The CFA equations (2a)-(2f) imply that 0 ≲ 𝐴𝐴′ ≲ 𝐶 and 0 ≲ 𝐷2 ≲ 𝐶. The second
one in turn implies that 0 ≲ 𝐷2 ≲ diag(𝐶). In most CFA techniques it is possible that

the computed uniquenesses do not satisfy these inequality constraints and are consequently

“improper” solutions. This is true for both MINRES and ML. We show that it is “less true” for

MDFA.

Theorem 3.2. In the exploratory MDFA solution of CFA we have 0 ≲ 𝐴𝐴′ ≲ 𝐶 and 0 ≲
𝐷2 ≲ diag(𝐶).

Proof. At the solution we have 𝐴 = 𝑋′𝐹 and thus 𝐴𝐴′ = 𝑋′𝐹𝐹 ′𝑋. Because 𝐹𝐹 ′ ≲ 𝐼
we have 𝐴𝐴′ ≲ 𝐶. At the solution we also have 𝐷 = diag(𝑋′𝑈), or 𝑑𝑗 = 𝑥′

𝑗𝑢𝑗. Since

𝑢′
𝑗𝑢𝑗 = 1 we have from Cauchy-Schwartz 𝑑2

𝑗 ≤ 𝑥′
𝑗𝑥𝑗 = 𝑐𝑗𝑗.
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Theorem 3.2 shows that worst-case improper solutions do not happen in MDFA. Uniquenesses

are always non-negative and bounded above by the diagonal of 𝐶, i.e. for correlation matrices
they are always between zero and one. Note however that we have not shown that 𝐷2 ≲ 𝐶, so
not all improper solutions are excluded. If it so happens that 𝑈 ′𝑋 is diagonal at the solution,

which is certainly not guaranteed, then indeed 𝐷2 = 𝑋′𝑈𝑈 ′𝑋 ≲ 𝐶.

The repository has a file mdfaAlgorithmA.R, with the function mdfaAlgorithmA() imple-

menting Algorithm A. There is an argument proj which is a function that takes care of the

least squares projections on 𝒯. By default proj is mdfaCFAProject(), which replaces the last

𝑚 columns of 𝑇 by its diagonal, but changing this default projection routine allows us to

incorporate any set of constraints.

We emphasize that mdfaAlgorithmA() updates 𝑌 using the determinate part 𝐾𝐿′ only, which
means that in our iterations (and at convergence) we do not have 𝑌 ′𝑌 = 𝐼. Corollary 3.1
shows that if we were to complete 𝑌 by adding 𝐾⟂𝑆𝐿′

⟂ in each iteration we would get the

same sequence of loss function values and the same sequence of 𝑇 values.

It does mean however that if we want a proper 𝑌 then we have to do some extra work after

convergence. Adachi (2012), section 2.5, makes a case for using only the determinate part, but

it remains true that this does not solve the original MDFA problem, which requires 𝑌 ′𝑌 = 𝐼.
Also computing a proper 𝑌 corresponding with the optimal 𝑇 forces us to make a choice of

𝑆 in (39). In mdfaAlgorithmA() after convergence we optionally use the QR decompositon

to compute an orthonormal bases 𝐾⟂ of the left null space and an orthonormal basis 𝐿⟂ for

the right null space of 𝑋𝑇. We use a function identical to Null() from the package MASS

(Venables and Ripley (2002)). We choose the arbitrary (𝑛 − 𝑚) × (𝑝 − 𝑚) matrix 𝑆 by setting

its first 𝑝 − 𝑚 rows to the identity matrix, with the remaining rows zero.

3.2 Algorithm B

WriteΠ𝑌() for the (generally set-valued) least squares projection of a matrix on the columnwise
orthonormal matrices of the same dimension. Also write Π𝒯() for least squares projection
on 𝒯. We also use the ← symbol for updates. Thus 𝑥 ← 𝑓(𝑥, 𝑦) means the update of 𝑥 (the

“new” 𝑋) in an iteration is a function 𝑓 of the current 𝑥 and the current 𝑦. On the left hand side
is what we are computing now and on the right hand side is what we have computed before.

Then ALS iteration of Algorithm A is

𝑌 ←Π𝒴(𝑋𝑇 ), (40a)

𝑇 ←Π𝒯(𝑋′𝑌 ). (40b)
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If we assume that rank(𝑋) = rank(𝑇 ) = 𝑚 then it does not matter how we choose 𝑆 in (36),

because by Corollary 3.1 for all choices of 𝑆 we have tr 𝑌 ′𝑋𝑇 = ‖𝑋𝑇 ‖𝜏, and all choices of
𝑆 give the same update and the same loss function value.

In most factor analytic applications we have 𝑛 >> 𝑚. The computations in (40a) and (40b)

use the matrices 𝑋 and 𝑌, which each have 𝑛 rows. Every iteration involves multiplications

with these potentially very large matrices. This will tend to be expensive computationally. It

has been pointed out by Adachi (2012) that we can rewrite the ALS algorithm in such a way

that it only involves matrices of order 𝑚. This alternative derivation of the algorithm has the

additional property that it can be applied to 𝐶 without having to know 𝑋, which has obvious

advantages in secondary analysis. And computational factor analysis publications typically

have secondary analyses examples, using the mountain of correlation matrices that have been

published since 1900.

