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1 Sammon Loss

In engineering and computer science Sammon mapping is a popular multidimensional scaling

(MDS) method. The technique was introduced in Sammon Jr (1969). It was originally intended

to map points from a higher-dimensional Euclidean space into points in a lower-dimensional

Euclidean space by approximating the given higher dimensional distances by best-fitting lower

dimensional ones. The MASS package for R implemented the sammon() function, which

generalizes the original idea by allowing the higher-dimensional distances to be replaced by

any positive symmetric matrix of dissimilarities. This was again generalized in the packages

stops (Rusch, Mair, and Hornik (2023)) and smacofx (Rusch et al. (2025)) where optimization

is over low-dimensional configations and over power transforms of the dissimilarities.

The Sammon loss function is

𝜎(𝑋, Δ) = 1
∑ ∑1≤𝑖<𝑗≤𝑛 𝑤𝑖𝑗𝛿𝑖𝑗

∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
(𝛿𝑖𝑗 − 𝑑𝑖𝑗(𝑋))2

𝛿𝑖𝑗
. (1)

Without loss of generality we assume the weights 𝑤𝑖𝑗 add up to one.

In metric (ratio) MDS we minimize over 𝑋 for fixed Δ. This is a standard metric scaling

problem with weights 𝑤𝑖𝑗𝛿−1
𝑖𝑗 . We use majorization steps to decrease loss. This is identical to

the ratio sammon option in smacofx. In the non-metric case we use alternating least squares,

i.e. we alternate majorization steps with minimizing over Δ, satisfying the ordinal constraints,

for fixed 𝑋. As far as I know this has not been implemented before, and is somewhat non-

standard. First, use the fact that 𝜎(𝜆𝑋, 𝜆Δ) = 𝜎(𝑋, Δ)

min
𝑋

𝜎(𝑋, Δ) = min
𝑋

𝜎(𝑋, 𝜆Δ), (2)

i.e. the problem is homogeneous of degree zero in Δ. Thus we can require without loss of

generality that

∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗𝛿𝑖𝑗 = 1. (3)

With this normalization we have

𝜎(𝑋, Δ) = 1 − 2 ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗𝑑𝑖𝑗(𝑋) + ∑ ∑
1≤𝑖<𝑗≤𝑛

𝑤𝑖𝑗
𝑑2

𝑖𝑗(𝑋)
𝛿𝑖𝑗

(4)

Thus minimizing𝜔 for fixed𝑋 over non-negative, isotone and normalizedΔmeans minimizing

the third term on the right. And this means minimizing a separable, differentiable, and strictly

convex function over a polyhedral convex set.
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2 PAVA for Sammon

Define the extended real valued function 𝑓 equal to

𝑓(𝑥) ∶=
𝑛

∑
𝑖=1

𝑤𝑖
𝑦𝑖
𝑥𝑖

(5)

if 𝑥𝑖 > 0 for all 𝑖, and to +∞ otherwise. Thus the effective domain dom(𝑓) is the interior of
the positive orthant.

Problem 𝔓 is defined as minimization of 𝑓 over the intersection of the polyhedral convex cone

𝒦 defined by 0 < 𝑥1 ≤ ⋯ ≤ 𝑥𝑛 and the affine set 𝒜 defined by 𝑤′𝑥 = 1. We assume that

all 𝑤𝑖 and all 𝑦𝑖 are positive, and that the 𝑤𝑖 add up to one. In the context of Sammon mapping

the 𝑦𝑖 are squared distances and the 𝑥𝑖 are the transformed dissimilarities.

The first and second partials of 𝑓 are

𝒟𝑖𝑓(𝑥) = −𝑤𝑖
𝑦𝑖
𝑥2

𝑖
, (6)

𝒟𝑖𝑖𝑓(𝑥) = 2𝑤𝑖
𝑦𝑖
𝑥3

𝑖
, (7)

and 𝒟𝑖𝑘𝑓(𝑥) = 0 if 𝑖 ≠ 𝑘. This shows 𝑓 is convex and twice differentiable on dom(𝑓), and
thus on 𝒦 ∩ 𝒜.

