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Inverse Multidimensional Scaling

Jan de Leeuw Patrick J. F. Groenen

University of California at Los Angeles Leiden University

Abstract: For metric multidimensional scaling much attention is given to algo-
rithms for computing the configuration for fixed dissimilarities. Here we study the
inverse problem: what is the set of dissimilarity matrices that yield a given
configuration as a stationary point? Characterizations of this set are given for sta-
tionary points, local minima, and for full-dimensional scaling. A method for com-
puting the inverse map for stationary points is presented along with several exam-
ples.
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1. Introduction

The data in a typical multidimensional scaling (MDS) situation are an
n X n matrix A = {9;;} of dissimilarities between n objects. The dissimilari-
ties are supposed to give imprecise and/or incomplete information about the
distances among the n objects in some metric space <X,d>. In general
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terms, the problem is to embed the objects as points in the space in such a
way that the distances between the pairs of points approximate the dissimilar-
ities between distinct pairs of the objects. There are still many variations pos-
sible on this theme (cf. De Leeuw and Heiser 1980). In this paper we restrict
our attention to Euclidean scaling, in which <X,d> is a finite-dimensional
Euclidean space.

We develop some notation for the Euclidean case. Suppose X contains
the coordinates of » points in p dimensions. The # X p matrix X is called a
configuration. We write R™? for the space of centered configurations (in
which each column of X sums to zero), and we write d;;(X) (or d;; for short)
for the Euclidean distance between points i and j.

The basic problem we discuss in this paper is the Metric Multidimen-
sional Scaling or MMDS problem. In MMDS we want to find X e R? so
that the loss function

o(X,W,A) &

n n
% > 21 w;i(8;; — di (X)) (1.1)
is minimized over X. We suppose that the weights w;; and dissimilarities 9;;
are nonnegative. Following Kruskal (1964a, 1964b) we call o(X,W,A) the
STRESS of a configuration (for given W and A). (Actually, Kruskal uses the
square-root of (1.1), to simplify the interpretation of numerical STRESS
values.)

We can suppose, without loss of generality, that dissimilarities and
weights are symmetric and have zero diagonal, because it is possible to parti-
tion STRESS in such a way that the asymmetric and diagonal parts end up in
additive components that do not depend on the configuration (see De Leeuw
1977). Write H”* for the space of symmetric, nonnegative matrices with
zero diagonal.

The MMDS problem can be made more specific. To do so, we have to
distinguish between global minima and local minima.

* A configuration X corresponds with a global minimum of STRESS if
o(X,W,A) £o(X,W,A) for all X e R,

¢ A configuration X corresponds with a local minimum of STRESS if
there is a neighborhood NcR™P of X such that
X, WA)<o(X,W,A)forall X e N.

It was realized quite early (Kruskal 1964b, p. 118-119) that MMDS has
multiple local minima. If those local minima were unique, there would be no
reason to distinguish local minima from global minima in the first place, but
all indications (De Leeuw 1993; Groenen 1993) are that most MMDS prob-
lems have a host of different local minima. To describe this situation
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mathematically, we define the (set-valued) maps, on H™ x H™*,
Xiocat(W,A) 4 {X € R™® | 6(X,W,A) has a local minimum at X} ; (1.2)
Xgioba (W,A) 4 {X e R™? | 6(X,W,A) has a global minimum at X} . (1.3)

The first map, the local minimum map, associates with each pair (A, W) the
configurations that are local minima; the second map does the same with the
global minima. MMDS can be defined as the technique that studies these
local and global minimum maps. Any MDS technique is a configuration-
valued function that maps data (W,A) into R™?, which means that it imple-
ments a particular selection from the minimum-maps. It can be argued that
we are really only interested in global minima. Some global minimization
techniques for MMDS are discussed by Groenen (1993), notably the tunnel-
ing method (see also Groenen and Heiser, 1996). However, the problems
connected with the global minimum map have received little attention so far,
except in the special case of unidimensional scaling (Hubert and Arabie
1986). Thus, we concentrate here on the local minimum map, which has been
studies in much greater detail, and is a much simpler object. But it helps to
think of the local minimum map as an approximation of the global minimum
map. In fact, global minimum algorithms that use multiple random starts use
the representation