Theorem 3.3. Suppose 𝑇 has rank 𝑚. Then the update is

𝑇 ← Π𝒯{𝐶𝑇 (𝑇 ′𝐶𝑇 )−1/2}. (41)

Proof. We rewrite (36) as

𝑌 = 𝑋𝑇 (𝑇 ′𝐶𝑇 )−1/2 + 𝐾⟂𝑆𝐿′
⟂ (42)

where (𝑇 ′𝐶𝑇 )−1/2 is the square root of the Moore-Penrose inverse of 𝑇 ′𝐶𝑇, 𝐾⟂ and 𝐿⟂ are

orthonormal bases for the left and right null spaces of 𝑋𝑇, and 𝑆 is arbitrary.

𝑇 ← Π𝒯(𝑋′𝑌 ) = Π𝒯 {𝐶𝑇 (𝑇 ′𝐶𝑇 )− 1
2 + 𝑋′𝐾⟂𝑆𝐿′

⟂} (43)

We have 𝐾′
⟂𝑋𝑇 = 0. If 𝑇 has rank 𝑚 then Corollary 3.1 implies 𝑋′𝐾⟂ = 0 which leads to

the result in the theorem.

Algorithm (41) requires us to compute (𝑇 ′𝐶𝑇 )− 1
2 in each iteration, which means finding the

𝑚 non-zero eigenvalues and their corresponding eigenvectors. The update is then projected on

the set 𝒯.

Alternative: polar decomposition iterative

The ALS interpretation of the algorithm shows directly that a decreasing sequence of loss

function values is produced, which proves convergence of 𝑇 under the usual identification and

rank conditions.

Since 𝜙(𝑇 ) ∶= ‖𝑋𝑇 ‖𝜏 is convex and homogeneous in 𝑇 the algorithm (49) is also a ma-

jorization (or MM) algorithm (De Leeuw (1994), Lange (2016)). To show this, it follows
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from convexity that for all 𝑇 and 𝑇 we have 𝜙(𝑇 ) ≥ tr 𝑇 ′𝐺, where 𝐺 is any element of the

subdifferential 𝜕𝜙(𝑇). Thus

𝜎⋆(𝑇 ) ≤ tr 𝐶 + tr 𝑇 ′𝑇 − 2 tr 𝑇 ′𝐺 = tr 𝐶 + SSQ(𝑇 − 𝐺) + SSQ(𝐺), (44)

with equality if 𝑇 = 𝑇. Since ‖𝑋𝑇 ‖𝜏 = max𝑌 ′𝑌 =𝐼 tr 𝑌 ′𝑋𝑇 it follows from the theorem about

subgradients of linear transformations (Rockafellar (1970), theorem 23.9) and the theorem

about subgradients of supremum functions (Mordukhovich and Nam (2022), section 4.4) that

𝜕𝜙(𝑇 ) = 𝑋′(𝐾𝐿′ + 𝐾⟂co(𝒮)𝐿′
⟂) (45)

where 𝐾 and 𝐿 refer to the SVD of 𝑋𝑇, where 𝒮 is the Stiefel manifold of all 𝑆 with 𝑆′𝑆 = 𝐼,
and where co() is the closed convex hull. Finally (Watson (1992), Gallivan and Absil (2010))

co(𝒮) is the compact convex set ℋ of all matrices with largest singular value less than or equal

to one. Thus

𝑇 ← Π𝒯(𝜕𝜙(𝑇 )) = Π𝒯(𝑋′(𝐾𝐿′ + 𝐾⟂𝐻𝐿′
⟂)), (46)

with𝐻 ∈ ℋ is a convergent MM algorithm. Sinceℋ is larger than𝒮 this extends Algorithm B.

On the other hand as long as 𝑇 has rank𝑚 𝐾′
⟂𝑋𝑇 = 0 implies𝑋′𝐾⟂ = 0, as in Corollary 3.1,

and thus in that case the MM algorithm iterates the determinate part 𝐾𝐿′ and is identical to
Algorithm B.

If 𝑋𝑇 has rank 𝑚 then 𝒟𝜙(𝑇 ) = 𝑋′𝐾𝐿′

In Algorithm A we compute the determinate part of 𝑌, and optionally after convergence a
proper orthonormal 𝑌. In Algorithm B there is no 𝑌 at all, and if there is no 𝑋 we cannot

compute factor scores. In both cases finding appropiate (indeterminate) factor scores 𝑌 requires

additional work, not unlike what must be done in the MINRES or ML techniques for CFA. One

option is to simply compute the optimal 𝑇 and then use one of the various classical methods to

compute factor scores (McDonald and Burr (1967)).

