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Note: This is a working paper which will be expanded/updated frequently. One way to
think about this paper is as an update of De Leeuw (2014), using simpler and more direct
majorization methods. The directory deleeuwpdx.net/pubfolders/rstress has a pdf copy of
this article, the complete Rmd file that includes all code chunks, and R files with the code.
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1 Problem

Define the multidimensional scaling (MDS) loss function

σr(x) =
n∑

i=1
wi(δi − (x′Aix)r)2, (1)

with r > 0 and the Ai positive semi-definite. The wi are positive weights, the δi are non-
negative dissimilarities. We call this rStress. Special cases are stress (Kruskal 1964) for
r = 1

2 , sstress (Takane, Young, and De Leeuw 1977) for r = 1, and the loss function used in
MULTISCALE (Ramsay 1977) for r → 0.
Usually MDS is formulated uses Euclidean distances djℓ(X) between points j and ℓ, which
are rows of an n × p configuration matrix X. This fits into our formulation by setting
x = vec(X) and by setting the Ai to np×np matrices of the form Ip ⊗Ejℓ, where the matrix
Ejℓ has elements (j, j) and (ℓ, ℓ) equal to +1 and elements (j, ℓ) and (ℓ, j) equal to −1. Thus
the Ai are direct sums of p copies of the Ejℓ. Now x′Aix = d2

jℓ(X).
The problem we are trying to solve is to find an algorithm to minimize σr over x in Rm for
all values of r > 0. It is understood that parts of the algorithm may be different for different
values of r.

2 Minorization and Majorization

We will design a convergent iterative majorization algorithm. Briefly this means constructing
for each r > 0 a majorization function γr on Rm ⊗ Rm such that σr(x) ≤ γr(x, y) for all x
and y and such that σr(x) = γr(x, x) for all x. One step of the iterative algorithm is

x(k+1) = arg min
x

γr(x, x(k)),

unless x(k) already minimizes γr(x, x(k)), in which case we stop. If we do not stop we have
the sandwich inequality

σr(x(k+1)) ≤ γr(x(k+1), x(k)) < γr(x(k), x(k)) = σr(x(k)).

Thus majorization algorithms exhibit monotone convergence of loss function values.
The history of majorization algorithms is complicated. They were first developed in the
specific contexts of step-size estimation in descent algorothms (Ortega and Rheinboldt 1970),
maximum likelihood estimation with missing data (Dempster, Laird, and Rubin 1977), and
multidimensional scaling (De Leeuw 1977). Subsequently they were presented as a general
class of optimization methods, and as a special case of block relaxation and augmentation
methods, by De Leeuw (1994), see also Heiser (1995). The material in De Leeuw (1994) is
(slowly, slowly) expanded into an e-book, with one part on block relaxation, augmentation
and alternating least squares (De Leeuw 2015c), one part on majorization (De Leeuw 2015a),
and one part on mathematical background (De Leeuw 2015b). There have been many
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applicatons of the general majorization principle by The Dutch School in psychometrics,
which includes Ten Berge, Kiers, Heiser, Meulman, Groenen, and Vermunt.
Systematic use of majorization in statistics started with Lange, Hunter, and Yang (2000).
There have been many further reviews, developments, and applications by Ken Lange and his
co-workers. Theyo use the name MM Algorithms, where MM stands for either majorization-
minimization or minorization-maximization. Lange (2013) has a very nice chapter on the
MM algorithm, and he is currently working on an MM methods book.

3 Use of Homogeneity

We start by exploring the obvious fact that

min
x

σr(x) = min
θ≥0

min
x′x=1

σ(θx).

Let us introduce some notation to simplify the discussion. Without loss of generality we
assume the dissimilarities are scaled by

n∑
i=1

wiδ
2
i = 1.

Next, it is convenient to define

ρr(x) :=
n∑

i=1
wiδi(x′Aix)r,

and
ηr(x) :=

n∑
i=1

wi(x′Aix)2r,

so that
σr(x) = 1 − 2ρr(x) + ηr(x). (2)

Now
σr(θx) = 1 − 2θ2rρr(x) + θ4rηr(x). (3)

Thus, as in De Leeuw (1977), thinking of rStress as a function of both x and θ,

min
θ

σr(θ, x) = 1 − ρ2
r(x)

ηr(x) , (4)

where the minimium is attained at
θ2r = ρr(x)

ηr(x) . (5)

Thus minimizing σr can be done by maximizing the ratio in (4) over x′x = 1. This is used
in the majorization method proposed by De Leeuw (2014), by combining Dinkelbach (1967)
and quadratic majorization.
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The approach of De Leeuw (2014) is somewhat cumbersome, because we first use homo-
geneity to reduce the MDS problem to a fractional programming problem, and then we use
Dinkelbach to get rid of the fractional objective funcion again. Moreover one of the special
cases requires us to solve a modified eigenvalue problem of the type discussed, for example,
by Hager (2001) in each iteration.
In this paper we combine majorization with alternating least squares, working directly with
(3). Thus we think of rStress as a function of both θ and x, and we alternate minimization
over θ for fixed x and over x for fixed θ. Thus

θ(k) = arg min
θ

σr(θ, x(k)),

x(k+1) = arg min
x′x=1

σr(θ(k), x).

