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1 Introduction

Early in the history of computerized Multidimensional Scaling (MDS), between the seminal

contributions of Shepard/Kruskal and Guttman/Lingoes/Roskam, there was the “elastic method”

proposed by Victor E. McGee in a series of papers (McGee (1965), McGee (1966), McGee

(1967), McGee (1968)). The method has been largely forgotten, but it is worth remembering,

because it is different in some important aspects from the more well-known methods.

The least squares loss function in most MDSmethods (Borg and Groenen (2005)) can be written

as

𝜎(𝑋, Δ) ∶=
∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗𝛿2
𝑖𝑗

, (1)

where 𝑋 is the configuration of 𝑛 points in 𝑝 dimensions, 𝑑𝑖𝑗(𝑋) is the Euclidean distance

between points 𝑖 and 𝑗 in configuration 𝑋, 𝛿𝑖𝑗 is the dissimilarity between points 𝑖 and 𝑗, and
𝑤𝑖𝑗 is a weight. Weights are non-negative.

In the metric version of the MDS method the dissimilarities are observed and fixed, and mini-

mization is over configurations only. The denominator in (1) is irrelevant for the minimization

problem, but it normalizes the problem in the sense that the minimum of stress is between

zero and one. In the nonmetric version minimization is over both configurations and dissim-

ilarities, with the constraint that the dissimilarities are monotonic with an observed set of

dissimilarities.

It is true that in the original Kruskal formulation the denominator is the sum of the squared

distances instead. But De Leeuw (1975) shows that normalizing by using either the sum

of squared distances or the sum of squared dissimilarities leads to the same solution (up to

a scalar proportionality factor). The smacof program (De Leeuw and Mair (2009), Mair,

Groenen, and De Leeuw (2022)) minimizes the numerator of (1) over configurations and

dissimilarities, with the additional constraint that the sum of squares of the dissimilarities

is equal to a constant. Again, this explicit normalization gives the same solution, up to

proportionality, as the original Kruskal formulation that uses implicit normalization by dividing

by the sum of squared distances.

In McGee’s elastic method the loss is constructed to satisfy two requirements. The first one

is

Psychological judgments which indicated relatively great separation of stimuli

should be allowed greater error than judgments indicating close proximity (l.c.

p. 182)

And the second requirement is the basic MDS requirement that dimensionality of 𝑋 must as

low as possible, while still providing a good fit.
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A criterion which suggested itself in response to the first requirement was one

based on the physical work done on an elastic spring to stretch or compress it from

an initial length 𝛿𝑖𝑗 to a final length 𝑑𝑖𝑗. (l.c. p. 183)

This leads to the loss function

𝜎(𝑋, Δ) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

𝛿2
𝑖𝑗

, (2)

which McGee calls the loss in (2) work. We shall just call it stress (and elastic stress orMcGee

stress), using the more familiar MDS name for loss. We will also continue to use the symbol 𝜎
for any least squares MDS loss function.

The elastic MDS problem is minimization of stress over both 𝑋 and Δ, where Δ must be

monotone with the given dissimilarities. In (2) the weight 𝑤𝑖𝑗 is interpreted as the modulus of
elasticity of the spring (𝑖, 𝑗).

In McGee (1967) the alternative loss function

𝜎(𝑋, Δ) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

𝑑2
𝑖𝑗(𝑋)

, (3)

is proposed. Minimizing (3) seemsmore complicated, and wewill postpone studying algorithms

to minimize it. Thus we will work with (2) in this paper.

In McGee’s papers the actual algorithm and its implementation are not described in sufficient

detail. Part of the problem is that he is dealing exclusively with the nonmetric case, in which

minimization over both 𝑋 and Δ is necessary. In the metric case minimization is over 𝑋 only,

and the algorithm is much simpler.
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2 Properties

If we compare (1) and (2) we see one important difference. The normalization in (1) is by the

sum of squared dissimilarities, while the normalization in (2) is term-by-term, by the squared

dissimilarities themselves. An alternative way of writing the elastic loss function makes this

more clear.

𝜎(𝑋, Δ) ∶= ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗 (1 −
𝑑𝑖𝑗(𝑋)

𝛿𝑖𝑗
)

2

(4)

Thus we see that instead of minimizing the difference of dissimilarities and distances from zero

the elastic method minimizes the deviations of their ratios from one.

If 𝛿𝑖𝑗 is multiplied by a positive constant, then so is the optimum configuration 𝑋 and the

𝐷(𝑋). As a consequence, the minimum of elastic stress does not change, i.e. is homogeneous

of degree zero in the dissimilarities.

It is clear from (4) that the loss function is undefined if one or more of the dissimilarities are

zero. If one of the distances is zero, then the corresponding term in the loss function is equal

to the corresponding weight, irrespective of what the corresponding dissimilarity is. Thus the

minimum of elastic stress is always less than or equal to the sum of the weights, its value at

𝑋 = 0.

If 𝛿𝑖𝑗 and 𝑑𝑖𝑗(𝑋) are non-zero and close then a first order Taylor series expansion gives

log 𝑑𝑖𝑗(𝑋) − log 𝛿𝑖𝑗 ≈ 1
𝛿𝑖𝑗

(𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗), (5)

from which it follows that

𝜎(𝑋, Δ) ≈ ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗(log 𝛿𝑖𝑗 − log 𝑑𝑖𝑗(𝑋))2. (6)

If the fit is good the elastic stress will be approximately equal to the logarithmic stress from

Ramsay (1977). Or, to put it differently, minimizing elastic stress can serve as an approximation

to minimizing logarithmic stress.
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3 Algorithm

In this paper we will give an iterative algorithm for minimizing loss from (2) in the metric an

non-metric (ordinal) case. A majorization algorithm for the metric case is already available in

the smacofx package (Rusch et al. (2025)). Our new non-metric algorithm is in the alternating

least squares family, which means we alternate minimizing over 𝑋 for fixed Δ and over Δ for

fixed 𝑋.