3.3 Algorithm C

The minimum of 𝜎(𝑌 , 𝑇 ) over 𝑌 ′𝑌 = 𝐼 is

𝜎⋆(𝑇 ) ∶=tr 𝑋′𝑋 + tr 𝑇 ′𝑇 − 2 ‖𝑋𝑇 ‖𝜏

=tr 𝑋′𝑋 + tr 𝑇 ′𝑇 − 2
𝑚

∑
𝜈=1

𝜆
1
2𝜈 (𝑇 ′𝐶𝑇 ). (47)

First and second derivatives of the trace norm with respect to 𝑇 were computed in De Leeuw

(2025). The gradient is

𝒟𝜎⋆(𝑇 ) = 2{𝑇 − 𝐶𝑇 (𝑇 ′𝐶𝑇 )−1/2}. (48)
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Thus the exploratory iterative algorithm

𝑇 ← 𝐶𝑇 (𝑇 ′𝐶𝑇 )−1/2 (49)

is a fixed-point algorithm, and 𝑇 ∈ 𝒯 is a fixed point of (49) if and only if 𝒟𝜎⋆(𝑇 ) = 0.

If the problem is defined in such a way that some elements of 𝑇 are fixed, usually at zero, then

the gradient is still the same, but with the understanding that the fixed elements get derivatives

equal to zero. In other words there is a binary 𝑚 × 𝑝 matrix 𝐵 such that 𝑇 ∈ 𝒯 if and only if

𝐵 ∗ 𝑇 = 𝑇, using symbol ∗ for the elementwise (or Hadamard) product. For constraints of
this type the gradient is

𝒟𝜎⋆(𝑇 ) = 𝐵 ∗ {𝑇 − 𝐶𝑇 (𝑇 ′𝐶𝑇 )−1/2}. (50)

With this formula for the gradient many general purpose optimization methods for minimizing

the projected loss function (47) become available. The R function mdfaAlgorithmG() in the

repository uses the BFGS method of the optim() function from the stats package (R Core Team

(2025)).

Compared with Algorithm B we can perhaps expect some gain in efficiency, because of the

superlinear convergence of the BFGS method, but we lose some flexibility by not having the

general projections Π𝒯() available.

box constraints

3.4 Algorithm D

𝜙(𝑇 ) = ‖𝑋𝑇 ‖𝜏

𝒟𝜙(𝑇 ) = 𝑋′𝐾𝐿′

Algorithm B: 𝑇 − Π𝑇(𝑋′𝐾𝐿′) = 𝑇 − Π𝑇(𝐶𝑇 (𝑇 ′𝐶𝑇 )− 1
2 ) = 0

In Algorithms A and B the projection Π𝒯() can be quite general. Algorithm 𝐹 uses the

binary template 𝐵 to encode fixed and variable elements, and projection is just elementwise

multiplication with the template. We can get more generality by defining 𝒯 as the set of

matrices of the form

𝑇 = 𝑇0 +
ℎ

∑
𝑠=1

𝜃𝑠𝑇𝑠, (51)

which allows for patterns with some elements fixed to known values but also allows some

elements required to be equal to other elements. Fixed elements go into 𝑇0 and the 𝑇𝑠 with
𝑠 > 0 have zeroes where the fixed elements are. If the fixed elements are all fixed to zero, as
they are in exploratory CFA, there is no need for a 𝑇0. If (51) is combined with non-negativity
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restrictions on the 𝜃𝑠 then we can also incorporate inequality between the elements of 𝑇, i.e. 𝒯
can be a polyhedral convex cone.

For the parametrization (51)

𝒟𝑠𝜎⋆(𝑇 ) = tr 𝑇 ′𝑇𝑠 − tr (𝑇 ′𝐶𝑇 )−1/2𝑇 ′𝐶𝑇𝑠. (52)

The derivatives of the loss function (52) with respect to the parameters 𝜃𝑠 are most easily
expressed by first computing the derivatives of the eigenvalues of 𝑇 ′𝐶𝑇.

𝒟𝑠𝜆𝜈 = 𝑥′
𝜈𝑄𝑠𝑥𝜈, (53)

where 𝑄𝑠 ∶= 𝑇 ′
𝑠𝐶𝑇 + 𝑇 ′𝐶𝑇𝑠. It follows that

𝒟𝑠𝑡𝜆𝜈 = −2𝑥′
𝜈𝑄𝑠(𝐴 − 𝜆𝜈𝐼)+𝑄𝑡𝑥𝜈 + 2𝑥′

𝜈𝑇 ′
𝑠𝐶𝑇𝑡𝑥𝜈. (54)

3.5 Algorithm E

An MDFA procedure 𝑋 → (𝑌 , 𝑇 ) maps data matrices 𝑋 to a scores 𝑌 and loadings 𝑇.
The procedure is scale-free if for all diagonal Φ we have 𝑋Φ → (𝑌 , 𝑇 Φ). Because of the
uncertainly of appropriate units for the variables it is generally thought that scale-freeness is a

desirable property of multivariate technique.

The MDFA least squares techniques we have discussed so far are not scale-free, but they can

be made scale-free in various ways. The first way is a traditional one. We normalize the data

in 𝑋 to unit length, so that 𝐶 = 𝑋′𝑋 becomes a correlation matrix. This can be formalized as

minimizing

𝜎𝑊(𝑇 , 𝑌 ) ∶= tr (𝑋 − 𝑌 𝑇 ′)𝑊(𝑋′ − 𝑇 𝑌 ′)
with 𝑊 ∶= diag−1(𝐶). Adachi (2012) proposes instead to use 𝑊 = 𝐶−1. But no matter how
we choose the positive definite 𝑊 the computational consequences are easy to handle.