Xgiopat(W.A) = {X € R | 6(X,W,A)  6(X,W,A)
for all X € Xppoqr(W,A)} . (1.4)

In this paper we focus on the local minimum map for MMDS and glo-
bal minimum map for full-dimensional MMDS. In particular, we consider the
inverse MMDS problem, that is, we specify the set of dissimilarity matrices
that have the fixed configuration X as stationary point and the smaller sets for
which X is a local minimum and a global minimum. Moreover, we discuss
how some of these sets can be computed and give their formal properties.
The size of these sets indicates the uniqueness of A for a given X. If the set is
small then the configuration describes A reliably. Conversely, if the set is
large, then X is an unreliable presentation of A, since many other A have X as
stationary point. We start by describing the maps in more detail.

2. Using Differentiability

To study the local minimum map we translate some standard results
into our notation. Let

Xaigr (W,A) 4 {X € R”? | 6(X,W,A) is differentiable at X} . 2.1)
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De Leeuw (1984) has shown that if the weights and dissimilarities are nonne-
gative as assumed above, then

Xiocat(W,A) € Xg;/(W,A) . 2.2)
But this means that if
Kocaionary Wo) & (X & 7 | SOEIA) ) @3
then
Xiocal(W,A) € Xsationary(W,4) . 24

Most MMDS algorithms use gradient or subgradient type methods to
find a configuration in Xyuonary (W,A), and then hope it will also be in
Xoca (W,A). This is not necessarily true, of course. We can have vanishing
partials in saddle points as well (De Leeuw (1993) shows that STRESS has no
local maxima). Actually, we have to be a bit more precise here. The MMDS
algorithms look for configurations with

|[2oXWA) . @.5)
X

for some small £ > 0. If we are in a region where the STRESS is very flat, we
still could be a long way from the nearest local minimum (or saddle point).
This possibility makes it necessary to look at the second derivatives of
STRESS as well.

The second partials make it possible to make (2.4) more precise. We
define the regions where the Hessian is nonnegative definite, and where it is
positive definite. We write them as

2

Xnne—hes(W’A) é {X € Rnxp | a Ga);yV’A ZO} 5 (2.6)
2

XPOS—hes(W9A) é {Xe R™ | : G;;;;V’A > 0}.

It follows that
Xpos —hes (W, A) N Xstationary (W’ A) o Xlocal (W,A)
- Xnne —hes (W7 A) M Xstationary (w, A) . (28)

This formalization just says that a necessary condition for a configuration to
be a local minimum is that the partials vanish and the Hessian is nonnegative
definite; a sufficient condition is that the partials vanish and the Hessian is
positive definite. Let



Inverse Multidimensional Scaling 7

Xi-tocat (W) 2 Xpos s (Wo) O Xetatonary (WoA) 29
A
Xiu—tocat (W) = Xpne —pes(W,A) N Xstationary (W,4). (2.10)

Then, instead of studying Xj,., directly, we can study Xousionary O Xi—tocal
and X, _j,cq- These maps are far from simple. De Lecuw (1993) has shown
that STRESS has local minima, sharp ridges, and other irregularities. There
seems to be no obvious relationship among the different local minima, and
there are no systematic results on the number of local minima. To compute
the map, or a selection from the map, we need complicated iterative algo-
rithms, perhaps with multiple random starts. Some results are available for
very special cases, such as unidimensional scaling and full-dimensional scal-
ing (cf. below), but for 1 < p <n — 1 almost nothing is known.

3. Inverse Metric Multidimensional Scaling

To understand the mappings Xasionary » Xi-locar a0d X, _jocqr @ bit better,
we look at their inverses. Thus, instead of finding the configurations which
are optimal for a given set of weights and dissimilarities, we now look at the
weights and dissimilarities for which a given configuration is optimal. One
reason is that the inverse maps turn out to be comparatively simple. And by
studying them in detail, we learn much about the maps themselves. There is a
useful analogy. In an eigenvalue problem we compute the eigenvectors of a
given matrix, in an inverse eigenvalue problem we compute matrices of
which a given orthogonal system is a matrix of eigenvectors. MMDS is quite
close to an eigenvalue problem in various aspects (De Leeuw 1977), but ver-
sions of MMDS that use S-STRESS or STRAIN are even more like eigen-
value problems. The inverse MMDS problem for S-STRESS is discussed in
Groenen, De Leeuw, and Mathar (1996).