We will start our iterations with the classical metric solution (Torgerson (1958)) for Δ. We

actually scale that solution by minimizing

𝜎(𝜆) ∶=
𝑚

∑
𝑘=1

𝑤𝑘
𝛿2

𝑘
(𝛿𝑘 − 𝜆𝑑𝑘(𝑋))2 (7)

over 𝜆. The minimum is attained at

𝜆̂ ∶=
∑𝑚

𝑘=1
𝑤𝑘
𝛿𝑘

𝑑𝑘(𝑋)
∑𝑚

𝑘=1
𝑤𝑘
𝛿2

𝑘
𝑑2

𝑘(𝑋)
. (8)

In iteration 𝑘 we perform one majorization step to replace 𝑋(𝑘) by 𝑋(𝑘+1) to improve loss for
fixed Δ(𝑘) and one monotone regression step to replace Δ(𝑘) by Δ(𝑘+1) for fixed 𝑋(𝑘+1).

To minimize (2) over 𝑋 for fixed Δ we rewrite loss as

𝜎(𝑋, Δ) = ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗

𝛿2
𝑖𝑗

(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2. (9)

This can be minimized (or decreased) by using the standard smacof majorization step with the

weights 𝑤𝑖𝑗/𝛿2
𝑖𝑗.

To minimize over Δ for given 𝑋 we define 𝛾𝑖𝑗 ∶= −𝛿−1
𝑖𝑗 abd 𝑐𝑖𝑗(𝑋) ∶= −𝑑−1

𝑖𝑗 (𝑋). Rewrite
loss as

𝜎(𝑋, Γ) = ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗𝑑2
𝑖𝑗(𝑋)(𝛾𝑖𝑗 − 𝑐𝑖𝑗(𝑋))2, (10)

which we must minimize over increasing 𝛾𝑖𝑗. This is just monotone regression with the 𝑐𝑖𝑗(𝑋)
as the targets and with weights 𝑤𝑖𝑗𝑑2

𝑖𝑗(𝑋). After we have found the optimal ̂𝛾𝑖𝑗 we transform

back to ̂𝛿𝑖𝑗 = − ̂𝛾−1
𝑖𝑗 .
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4 Examples

We start with a simple artificial example to illustrate our iterations. Suppose

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 1 2 3 4 5
[2,] 1 0 6 7 8 9
[3,] 2 6 0 10 11 12
[4,] 3 7 10 0 13 14
[5,] 4 8 11 13 0 15
[6,] 5 9 12 14 15 0

Moreover all weights are equal to one. The Torgerson solution in two dimensions is

[,1] [,2]
[1,] 0.2189030 -0.2977892
[2,] -0.2069156 0.2069172
[3,] -0.7627856 1.0397322
[4,] -2.0514988 6.7680097
[5,] -5.8874415 -5.6144769
[6,] 8.6897386 -2.1023931

and the distances 𝑑(𝑋) for this solution are

1 2 3 4 5
2 0.6603408
3 1.6591190 1.0012853
4 7.4216061 6.8154546 5.8714517
5 8.0965802 8.1336956 8.3988450 12.9630410
6 8.6609267 9.1914836 9.9610825 13.9304783 14.9942960

and stress is 26.6531626.

If we apply the scaling from … and … we find 𝜆̂ equal to 0.3889323 and a stress value of

5.8259173.

We now make a majorization step. The configuration becomes

6



[,1] [,2]
[1,] 0.1503740 -0.2690647
[2,] -0.3926772 0.3529975
[3,] -1.1967821 1.5863548
[4,] -1.2320447 4.1405188
[5,] -4.1596387 -4.0936940
[6,] 6.8307688 -1.7171126

with elastic stress 2.6002809.

o <- order(delta)
print(o)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

print(d)

1 2 3 4 5
2 0.8257517
3 2.2929045 1.4723298
4 4.6212020 3.8794144 2.5544074
5 5.7622911 5.8277839 6.4063620 8.7391686
6 6.8355334 7.5142216 8.6806953 9.9659825 11.2444296

y <- 1 / d[o]
omat <- cbind(2:15,1:14)
print(omat)

[,1] [,2]
[1,] 2 1
[2,] 3 2
[3,] 4 3
[4,] 5 4
[5,] 6 5
[6,] 7 6
[7,] 8 7
[8,] 9 8
[9,] 10 9
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[10,] 11 10
[11,] 12 11
[12,] 13 12
[13,] 14 13
[14,] 15 14

w <- d[o]^2
idel <- activeSet(omat, lsSolver, weights = w, y = y)
dhat <- 1 / idel$x
plot(delta, dhat)

2 4 6 8 10 12 14

2
4

6
8

10

delta

dh
at

r <- d / dhat
s <- sum((1 - r)^2)
print(s)

[1] 1.074024

Unit: milliseconds expr min lq mean median uq smacofSSElasticR(morseData, ordinal =

FALSE, verbose = FALSE) 106.137110 108.788006 114.907009 109.952508 111.618687 sma-

cofSSElasticC(morseData, ordinal = FALSE, verbose = FALSE) 6.183292 6.481526 6.539732

6.542575 6.614325 smacofSSElasticR(morseData, ordinal = TRUE, verbose = FALSE)

709.953376 720.502860 738.153851 728.890579 751.493530 smacofSSElasticC(morseData,

ordinal = TRUE, verbose = FALSE) 6.684804 6.952637 7.041597 7.018318 7.134574 max

neval 189.327053 100 6.714078 100 883.220729 100 9.207616 100
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