We have

𝜎𝑊(𝑇 , 𝑌 ) = tr 𝑋𝑊𝑋′ + tr (𝑇 − 𝑋′𝑌 )′𝑊(𝑇 − 𝑋′𝑌 ) − tr 𝑌 ′𝑋𝑊𝑋′𝑌 , (55)

and consequently the optimal 𝑇 for given 𝑌 is the projection in the metric 𝑊 of 𝑋′𝑌 on 𝒯. This

may or may not be more complicated than unweighted projection, depending on the definition

of 𝒯.

Also

𝜎𝑊(𝑇 , 𝑌 ) = tr 𝑋𝑊𝑋′ + tr 𝑇 ′𝑊𝑇 − 2 tr 𝑌 ′𝑋𝑊𝑇 , (56)
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which means the optimal 𝑌 for given 𝑇 is the (unweighted) projection of 𝑋𝑊𝑇 on the orthonor-

mal 𝑛 × 𝑝 matrices.

As in the unweighted case we can combine the two ALS steps into a one-step upgrade for 𝑇.

𝑇 ← Π𝒯(𝐶𝑊𝑇 (𝑇 ′𝑊𝐶𝑊𝑇 )−1/2). (57)

Algorithm 𝑊 is the version of Algorithm B that uses the update in (57). Of course it does need

a weighted projection routine implementing Π𝒯(). For exploratory

21



4 Examples

4.1 MacDonell

Our first example illustrates and compares several techniques for exploratory CFA. The example

is of some historical interest. The data are one of the first published correlation matrices, from

the very first volume of Biometrika. MacDonell (1902), a retired businessman volunteering

in Karl Pearson’s lab, analyzed the politically incorrect correlations between seven physical

characteristics of 3000 criminals.

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
Head Length 1.00000 0.40163 0.39454 0.30071 0.30539 0.33886 0.33993
Head Breadth 0.40163 1.00000 0.61779 0.15040 0.13515 0.20614 0.18308
Face Breadth 0.39454 0.61779 1.00000 0.32097 0.28869 0.36322 0.34527
Finger 0.30071 0.15040 0.32097 1.00000 0.84638 0.75871 0.66084
Cubit 0.30539 0.13515 0.28869 0.84638 1.00000 0.79699 0.79986
Foot 0.33886 0.20614 0.36322 0.75871 0.79699 1.00000 0.73636
Height 0.33993 0.18308 0.34527 0.66084 0.79986 0.73636 1.00000

MacDonell mentions that Pearson advised him to use principal component analysis to find

numerical indices that could be used to rank and classify criminals. He promises the PCA

results in a follow-up paper, which never appeared (I think). It was probably too early for PCA,

which was brand new at the time (Pearson (1901)).

We will compute two-factor exploratory MDFA, ULS, and ML solutions. To compare them

we rotate the loadings of all three so that 𝐴′𝐷−2𝐴 is diagonal.

We cannot apply algorithm A here, because we do not have the data matrix 𝑋, only the

correlation matrix 𝐶. Algorithm B converges in 86 iterations. The loadings are

[,1] [,2]
Head Length +0.371534 +0.395183
Head Breadth +0.212495 +0.798347
Face Breadth +0.386271 +0.668991
Finger +0.865813 -0.038468
Cubit +0.958579 -0.102605
Foot +0.859463 +0.040946
Height +0.825508 +0.027657

and the uniquenesses are
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[1] +0.705545 +0.317129 +0.402941 +0.245376 +0.067481 +0.258232 +0.314327

The ULS algorithm uses 5 Thomson and 4 Newton iterations to minimize loss. Because of the

Newton iterations the loss function values converged to 15 decimals precision. The loadings

are

[,1] [,2]
Head Length +0.376812 +0.388622
Head Breadth +0.218102 +0.813147
Face Breadth +0.394111 +0.651819
Finger +0.856975 -0.042366
Cubit +0.955459 -0.112785
Foot +0.869081 +0.027989
Height +0.824056 +0.022833

and the uniquenesses are

[1] +0.706986 +0.291224 +0.419809 +0.263799 +0.074378 +0.243915 +0.320411

Next we apply the maximum likelihood method, using factanal() from the stats package (R

Core Team (2025)). The loadings are

[,1] [,2]
Head Length +0.365333 +0.401091
Head Breadth +0.214124 +0.764567
Face Breadth +0.380562 +0.697782
Finger +0.871261 -0.036722
Cubit +0.960740 -0.102181
Foot +0.847288 +0.051981
Height +0.828229 +0.030106

and the uniquenesses are

[1] +0.705658 +0.369588 +0.368273 +0.239556 +0.066538 +0.279402 +0.313131

Because the data are already a correlation matrix Algorithm W with weights diag(C) gives the

same result as the unweighted Algorithm B. But choosing weights 𝐶−1

Algorithm B converges in 96 iterations. The loadings are
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[,1] [,2]
Head Length +0.364870 +0.401951
Head Breadth +0.212980 +0.770783
Face Breadth +0.379746 +0.697102
Finger +0.874182 -0.037232
Cubit +0.961129 -0.101275
Foot +0.848774 +0.053606
Height +0.830887 +0.032425

and the uniquenesses are

[1] +0.699296 +0.355826 +0.366204 +0.213144 +0.064469 +0.265352 +0.277413

4.2 Emmett

Our next example is the correlation matrix of order nine from Emmett (1949), also used in

Lawley and Maxwell (1971), pp. 42-44. We use three common factors, and compare our results

with those obtained using multinormal maximum likelihood (Lawley and Maxwell (1971),

table 4.2).