For the present, we restrict ourselves to configurations X which have
d;; > O for all i #j. Since we are interested in local minima, this restriction
causes no real loss of generality (De Leeuw 1984). The inverse of Xgasionary »
for instance, is defined as

Sationary(X) & {W e H™™ Ae H™ | am;,;v,A =0}. @1

Inverses for the other maps are defined in the same way, but we analyze only
the partial-map in this section. To do so efficiently, we also define

Xt (XW) 2 (Ae H | a—"%’iw =0}, (3.2)

stationary

This formalism is just the set of dissimilarity matrices for which X is station-
ary for given W. For our computations, we also need an orthonormal



8 J. de Leeuw and P.J.F. Groenen

column-centered matrix K, of dimensions n X (n — r — 1), such that K'X = 0,
where r a rank (X). Hence, the columns of K and the vector of ones span the
null space of X.

Because d o(X,W,A)/0X is used often in this paper, we give a con-
venient representation here, using the notation familiar from such earlier
papers as De Leeuw and Heiser (1980), De Lecuw (1988), and Groenen et al.
(1996). Let X, be column s (s =1, ...,p) of X. Then, the squared Euclidean
distance can be written as

2X) = (5 —x5)2 = 3 X',(e; —€)(e; — &)
dtj(x)—Z(xzs 'x_]S) _Exs(et _ej)(el e]) Xs

s=1 s=1

= tI'X’A,JX s (33)

where
A .
Ajj=(e;—ej)e —e)), 34

and with e; the unit column vectors of R”. Hence, the partials of the squared
Euclidean distance are

IdEX) JuXA X
X ~ oX
Using both the standard rules for differentiation and (3.5), the partials of
STRESS for differentiable X are

=2A;X. (3.5

do(X,W,A AR 0;j
== 2w [1- A;iX. 3.6
oX i=1 ,'Z=1 Y [ d;X) | 46
Theorem 3.1 (Inverse).
t;i
Sationary X, W) = (A & H'™" | 8 = dyj |1~ ] b, 3.7)
ij

where T is of the form T = KMK’, with M an arbitrary real symmetric
matrix (of order n —r — 1), and satisfies t;; < w; for all i # j.

Proof. The stationary equations are obtained by setting (3.6) equal to zero,
ie.,

n n n n .
> X owiAX =3 X owi - AgX. (3.8)
i=1j=1 j

We have to solve (3.8) for A for given X and W. We make the transformation
indicated in Theorem 3.1, i.e., we define
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S
A ]
Lij SWij —W;; d;’ 3.9

and we solve for #;;. Equation (3.8) transforms to

n n

Z 2 L AUX =0. 3.10)

i=1j=1
Note that the A;; are a basis for the symmetric, doubly centered (SDC)
matrices of order n, so that any SDC matrix can be expressed as
io1 21 s Ayj. Thus (3.10) is solved if we find all SDC matrices T such
that TX = 0. But that means T = KMK", with M an arbitrary symmetric

matrix. Thus there are %(n —r)(n —r — 1) independent solutions in all.
By assumption, we must have §;; >0, which implies LiSwg. ®

A brief comment is in order here. The ¢; are defined by (3.9) only for
i # j, because f; in (3.10) is multiplied by the zero matrix A;;. Thus, we can
define the f; completely arbitrarily, without undercutting the validity of
(3.10). Therefore, we simply choose them in such a way that T is SDC.

To facilitate comparison with such other basic MMDS papers as De
Leeuw and Heiser (1980, 1982), and De Leeuw (1988), we define

A n n
V=3 3 wijAis (3.1
i=1j=1
n n O;:
B4 T 3w kl_] Ay (3.12)

Equation (3.10) translates into T =V —-B = KMK". The Inverse Theorem
says that A can be reconstructed from B = V— KMK" using the definition in
(3.12).