First some preliminary results.

Lemma 2.1.

min
𝑥∈𝒦∩𝒜

𝑓(𝑥) ≤ 𝑤′𝑦 (8)

Proof. The vector 𝑥 with 𝑥𝑖 = 1 for all 𝑖 is in 𝒦 ∩ 𝒜.

It follows from Lemma 2.1 that we can add the constraint 𝑓(𝑥) ≤ 𝑤′𝑦 to the minimization

problem and still have the same minimum and minimizer.

Lemma 2.2. Suppose 𝑦1 ≤ ⋯ ≤ 𝑦𝑛. Then

𝑥𝑖 =
√𝑦𝑖

∑𝑛
𝑘=1 𝑤𝑘

√𝑦𝑘
. (9)
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Proof. The necessary conditions for a minimum of 𝑓 on 𝒜 are

−𝑤𝑖
𝑦𝑖
𝑥2

𝑖
= 𝜆𝑤𝑖, (10)

for all 𝑖, together with the side condition 𝑤′𝑥 = 1. From (10) it follows that the solution 𝑥
must be proportional to

√𝑦, where the square root can have either sign. Of the 2𝑛 solutions

only one is in the effective domain of 𝑓, the one for which all all square roots are taken with a
positive sign. This solution is also in 𝒦. Applying the side condition gives (9).

The next rather trivial lemma deals with the case 𝑛 = 1, in which 𝑤, 𝑥 and 𝑦 are one-element

vectors, which identify with the corresponding scalars.

Lemma 2.3. If 𝑛 = 1 then the minimizer 𝑥 is equal to one and the minimum is 𝑦.

Proof. 𝑤 adds up to one, so 𝑤 = 1. Also 𝑤𝑥 must be one, so 𝑥 = 1.

The following theorem is of prime importance, because it shows problem 𝔓 can be solved with

a with a variation of the Pool Adjacent Violaters Algorithm (PAVA). For the details on PAVA,

see for example De Leeuw, Hornik, and Mair (2009).

Theorem 2.1. Suppose 𝑥 is the optimum solution. If 𝑦𝑖 ≥ 𝑦𝑖+1 then 𝑥𝑖 = 𝑥𝑖+1.

Proof. We show that 𝑦𝑖 ≥ 𝑦𝑖+1 and 𝑥𝑖 < 𝑥𝑖+1 leads to a contradiction. A necessary and

sufficient condition for 𝑥 to be the optimum solution is

(𝑥 − 𝑥)′𝒟𝑓(𝑥) = −
𝑛

∑
𝑖=1

𝑤𝑖
𝑦𝑖
𝑥2

𝑖
(𝑥𝑖 − 𝑥𝑖) = 𝑓(𝑥) −

𝑛
∑
𝑖=1

𝑤𝑖
𝑦𝑖
𝑥2

𝑖
𝑥𝑖 ≥ 0 (11)

for all 𝑥 ∈ 𝒦 ∩ 𝒜 (Hiriart-Urruty and Lemaréchal (1993), Theorem 1.1.1, page 293).

Now suppose 𝑥𝑖 < 𝑥𝑖+1. Then for 𝜖 > 0 small enough

𝑧 = 𝑥 + 𝜖 ( 𝑒𝑖
𝑤𝑖

−
𝑒𝑖+1
𝑤𝑖+1

) (12)

is also in 𝒦 ∩ 𝒜. In (12) we add a small amount to 𝑥𝑖 and subtract a small amount from 𝑥𝑖+1,
while leaving all other elements of 𝑥 unperturbed. Since

𝑛
∑
𝑖=1

𝑤𝑖
𝑦𝑖
𝑥2

𝑖
𝑧𝑖 = 𝑓(𝑥) + 𝜖 ( 𝑦𝑖

𝑥2
𝑖

−
𝑦𝑖+1
𝑥2

𝑖+1
) (13)
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we must have 𝑦𝑖
𝑥2

𝑖
≤

𝑦𝑖+1
𝑥2

𝑖+1
(14)

But 𝑦𝑖 ≥ 𝑦𝑖+1 and 𝑥𝑖 < 𝑥𝑖+1 implies

𝑦𝑖
𝑥2

𝑖
>

𝑦𝑖+1
𝑥2

𝑖+1
(15)

and thus 𝑥 cannot be the optimal solution.