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1.000 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639
[2,] 0.523 1.000 0.479 0.506 0.418 0.462 0.547 0.283 0.645
[3,] 0.395 0.479 1.000 0.355 0.270 0.254 0.452 0.219 0.504
[4,] 0.471 0.506 0.355 1.000 0.691 0.791 0.443 0.285 0.505
[5,] 0.346 0.418 0.270 0.691 1.000 0.679 0.383 0.149 0.409
[6,] 0.426 0.462 0.254 0.791 0.679 1.000 0.372 0.314 0.472
[7,] 0.576 0.547 0.452 0.443 0.383 0.372 1.000 0.385 0.680
[8,] 0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.000 0.470
[9,] 0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1.000

As the initial estimate for 𝐴 we use the first three principal components, scaled to the length of

the corresponding eigenvalues. The initial estimate of 𝐷 is the square root of the diagonal of

𝐼 −𝐴𝐴′. Algorithm B converges in 396 iterations to a loss of 0.0059884, where convergence is

defined by a loss-decrease in successive iterations of less than 10−10. The MDFA uniquenesses

are

[1] 0.449 0.422 0.617 0.210 0.381 0.174 0.403 0.465 0.230
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We use factanal() from the stats package to compute the ML solution.

The minimum function value and iteration information is

objective counts.function counts.gradient
0.03501729 19.00000000 19.00000000

The uniquenesses from the ML solution are

[1] 0.450 0.427 0.617 0.212 0.381 0.177 0.400 0.462 0.231

Comparing loadings is slightly more involved. The ML solution is rotated so that 𝐴′𝐷−2𝐴 is

diagonal, so we rotate the MDFA solution in the same way. The MDFA loadings are

[,1] [,2] [,3]
[1,] +0.663 +0.324 +0.078
[2,] +0.687 +0.253 -0.202
[3,] +0.492 +0.305 -0.217
[4,] +0.839 -0.288 -0.037
[5,] +0.705 -0.313 -0.152
[6,] +0.820 -0.377 +0.104
[7,] +0.661 +0.393 -0.069
[8,] +0.456 +0.296 +0.489
[9,] +0.764 +0.431 -0.012

The ML loadings are

[,1] [,2] [,3]
[1,] -0.664 +0.321 -0.074
[2,] -0.689 +0.247 +0.193
[3,] -0.493 +0.302 +0.222
[4,] -0.837 -0.292 +0.035
[5,] -0.705 -0.315 +0.153
[6,] -0.819 -0.377 -0.105
[7,] -0.661 +0.396 +0.078
[8,] -0.458 +0.296 -0.491
[9,] -0.766 +0.427 +0.012
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The Emmett example is somewhat atypical, because the CFA model with three factors has a

near perfect fit. This explains why the MDFA and ML solutions are nearly identical.

The CFA solution computed by Algorithm G is identical to the Algorithm B solution. Loss, with

10 digits, returned by Algorithm G is 0.0059884299, while Algorithm B gives 0.0059884321.

Algorithm G requires 29 function evaluations and 27 gradient evaluations. Comparing running

times with microbenchmark is somewhat problematic, because the default option in Algorithm

B is to iterate until the function value decrease is less than 10−10. Algorithm G uses the default

stopping criteria of the optim() function. Comparing the default options gives

Unit: milliseconds
expr min

mdfaAlgorithmB(emmett, emtold, itmax = 1000, verbose = FALSE) 8.873179
mdfaAlgorithmG(emmett, emtold, emtemp) 3.257491

lq mean median uq max neval
9.157903 10.003323 9.323728 9.412411 14.674966 100
3.432786 3.696527 3.493733 3.611485 8.363262 100

4.3 Maxwell

Lawley and Maxwell give a second example, using data taken from Maxwell (1961) (ten

variables, 810 observations). This example illustrates what happens when ML converges to an

improper solution (a.k.a. Heywood case). The correlation matrix is

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1.000 0.345 0.594 0.404 0.579 0.280 0.449 0.188 0.303 0.200
[2,] 0.345 1.000 0.477 0.338 0.230 0.159 0.205 0.120 0.168 0.145
[3,] 0.594 0.477 1.000 0.498 0.505 0.251 0.377 0.186 0.273 0.154
[4,] 0.404 0.338 0.498 1.000 0.389 0.168 0.249 0.173 0.195 0.055
[5,] 0.579 0.230 0.505 0.389 1.000 0.151 0.285 0.129 0.159 0.079
[6,] 0.280 0.159 0.251 0.168 0.151 1.000 0.363 0.359 0.227 0.260
[7,] 0.449 0.205 0.377 0.249 0.285 0.363 1.000 0.448 0.439 0.511
[8,] 0.188 0.120 0.186 0.173 0.129 0.359 0.448 1.000 0.429 0.316
[9,] 0.303 0.168 0.273 0.195 0.159 0.227 0.439 0.429 1.000 0.301