Corollary 3.2 (Bounded). Xjsionar, (X, W) is a closed, bounded, convex
polyhedron, containing D(X).

Proof. The set {MIM real symmetric of order n —r — 1} is a subspace of
R@r-DXe=r=1) " Because the mapping M — KMK" is linear, the image is a
subspace of R, Imposing the constraints z;; < w;; means taking the inter-
section of this subspace with several half-spaces, which yields a set that is
closed, polyhedral, and convex. Obviously D(X) ¢ X;}at,-o,,ary X,W). Only
boundedness is nontrivial. The set of all T is unbounded if and only is it con-
tains a ray (Rockafellar 1970; Theorem 8.4, p.64), which is a set of the form
AT, for some Ty #0 and A > 0. Thus, we have to show that X3;ionary (X, W)
cannot contain a ray. From (3.10) we have



10 J. de Leeuw and P.J.F. Groenen

i i tjd5(X)

n n
2 Z Lij tI'X’A,'jX
i=1j=1 i=1j=1

tr X~

=trX0=0. (3.13)

n n
> Y 4iAX
i=1j=1

Because distances are nonnegative, (3.13) implies that not all t;; can have the
same sign. There exists at least one pair with t;j > 0and ; < 0. For this pair
there exists a A > O such that At;; > wy;, and thus the set of matrices T cannot
be unbounded. =

Corollary 33 (Dominate). If  Ar € Xiationary (X, W) and
A; € X;tationary (X, W) and 5,']'1 < 5ij2 Joralli < J, then Ay = Aj.

Proof. We have 5,']'1 < 8,‘]’2 if and only if Lij1 < Lija. But, from (3.13),
n n
Y X (1 —tj2)d(X) =0, (3.14)
i=1j=1
which is impossible unless T; = T,. =

Corollary 3.4 (Only).
Xitationary X) = {W € H™®, Ae H™™ | A e X} uionary X, W)} . (3.15)

Proof. Directly from the representation in Theorem 3.1. =

From the last corollary we can choose W arbitrarily in H™, and for
each W there is a corresponding set of dissimilarities. Thus weights are not
very essential to the formulation of the problem, and we shall largely ignore
them from now on.

If Ay and A, are two different elements of X;,a,ia,,a,y , then we can meas-
ure their distance by using

1 n n
5 21 21 w81 — 8;j2)F =
i=]l j=

0 =

n n
3 Y A - ) (3.16)
i=1j=1

The right side of (3.16) is obtained by substituting for d;; the definition in
3.7, ie., di(1 - t;;/w;;). In particular, the squared distance between A and
D(X), which of course is simply STRESS, is equal to

1 n n
oCX.WA)=—3 ¥ d} 5. (3.17)
2 /3
Now suppose we have m configurations Xj, . ..,X,,. We can seek for

the set of dissimilarity matrices for which all X are stationary points. It is
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not necessary that all X; have the same rank. Each of the configurations X;
defines T;, where T; spans an affine space of dimension %(n -ri)n-r;-1)
with r; the rank of X; (see the Inverse Theorem 3.1). Any n X n SDC matrix
spans a space of %n(n — 1) dimensions. If these spaces of T; are *‘in general
position’’ (that is, linear independent and not parallel), they have an intersec-
tion if %2}';](71 -rp)n-ri—-1H2 %(m —Dn(n —1). If all r; are equal to p
this works out to

< nn-1)

T a(mn=-D-(m-p)n-p-1)"
It is tempting to speculate that (3.18) is an upper bound on the number of sta-
tionary points of STRESS, but the reasoning here is difficult to make rigorous.

