Nonmetric Sammon Mapping

Jan de Leeuw

November 19, 2025

TBD

Table of contents

1 Sammon Loss 2
2 PAVA for Sammon 3
References 6

Note: This is a working manuscript which will be expanded/updated frequently. All suggestions
for improvement are welcome. All Rmd, tex, html, pdf, R, and C files are in the public
domain. Attribution will be appreciated, but is not required. The files can be found at https:
//github.com/deleeuw/sammon


https://github.com/deleeuw/sammon
https://github.com/deleeuw/sammon

1 Sammon Loss

In engineering and computer science Sammon mapping is a popular multidimensional scaling
(MDS) method. The technique was introduced in Sammon Jr (1969). It was originally intended
to map points from a higher-dimensional Euclidean space into points in a lower-dimensional
Euclidean space by approximating the given higher dimensional distances by best-fitting lower
dimensional ones. The MASS package for R implemented the sammon() function, which
generalizes the original idea by allowing the higher-dimensional distances to be replaced by
any positive symmetric matrix of dissimilarities. This was again generalized in the packages
stops (Rusch, Mair, and Hornik (2023)) and smacofx (Rusch et al. (2025)) where optimization
is over low-dimensional configations and over power transforms of the dissimilarities.

The Sammon loss function is

5 —
o(X,A) = L ZZwij(”

Z Zl§i<j§n wij‘sij 1<i<j<n tj

d;;(X))?
5 : (1)

Without loss of generality we assume the weights w;,; add up to one.

In metric (ratio) MDS we minimize over X for fixed A. This is a standard metric scaling
problem with weights w; jéi_jl. We use majorization steps to decrease loss. This is identical to
the ratio sammon option in smacofx. In the non-metric case we use alternating least squares,
i.e. we alternate majorization steps with minimizing over A, satisfying the ordinal constraints,
for fixed X. As far as I know this has not been implemented before, and is somewhat non-
standard. First, use the fact that o(AX, AA) = o(X, A)

ino(X,A) =mino(X, A 2
min (X, A) = mins(X, AA), )
i.e. the problem is homogeneous of degree zero in A. Thus we can require without loss of
generality that
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With this normalization we have
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Thus minimizing w for fixed X over non-negative, isotone and normalized A means minimizing
the third term on the right. And this means minimizing a separable, differentiable, and strictly
convex function over a polyhedral convex set.



2 PAVA for Sammon

Define the extended real valued function f equal to
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if z; > 0 for all 7, and to 400 otherwise. Thus the effective domain dom( f) is the interior of
the positive orthant.

Problem ‘3 is defined as minimization of f over the intersection of the polyhedral convex cone
X defined by 0 < z; < --- < x,, and the affine set A defined by w’x = 1. We assume that
all w; and all y, are positive, and that the w, add up to one. In the context of Sammon mapping
the y, are squared distances and the x; are the transformed dissimilarities.

The first and second partials of f are

D, f(x) = —w, 2%, (6)
D f(x) = 2w¢y—§,, (7)

and D, f(x) = 0if i # k. This shows f is convex and twice differentiable on dom( f), and
thus on X' N A.

First some preliminary results.

Lemma 2.1.
. < 2
min f(z) < w'y ®)
Proof. The vector x with z; = 1 forall ¢ is in X N A. O

It follows from Lemma 2.1 that we can add the constraint f(x) < w’y to the minimization
problem and still have the same minimum and minimizer.

Lemma 2.2. Suppose y; < - < vy,,. Then
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Proof. The necessary conditions for a minimum of f on A are
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for all 7, together with the side condition w’x = 1. From (10) it follows that the solution Z
must be proportional to ,/y, where the square root can have either sign. Of the 2" solutions
only one is in the effective domain of f, the one for which all all square roots are taken with a
positive sign. This solution is also in K. Applying the side condition gives (9). ]

The next rather trivial lemma deals with the case n = 1, in which w, z and y are one-element
vectors, which identify with the corresponding scalars.

Lemma 2.3. Ifn = 1 then the minimizer T is equal to one and the minimum is .
Proof. w adds up to one, so w = 1. Also wx must be one, so T = 1. [l
The following theorem is of prime importance, because it shows problem ‘33 can be solved with

a with a variation of the Pool Adjacent Violaters Algorithm (PAVA). For the details on PAVA,
see for example De Leeuw, Hornik, and Mair (2009).

Theorem 2.1. Suppose T is the optimum solution. If y, > vy, | thenT; = T; ;.

Proof. We show that y, > y,;,; and T; < T, leads to a contradiction. A necessary and
sufficient condition for & to be the optimum solution is
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for all x € X N A (Hiriart-Urruty and Lemaréchal (1993), Theorem 1.1.1, page 293).

Now suppose T; < T, ;. Then for € > 0 small enough

z:fﬂ(ﬁ—ei—“) (12)
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is also in X" N A. In (12) we add a small amount to &, and subtract a small amount from 7, ;,
while leaving all other elements of = unperturbed. Since
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we must have

% < B (14)
Ty T

Buty, > y,,; and T, < T, ; implies
% > din (15)
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and thus @ cannot be the optimal solution. =

Theorem 2.1 can be used to replace problem ‘3 of size n with a problem ‘i?of the same type,
but of size n — 1. If y; > v;,; we remove these two y-values and put the single value
& Wil + Wi1Yit1
' W; + Wiy

in their place. This new value gets the weight @, := w; + w;_ ;.

Theorem 2.2. Suppose T solves the monotone regression problem for the weighted least squares
norm

~

T = argmin (x —y)'W(x —y)
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then
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solves problem 3.

Proof. We use Theorem 2.1 repeatedly until we have a problem B of size r for which 3; <
-+ < ¥,.. We can use the same sequence of pooling adjacent violators as in least squares
monotone regression, and we find the same weighted average pooled values in each step. When
we have reduced the problem to a strictly increasing 7 sequence we apply Lemma 2.2 (and if
r = 1 we apply Lemma 2.3). We then expand each block again to a length equal to the number
of averaged elements. O

and w = (1,1,2,1,1,1,1). Now merge elements 2, 3, and 4 to get y = (1,2
w = (1,4,1,1,1). Merge 4 and 5 to gety = (1,2,3,3) and w = (1,4,1,2
merge 3 and 4 to get y = (1,2,3) and w = (1,4, 3). Thus

(1,V2,V2,V2,v2,v/3,V/3,V3)

T =

1
1+4vV2+3V3
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