[10,] 0.200 0.145 0.154 0.055 0.079 0.260 0.511 0.316 0.301 1.000

Algorithm B converges in 2255 iterations to a loss of 0.0058263. The MDFA uniquenesses

are
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[1] 0.373 0.606 0.308 0.634 0.381 0.780 0.293 0.000 0.694 0.587

The uniquenesses from the ML solution in Lawley and Maxwell’s Table 4.6 are

[1] 0.385 0.623 0.301 0.638 0.347 0.778 0.286 0.000 0.690 0.600

Although the uniquenesses are close, there is an important difference between MDFA and ML.

Obtaining the ML solution required manual intervention, because the four-factor solution was

“improper”. The uniqueness of variable 8 was judged to be a Heywood case, and the analysis

with repeated without variable 8. The final results identify the first factor with variable 8, so

the loadings on the first factor are just the corresponding column of the correlation matrix.

MDFA gives the same results without any manual intervention. The only consequence of the

Heywood case is that more iterations are required to drive the uniqueness to zero.

The MDFA loadings are, after suitable rotation,

[,1] [,2] [,3] [,4]
[1,] -0.190 -0.756 +0.038 -0.131
[2,] -0.118 -0.476 +0.113 +0.375
[3,] -0.187 -0.766 +0.181 +0.192
[4,] -0.175 -0.525 +0.218 +0.109
[5,] -0.126 -0.659 +0.233 -0.336
[6,] -0.354 -0.263 -0.153 +0.043
[7,] -0.449 -0.505 -0.498 -0.043
[8,] -1.000 +0.000 +0.000 -0.000
[9,] -0.426 -0.285 -0.202 +0.047

[10,] -0.315 -0.238 -0.502 +0.062

The ML loadings are

[,1] [,2] [,3] [,4]
[1,] +0.188 +0.753 -0.035 -0.108
[2,] +0.120 +0.468 -0.103 +0.365
[3,] +0.186 +0.767 -0.167 +0.217
[4,] +0.173 +0.526 -0.200 +0.124
[5,] +0.129 +0.672 -0.251 -0.349
[6,] +0.359 +0.259 +0.154 +0.048
[7,] +0.448 +0.504 +0.507 -0.052
[8,] +1.000 +0.000 +0.000 +0.000
[9,] +0.429 +0.282 +0.209 +0.053

[10,] +0.316 +0.232 +0.496 +0.029
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4.4 Tucker

We continue with a simple confirmatory CFA example, with data from Tucker (1958). This

example was also analyzed with ML by Jöreskog (1969). There are nine variables, the first

four and the last five in two different test batteries.

t42 t54 t45 t46 t23 t24 t27 t10 t51
t42 1.000 0.554 0.227 0.189 0.461 0.506 0.408 0.280 0.241
t54 0.554 1.000 0.296 0.219 0.479 0.530 0.425 0.311 0.311
t45 0.227 0.296 1.000 0.769 0.237 0.243 0.304 0.718 0.730
t46 0.189 0.219 0.769 1.000 0.212 0.226 0.291 0.681 0.661
t23 0.461 0.479 0.237 0.212 1.000 0.520 0.514 0.313 0.245
t24 0.506 0.530 0.243 0.226 0.520 1.000 0.473 0.348 0.290
t27 0.408 0.425 0.304 0.291 0.514 0.473 1.000 0.374 0.306
t10 0.280 0.311 0.718 0.681 0.313 0.348 0.374 1.000 0.672
t51 0.241 0.311 0.730 0.661 0.245 0.290 0.306 0.672 1.000

Following earlier analysis we fit two general factors and two group factors, where the first

group factor has only four non-zero loadings and the second one has five non-zero loadings.

Algorithm B takes 2141 iterations to converge to loss 0.0016132. Since the ML solution in

Jöreskog (1969) is reported with two decimals precision we will do the same for the MDFA

solution (although we have computed the solution to more than six decimals precision). The

MDFA loadings are

[,1] [,2] [,3] [,4]
t42 -0.55 +0.45 -0.15 +0.00
t54 -0.60 +0.43 -0.21 +0.00
t45 -0.74 -0.51 -0.33 +0.00
t46 -0.69 -0.47 -0.08 +0.00
t23 -0.55 +0.35 +0.00 +0.37
t24 -0.60 +0.39 +0.00 +0.15
t27 -0.56 +0.21 +0.00 +0.35
t10 -0.76 -0.32 +0.00 +0.02
t51 -0.74 -0.34 +0.00 -0.12

and the uniquenesses are

[1] 0.47 0.41 0.09 0.31 0.44 0.46 0.51 0.32 0.32
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The ML solution, taken from Jöreskog (1969), has uniquenesses