(3.18)

4, Computing the Inverse Map

We now go into more detail in describing the convex polyhedron of A
(see the Bounded Corollary) defined in the Inverse Theorem 3.1. From the
computational point of view, it is convenient to use a basis {P;} for the sym-
metric matrices of order n —r — 1. For example, let X be a rank r = 2 matrix
for n = 5 objects. The Inverse Theorem states that T is of at most rank 2, so
that P; is a 2 X 2 matrix. In this example a basis for the symmetric matrices of
order 2 consists of

1 1
P, = [08],P2= 8(1)],andP3= [(1)0]

From the basis {P;} a basis {Q;} for T can be defined as
Q 2KPK". @.1)

Then every T can be written as a weighted sum of the basis {Q;},i.e.,
L
T=73 6,Q. 4.2)
=1

But not every 0 yields an admissible T. If we limit ourselves to the case
w;; =1 for all i #j, then the Inverse Theorem states that ; <1, so that we
must have

L
Z Olqiﬂ <1 (43)

for all i<j, which are N n(n —1) linear inequalities in
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L= %(n —1)(n —r —1) unknowns, where q;j; contains the elements of Q.

Obviously, these linear inequalities describe the bounded convex polyhedron
of the Bounded Corollary.

Bounded convex polyhedra can be described in terms of their vertices;
compare Goldsman and Tucker (1956) and Tschernikow (1971, p.83-84). We
find the vertices of the polyhedron by an enumerative procedure which looks
at all subsystems of L rows of (4.3). If the complete system is written as
QO 2= —u, then we can write a subsystem as

Q

[Qz] 0>
with Qg of order L. We then check if Q; is singular. If it is, we £0 to the next
subsystem. If it is nonsingular, we compute 8 = — Q7'u;. If Q,8>—-u, we
add 8 to our list of vertices. If not, we £0 to the next subsystem. This pro-
cedure can be done quite efficiently by using pivoting techniques, moving one
row into the basis and another one out of the basis in one pivot, and cycling
through the candidate subsets lexicographically (Dantzig 1963). In the exam-
ple below (and those in the Appendix), we simply use brute force, and inves-
tigate all subsets.

We start with a really simple example. Call it the Square Example.
Consider the configuration

uy
uz} , “@.4)

(1 1]
2 2
L1 1 0 1V 1
X = +i+i , with distances D = \/12—(1) (1) \/15
2 2 1 Y21 0
1 1
_ 3+ —
2 2

We now want to find all dissimilarity matrices A for which X gives a station-
ary value of STRESS. For K we find
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r Y

1
2
L +1 -1 +1 -1
K= i , and thus T = ;11 tll ;11 t% ,
b —1 +1 -1 +1
+L
2

\ /

with —1 <6< +1. Using §;; = d;;(1 - t;;/w;;) from the Inverse Theorem 3.1
and w;; = 1, the two extreme points are

0 0 22 0

0202
A= |0 0 0 22020
22 0. 0 0|’ 2710202
0 22 0 0 2020

By defining A = (1 —0)/2, we can say that any convex combination A(A) =
AA; + (1 —A)A, of these vertices has the four points arranged on a “‘pseu-
dosquare,”” which gives the solution of our problem. The length of each side
is equal to 2(1 —A) and the length of each diagonal to 20N2. 1t follows
directly from this interpretation that for A(A) to be embeddable in Euclidean

space we need to have A < %, while A(A) satisfies all triangle inequalities for

AL2/2 + \/5) = 586. The distance matrix D = A(%) is exactly in the mid-

dle of the edge. For A=1/(1 + */5) = 414, we have the matrix with all six
dissimilarities equal, which is the distance matrix of a regular simplex in
three dimensions. For the squared distances between the vertices and their
centroid D, we find

DA A
DOS§ 8
A; 8 0 32°
A, 8 32 0

Thus the STRESS of both vertices is 8.
5. Improved Approximation

We know that X;‘,a,iona,y (X, W) is a compact convex set. Itis clear from
Equation (2.8) that X, _;,.4(X,W) is a more precise approximation of
Xioeat (X, W), and we shall see that its inverse also is convex and compact
(although not necessarily polyhedral).
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First, we need a convenient expression for the Hessian of STRESS, dis-
cussed earlier in De Leeuw (1988) and Groenen et al. (1996). We start with
equation (3.5):

do & i
x, T2 Z T A% o2% owy A ()

Let the superscripted & be the Kronecker symbol, which has nothing to do
with the subscripted 8’s. Then