Theorem 2.1 can be used to replace problem 𝔓 of size 𝑛 with a problem 𝔓̃of the same type,

but of size 𝑛 − 1. If 𝑦𝑖 ≥ 𝑦𝑖+1 we remove these two 𝑦-values and put the single value

̃𝑦𝑖 ∶=
𝑤𝑖𝑦𝑖 + 𝑤𝑖+1𝑦𝑖+1

𝑤𝑖 + 𝑤𝑖+1

in their place. This new value gets the weight 𝑤̃𝑖 ∶= 𝑤𝑖 + 𝑤𝑖+1.

Theorem 2.2. Suppose ̂𝑥 solves the monotone regression problem for the weighted least squares

norm

̂𝑥 ∶= argmin
𝑥1≤⋯≤𝑥𝑛

(𝑥 − 𝑦)′𝑊(𝑥 − 𝑦)

then

𝑥𝑖 =
√ ̂𝑥𝑖

∑𝑛
𝑘=1 𝑤𝑘√ ̂𝑥𝑘

solves problem 𝔓.

Proof. We use Theorem 2.1 repeatedly until we have a problem 𝔓 of size 𝑟 for which ̃𝑦1 <
⋯ < ̃𝑦𝑟. We can use the same sequence of pooling adjacent violators as in least squares

monotone regression, and we find the same weighted average pooled values in each step. When

we have reduced the problem to a strictly increasing ̃𝑦 sequence we apply Lemma 2.2 (and if

𝑟 = 1 we apply Lemma 2.3). We then expand each block again to a length equal to the number

of averaged elements.

A small example illustrates the PAVA variationb. Start with 𝑦 equal to (1, 2, 3, 1, 2, 3, 5, 1)
and 𝑤 equal to (1, 1, 1, 1, 1, 1, 1, 1). Merge elements 3 and 4 to get 𝑦 = (1, 2, 2, 2, 3, 5, 1)
and 𝑤 = (1, 1, 2, 1, 1, 1, 1). Now merge elements 2, 3, and 4 to get 𝑦 = (1, 2, 3, 5, 1) and
𝑤 = (1, 4, 1, 1, 1). Merge 4 and 5 to get 𝑦 = (1, 2, 3, 3) and 𝑤 = (1, 4, 1, 2) and finally

merge 3 and 4 to get 𝑦 = (1, 2, 3) and 𝑤 = (1, 4, 3). Thus

𝑥 = 1
1 + 4

√
2 + 3

√
3

(1,
√

2,
√

2,
√

2,
√

2,
√

3,
√

3,
√

3)

5



References

De Leeuw, Jan, Kurt Hornik, and Patrick Mair. 2009. “Isotone Optimization in R: Pool-

Adjacent-Violators Algorithm (PAVA) and Active Set Methods.” Journal of Statistical

Software 32 (5): 1–24.

Hiriart-Urruty, Jean-Baptiste, and Claude Lemaréchal. 1993. Convex Analysiis and Minimiza-

tion Algorithms Volume 1: Fundamentals. Springer.

Rusch, Thomas, Jan de Leeuw, Lisha Chen, and Patrick Mair. 2025. Smacofx: Flexible Multi-

dimensional Scaling and ’Smacof’Extensions. https://doi.org/10.32614/CRAN.package.

smacofx.

Rusch, Thomas, Patrick Mair, and Kurt Hornik. 2023. “Structure-Based Hyperparameter Selec-

tion with Bayesian Optimization in Multidimensional Scaling.” Statistics and Computing

33 (28): 1–18.

Sammon Jr, John W. 1969. “A Nonlinear Mapping for Data Structure Analysis.” IEEE

Transacttions on Computers C-18 (5).

6

https://doi.org/10.32614/CRAN.package.smacofx
https://doi.org/10.32614/CRAN.package.smacofx

	Sammon Loss
	PAVA for Sammon
	References