[1] 0.48 0.41 0.09 0.31 0.44 0.46 0.52 0.32 0.32

and loadings

[,1] [,2] [,3] [,4]
[1,] +0.70 -0.12 +0.15 +0.00
[2,] +0.74 -0.08 +0.22 +0.00
[3,] +0.39 +0.81 +0.33 +0.00
[4,] +0.37 +0.75 +0.08 +0.00
[5,] +0.65 -0.03 +0.00 +0.37
[6,] +0.72 -0.05 +0.00 +0.15
[7,] +0.60 +0.09 +0.00 +0.35
[8,] +0.51 +0.65 +0.00 +0.02
[9,] +0.48 +0.67 +0.00 -0.12

We see that the uniquenesses and the loadings on the group factors are almost identical, but the

loadings on the two general factors look very different. But the loadings on the general factors

are only identified up to a rotation. If we rotate the MDFA solution to a maximum match with

the ML solution we find again an almost perfect correspondence. The rotated MDFA solution

is

[,1] [,2]
t42 +0.70 -0.12
t54 +0.73 -0.08
t45 +0.39 +0.80
t46 +0.37 +0.74
t23 +0.65 -0.03
t24 +0.72 -0.05
t27 +0.60 +0.09
t10 +0.51 +0.65
t51 +0.48 +0.67
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4.5 Cattell

This example uses the correlation matrix between 12 cognitive variables from Cattell (1963),

included in the psych package (Revelle (2025)). It illustrates fitting general and group factors

with correlated (oblique) factors.

Variables 1 and 2 measures verbal ability, 3 and 4 are spatial ability, 5 and 6 are reasoning, 7

and 8 are numerical ability. The first eight are from the Thurstone Primary Abilities test, and

the last four are from the (IPAT) Culture Fair Intelligence Test.

We apply Algorithm B with 6 factors: one general factor and five group factors. The projection

Π𝒜() copies all elements from the first column of 𝑋′𝐹, elements one and two from column

two, three and four from column three, five and six from column four, seven and eight from

column five, and nine to twelve from column six. All other elements of Π𝒜(𝑋′𝐹) are zero,
and Π𝒟(𝑋′𝐹) = diag(𝑋′𝐹) as usual.

Algorithm B uses 312 iterations to converge to loss 0.067063. The loadings are

[,1] [,2] [,3] [,4] [,5] [,6]
Verbal -0.638 +0.670 +0.000 +0.000 +0.000 +0.000
Verbal2 -0.642 +0.673 +0.000 +0.000 +0.000 +0.000
Space1 -0.464 +0.000 -0.754 +0.000 +0.000 +0.000
Space2 -0.438 +0.000 -0.772 +0.000 +0.000 +0.000
Reason1 -0.652 +0.000 +0.000 +0.589 +0.000 +0.000
Reason2 -0.642 +0.000 +0.000 +0.591 +0.000 +0.000
Number1 -0.543 +0.000 +0.000 +0.000 +0.728 +0.000
Number2 -0.493 +0.000 +0.000 +0.000 +0.704 +0.000
IPATSer -0.444 +0.000 +0.000 +0.000 +0.000 +0.391
IPATCLAS -0.399 +0.000 +0.000 +0.000 +0.000 +0.417
IPATMatr -0.538 +0.000 +0.000 +0.000 +0.000 +0.530
IPATTOP -0.389 +0.000 +0.000 +0.000 +0.000 +0.258

and the uniquenesses are

[1] 0.142 0.134 0.208 0.202 0.220 0.235 0.173 0.250 0.647 0.658 0.428 0.777

For this example we can also compare Algorithm B with Algorithm G. The two algorithms

give the same solution, with Algorithm G needing 67 function and 53 gradient evaluations. To

compare speeds we use the microbenchmark package (Mersmann (2024)).
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Unit: milliseconds
expr min lq mean

mdfaAlgorithmB(cattell, ctmat, cattellProjection) 10.10457 10.68433 12.14240
mdfaAlgorithmG(cattell, ctmat, catemp) 10.45976 10.90223 11.61316

median uq max neval
10.90274 12.49785 71.06091 100
11.05795 11.49084 14.90026 100

For this example there does not seem to be much difference, but there are several caveats. Both

algorithms use their default values. For Algorithm B this means a maximum of 1000 iterations

and a stop when the loss function changes less than 10−10 from one iteration to the next. For

Algorithm G the defaults are whatever the defaults of optim() are.

Rindskopf and Rose (1988) also compute a group factor analysis solution, but they allow for

correlations between the five group factors. It seems as if allowing for oblique factors means

that we replace the constraint 𝑌 ′𝑌 = 𝐼 by something more general. But instead we will
keep 𝑌 orthonormal and emulate oblique factors by suitable (non-linear) constraints on the

loadings. Allowing for otherwise arbitrary correlations between the five group factors amounts

to imposing the loadings structure

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎2 0 0 0 0
𝑎21 0 𝑎3 0 0 0
𝑎31 0 0 𝑎4 0 0
𝑎41 0 0 0 𝑎5 0
𝑎51 0 0 0 0 𝑎6

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 0
0 𝑟′

2
0 𝑟′

3
0 𝑟′

4
0 𝑟′

5
0 𝑟′

6

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎2𝑟′
2

𝑎21 𝑎3𝑟′
3

𝑎31 𝑎4𝑟′
4

𝑎41 𝑎5𝑟′
5

𝑎51 𝑎6𝑟′
6

⎤
⎥
⎥
⎥
⎦

The vectors 𝑟𝑗 are all of length five, 𝑎2, 𝑎3, 𝑎4, 𝑎5 are of length two, and 𝑎6 is of length four.
This shows that Π𝒜() copies the first column of 𝑋′𝐹 and computes five rank one approxima-

tions to the remaining blocks. This is not a linear projection, but one that is computationally

still easy if we use the SVD of each block.