820 n n n o n 8ij
= 28" wiiA;; =2 Wi —— A
aXsaX, l§1 jz=l 7 1§1 j=1 Y dij /
AR )
+ 22 Z Wij :1”3* Ain_,.X tAij . 5.2)
i=1j=1 ij
From the definition (3.9) of ¢;;,
Wij d_ =wii— 1. 5.3)
i

Make this substitution twice in (5.2). Note that
AiXX Ay = (6 —e;)(e; —€;)'X,x",(e; —e;)(e; —e;)

= (s — X5 ) (X3 — X )(€; — €;)(e; — ;)

= (X;s —xjs)(xtt xjt)Alj ’ 5.4
which yields
aZ ‘ij)(xtt -xjt)
90 _asiT_23 ¥ A
aX ox X; byt l] dzzj i
n n Xie — X Xis — X
+ 22 2 Wij ( i ]s)i 113 ]t) Aij ) (55)
i=lj=1 dij

It is convenient at this point to define the np Xnmp supermatrices
Hg,H,, . . . ,H; with submatrices

5o s = X ) — Xir)
Hyy 2 IO = > = A, (5.6)
i=1j=1 di;
= Xjs )it — X;r)
Hy, = EZqz,z BRI A .7)
i=lj=1 dij

where Qy is given by (4.1). Also
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Q2Qe-9Q (5.8)
S piones
i.e., Q; is the diagonal supermatrix with the Q; repeated along the diagonal.
Using these definitions, we find
826 L —
oy = 2Hy +2Y 6,(Q;—H)). 59
oX =1

Theorem 5.1 Improved). X;/_;,..;(X,W) is a compact convex set.

Proof. We have A € X;_j,.;(X, W) if and only if A is of the form in Inverse
Theorem 3.1, with, in addition,

L —
> 0,(Q;-H)>-Hp. (5.10)
I=1

But this statement means that X;_;, .., (X, W) is the intersection of the convex
set defined by (5.10) and the compact convex set from the Inverse Theorem;
i.e., it is a compact convex set, =

Unfortunately, X;_j,cq (X, W) is more difficult than X,sionary (X, W) to
describe, because it is not polyhedral. We can approximate it by polyhedral
sets, by cutting off the vertices that are not in the polyhedron, using the eigen-
vectors corresponding to the positive eigenvalues. This strategy makes arbi-
trarily precise approximation possible, but the number of vertices will
increase very rapidly.

In our Square Example, we can still carry out the necessary computa-
tions quite easily. We know from the results of De Leeuw (1988, p. 173) that
the Hessian has at least 12p(p + 1) eigenvalues equal to zero, corresponding
to the rotational and translational invariance of Euclidean distances, and it
has at least one eigenvalue equal to n. Recall the meanings of § and A in the
example. Then the smallest eigenvalue is equal to zero for —12 <0 <1, and
it is negative for —1<0<-12, ie, 34 <A<1. Thus, the more precise
approximation tells us that for a local minimum we must have 0 <A < 3/4,
while for any stationary point, it suffices to have 0 <A <1. At A = 3/4, the
STRESS is 2, and
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f 3

1 3\/— 1
—_ _2 —_
0 2 2 2
1 1 3\/—
= < 242
2 0 2 2
ASlag 1, 1
2 2 2
1 35 1L
2 2 2 J

More examples of inverse scaling are given in the Appendix.
6. Full-dimensional Scaling

In MDS we minimize STRESS over D, on the condition that D = D(X),
ie., D are the Euclidean distances between pairs of the n points of a
configuration in p dimensions. Now suppose we drop the constraint of p
dimensions and merely require that the D are Euclidean distances between
points in any configuration. This framework defines metric full-dimensional
scaling, or MFDS. There is no need to emphasize the fact that MFDS is
metric, because nonmetric full-dimensional scaling does not make sense,
given that any dissimilarity matrix can be fitted perfectly in n — 2 dimensions
nonmetrically (Lingoes 1971). The most interesting result on MFDS is that
all local minima are global. This result is due to De Leeuw (1993), but
because the proof is difficult to find and simple to reproduce, we give it here
for completeness.

Theorem 6.1 (Full). In MFDS all local minima are global.

Proof. Let C = XX, where X is of rank n — 1 and column centered, so that C
is positive semidefinite and of rank n — 1 as well. Using (3.3), d,-j can be writ-
ten as

dij = d;i(X) = (rX"A;X)" = (rA;XX")”
= (tI':‘&,]C)I/2 =(c; + Cjj— 2Cij)% = le(C) . 6.1)
Thus, the distance d;; can be specified either by d; ;(X) or by d;;(C) as defined
in (6.1). The MFDS problem minimizes

o) = X 3 w6y ~dy(C)f
P

1=
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It

N j—=

n 1 n n
5wy + 5 £ 3 widhO

|
M
M: ll'Mz

I
—_
~.
]
—

w;;8;;d;;(C) (6.2)

I
over the convex cone of all positive semidefinite matrices C. Each of the
three terms of (6.2) is convex, which can be seen as follows, The first term is
constant, which is convex in C. The second term is convex because it is
linear in C as d,zj(C) =trA;;C. Now, the third term uses d;;(C), which is the
square root of a linear function of C. Therefore, d,-j(C) is concave in C, so
that — d,-j(C) is convex in C. Thus, the third term is also convex. It follows
that 6(C) is convex in C, and thus the MFDS problem minimizes a convex
function over a convex set. All local minima are global. =

It now makes sense to define inverse MFDS. Given a configuration X,
find the weights and/or dissimilarities for which X is the unique solution to
the MFDS problem. Thus we define

X1 (W,A) £ {X € R™? | X solves the MFDS problem } ; (6.3)
x};” (W.X) a {A e H”" | X solves the MFDS problem } . 6.4)

Theorem 6.2 (Inverse Full). X};H (W,A) is a compact convex set.

Proof. If we minimize a differentiable convex function f(:) over a convex
cone K, then the necessary and sufficient conditions for a mlmmum X
(Rockafeller, 1970, Theorem 27.4, p. 270-271) are (1) Xek;, (2)
-V fX) e K'; and (3) X" V f(X) = 0; that is, X must be in the convex cone,
minus the gradient of X must be in the polar cone, and the X should be orthog-
onal to its gradient. In our case this requirement means that the necessary and
sufficient conditions for the MFDS problem are

C>0; 6.5)

d d n 181
Z X k= L Xy j) Ay 20; (6.6)
1=1j= i=1 =

rC(y S WA — oo M0 A;}=0. 6.7)
(3 2 wta= 2 2y Al

Condition (6.5) states that C must be a double centered positive semidefinite
matrix of at most rank n» — 1. The polar cone of this set is the set of double
centered negative semidefinite matrices of at most rank # — 1. Condition
(6.6) states that the gradient of a 6(C) must be in the set of double centered
positive semidefinite matrices of at most rank » — 1. Finally, condition (6.7)
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requires that C is orthogonal to its gradient. Condition (6.6) implies that
T >0 and condition (6.7) that TX = 0. But this situation is the same as
T = KMK’, with M a positive semidefinite matrix. So again we have the
intersection of a convex cone and the compact convex set of Inverse Theorem
31, =

For our Square Example we have T > 0 if and only if 6 > 0. Thus the
dissimilarity matrices for which X solves the MFDS problem are the ones on
the line segment between D and A,.

Corollary 6.3 (Maximum Dimensionality). If rank (X)=n—-1 then
A = D(X).

Proof. The Inverse Theorem 3.1 states that K is of rank n—r—1. If
rank(X) = n — 1, then the rank(K) = 0, so that T = 0. Therefore, D(X) is the
only element in X7, (W,A). =

Thus, if a rank(X) =n — 1 and X is a minimum MFDS, then we must
have A =D(X). This observation implies that o(X)=0 for all
rank(X) = n — 1 minima of STRESS. The converse is also true. If in the
FMDS problem the minimum has ¢(X) > O then the rank(X) < n - 2.

Appendix

We reported two examples of inverse scaling in detail, and the results
of four other examples are summarized in a table.