Algorithm B with the nonlinear projections converges in 8225 iterations to loss 0.015236. The

loadings are

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.398 -0.838 +0.000 +0.000 +0.000 +0.000
[2,] -0.399 -0.838 +0.000 +0.000 +0.000 +0.000
[3,] -0.381 +0.000 -0.788 +0.000 +0.000 +0.000
[4,] -0.347 +0.000 -0.837 +0.000 +0.000 +0.000
[5,] -0.406 +0.000 +0.000 -0.813 +0.000 +0.000
[6,] -0.418 +0.000 +0.000 -0.740 +0.000 +0.000
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[7,] -0.353 +0.000 +0.000 +0.000 -0.752 +0.000
[8,] -0.233 +0.000 +0.000 +0.000 -0.928 +0.000
[9,] -0.526 +0.000 +0.000 +0.000 +0.000 +0.243

[10,] -0.506 +0.000 +0.000 +0.000 +0.000 +0.242
[11,] -0.972 +0.000 +0.000 +0.000 +0.000 -0.235
[12,] -0.413 +0.000 +0.000 +0.000 +0.000 +0.304

and the uniquenesses are

[1] 0.138 0.138 0.232 0.177 0.173 0.277 0.308 0.083 0.663 0.684 0.000 0.737

The correlations between the factors are

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] +1.000 +0.000 +0.000 +0.000 +0.000 +0.000
[2,] +0.000 +1.000 +0.224 +0.385 +0.313 -0.285
[3,] +0.000 +0.224 +1.000 +0.133 +0.105 -0.490
[4,] +0.000 +0.385 +0.133 +1.000 +0.428 -0.231
[5,] +0.000 +0.313 +0.105 +0.428 +1.000 -0.126
[6,] +0.000 -0.285 -0.490 -0.231 -0.126 +1.000

Our MDFA solution is very different from the ML solution reported by Rindskopf and Rose

(1988). They found a Heywood case for variable four, we found a Heywood case for variable

eleven. This discrepancy requires further analysis, but this paper is not the place for that.

Note that the correlation matrix recovered by MDFA is always positive semi-definite, because

it is of the form 𝑅𝑅′. Also, even in these nonlinear cases, MDFA will never find negative

uniquenesses, because the MDFA uniqueness are squares.

4.6 BFI

In this example we use the BFI data from the psych package (Revelle (2025)). There are 2800

subjects and 25 personality self report items. We use the impute() function from the e1071

package, with the mean option, to fill in the missing data (Meyer et al. (2024)). In this example

we can use mdfaAlgorithmA(), because the complete data matrix is available.

Algorithms A and B both require 61 iterations to arrive at the same solution with loss

0.1830771.
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Unit: milliseconds
expr min lq mean

mdfaAlgorithmA(bfi, bftold, verbose = FALSE) 423.74054 428.080200 447.205102
mdfaAlgorithmB(cfi, bftold, verbose = FALSE) 4.96756 5.213293 5.966972

median uq max neval
431.836682 476.891008 496.43534 100

5.277397 5.406567 54.13574 100

The median execution time, as measured by the microbenchmark package (Mersmann (2024)),

is 435.936128 milliseconds for Algorithm A and 5.39906 milliseconds for Algorithm B, which

is consequently about 80 times faster.
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5 Discussion

5.1 Statistical Considerations

𝑥𝑖𝑗 = 𝒩(𝜇𝑗 + ∑ 𝑓𝑖𝑠𝑎𝑗𝑠 + 𝑢𝑖𝑗𝑑𝑗, 𝑠2)

The consistency and asymptotic normality of the MDFA estimates has recently been studied

by Terada (2025).

Now define 𝐶 ∶= 𝑋′𝑋 and for any square symmetric T use the notation 𝜆𝑠(𝑇 ) for the ordered
eigenvalues of 𝑇. Define

𝜎(𝐴, 𝐶) ∶= tr 𝐶 + tr 𝐴′𝐴 − 2
𝑚

∑
𝑠=1

√𝜆𝑠(𝐴′𝐶𝐴)

Differentiate this with repect to 𝐴, assuming the eigenvalues are all different.

𝒟1𝜎(𝐴, 𝐶) = 2{𝐴 − 𝐶𝐴(𝐴′𝐶𝐴)− 1
2 }

Note that 𝒟1𝜎(𝐴, 𝐶) = 0 if 𝐶 = 𝐴𝐴′.

1. The minimizer 𝐴(𝐶) is a continuous function of 𝐶.

2. The minimizer 𝐴(𝐶) is a differentiable function of 𝐶.

3. 𝐶𝑛 converges weakly to Γ = 𝐴𝐴′.

4. 𝑛− 1
2 (𝐶𝑛 − Γ) is asymptotically normal.
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