The first example concerns a configuration of four points equally
spaced on a line. The coordinates are

whose null space is spanned by

+2 +1

-2 -3

-2 +3"

+2 -1

We have found seven vertices that produce dissimilarities with X; as local
minima. They are local minima, because the STRESS is a piecewise qua-
dratic function over X, where the pieces depend only on the order of the coor-
dinates of X. The vertices are summarized in Table 1.

K, =
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Table 1: The vertices of the polyhedral set that defines dissimilarities A for
which X, is a local minimum.

vertex ™M STRESS A
0 0 4 8
L o 0 0 o0 4
8
! (o %) 16 4 0 0 O
8 4 0 0
o 0 0 12
1
i 0 0 0 4 o
4
2 ( h) 0) 80 0 4 0 0)
12 0 0 ©
o 0 12 ©
-+ 1 0o 0 0 4
q
3 ( % o) 144 (12 o o0 8
0 4 8 0
0o 8 4 0©
-+ -4 8 0 0 12
4
4 (72 o) 144 (4 00 0
0o 12 0 o
0 0 12 ©
- 3 0o 0 4 0
T o
5 ( 3 7%) 224 12 4 o0 12
0o 0 12 0
0 12 0 0
- -3 12 0 4 12
T .
o () ( i0 %
0 12 0 ©
0 12 o6 0
—1 3} 12 0 16 ©
2
7(01)464(016012
o o0 12 o0

Table 2: The vertices of the polyhedral set that defines dissimilarities A for
which X, is a stationary point. A; is the i-th eigenvalue of the Hessian H.

vertex M STRESS A Eigenvalues of H
0 0 0 0 % =3
o o 0 0 0 o & N2 =5
1 (0 20) 40 0 0 o 0 7z A3 =5
0 4] 0 0o 3 Ag =5
5 5 o 5 [} Ag =0
i 2 VA VB
0 0 0 ¢ A A =5 X =0
5 _38 o6 0 5 0 A2=5 A=
2 < S A 215)27,5 o o o 0 % | h=5 =0
2 2 o % o o 0 Ma=5 Xo=
=, 'S A o Mg=5 Ao=-10
2 3
0 0 0 2 M =5 A=
5 3E o000 s da=5 J7=
% . - -
3 (g\/g 2&) 27.5 s 0 0 o 0 A3=5 Xg=0
2 2 6 o o0 o 4 Ae=5 A=
5 5 2 dg=5 A= -10
ﬁ 0 ?2: 0 0 ) 10
o 0 00 A=5 J=5
s o r0 0 0 7 0 Aa=5 A7 =
4 15 5 0 0 0 0 A3=5 Ag=0
6 -5 Vi _ -
0 % o o o0 Ag=5 Xo=0
o 0 o o0 o As =5 X =0
0 3 0 3 0 M =5 X=0
5 o $ 03 0o A2=5 A7 =
5 (0 75) 15 0o 2 0o % o A3 =5 X =0
3 o 3 0 0 Ae=5 o=
0O 0 0 0 o As =0 Xop=0
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Table 3: Six configurations and the results of their vertices obtained by inverse

scaling.
Example # vertices # vertices for # vertices for
which X is a which X is a
local minimum  full-dimensional
scaling solution
a. four points equally spaced on a line 7 7 1
b.  equilateral triangle with centroid 2 1 0
c. square 2 1 1
d. square with centroid 5 2 0
e. five points equally spaced on a 7 6 )
circle
f. six points equally spaced on a circle 42 9 0

The second example consists of the square configuration discussed in
Section ‘Computing the Inverse Map’ extended by a point in the centroid.
The configuration becomes

s 1 1
(1 _1 + =
2 2 2 205"
1 1 11
S 2 25
1 1 . 1 1
X, = — +— |, whichhas null space K, = |+— — p
s= Yy v — 2 25y
1.1 1 11
2 "2 2 25"
0 0 2
0 - vz
k ‘ 25Y* |

Five vertices were obtained with inverse scaling. The vertices and some of
their properties are described in Table 2.

The results of inverse scaling of four additional examples are given in
Table 3.
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