The first step is trivially solved using (5). Updating x, however, is far from trivial and needs
the majorization machinery we will develop in this paper. Since updating x is iterative, we
have to choose how many majorization steps to take for updating x, before going to the next
update for θ.
Thus the main focus of the paper will be a majorization method for minimizing

σr(x, α) := 1 − 2αρr(x) + α2ηr(x) (6)

over x′x = 1 with α := θ2r fixed at its current value. It is clear from (6) that we can find a
majorization of σr by combining a minorization of ρr and a majorization of ηr.

4 Powers of Quadratic Forms

We start with some lemmas we will need to construct our minorizations and majorizations.
Lemma 4.1: fr(x) := (x′Ax)r is convex on x′Ax > 0 if and only if r ≥ 1

2 .
Proof: The first and second derivative are

Dfr(x) = 2r(x′Ax)r−1Ax,

and
D2fr(x) = 2r(x′Ax)r−1

(
A + 2(r − 1)Axx′A

x′Ax

)
.

The matrix Hr(x) := A + 2(r − 1)Axx′A
x′Ax

is psd for r = 1
2 , and its eigenvalues increase with r.

Thus it is psd for all r ≥ 1
2 .

Also, if 0 < r < 1
2 then, by Sylvester’s Law of Inertia, D2fr(x) has precisely one negative

eigenvalue, as well as rank(A) − 1 positive eigenvalues, and n − rank(A) zero eigenvalues.
Thus in this case fr is not convex (and not concave either). QED

By the way, we can use the definition of convexity to show lemma 4.1 is true for all x, not
just for x with x′Ax > 0.
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Lemma 4.2: If r ≥ 1
2 then

fr(x) ≥ (1 − 2r)fr(y) + 2rfr−1(y)y′Ax.

Proof: Follows from the fact that fr is convex, i.e. above each of its tangents. QED

Now write λ(X) or λX for the largest eigenvalue of a matrix X, and λ(X) or λX for the
smallest eigenvalue. Note that if A = I ⊗ Ejℓ then λA = 2.
Lemma 4.3: If r ≥ 1 then

λ(D2fr(x)) ≤ 2r(2r − 1)λr

A (x′x)r−1.

If x′x ≤ 1 then
λ(D2fr(x)) ≤ 2r(2r − 1)λr

A.

Proof: If r ≥ 1, then

u′Hr(x)u = u′Au + 2(r − 1)(u′Ax)2

x′Ax
≤ (2r − 1)u′Au.

Thus
λ(Hr(x)) ≤ (2r − 1)λA,

and
λ(D2fr(x)) ≤ 2r(2r − 1)λA(x′Ax)r−1 ≤ 2r(2r − 1)λr

A (x′x)r−1.

Finally, if x′x ≤ 1 then (x′x)r−1 ≤ 1. QED

Lemma 4.4: If 0 < r ≤ 1 then

fr(x) ≤ (1 − r)fr(y) + rfr−1(y)x′Ax.

Proof: If r ≤ 1 then (x′Ax)r is concave in x′Ax, although not in x. Thus fr is below its
tangents, and

fr(x) ≤ fr(y) + r(y′Ay)r−1(x′Ax − y′Ay),
which simplifies to the required result. QED

Lemma 4.5: If 0 < r ≤ 1 and x′x = y′y = 1 then

fr(x) ≤ (1 − 2r)fr(y) + 2rfr−1(y)(x′(A − λAI)y + λA).

Proof: From

x′Ax = y′Ay + 2y′A(x − y) + (x − y)′A(x − y) ≤ −y′Ay + 2y′Ax + λA(x − y)′(x − y)

we see that if x′x = y′y = 1 that

x′Ax ≤ 2x′(A − λAI)y + 2λA − y′Ay.

Substitute this in lemma 4.4 and simplify. QED
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Lemma 4.6: If 0 < r < 1
2 then

λ(D2fr(x)) ≥ 2r(2r − 1)λr

A(x′x)r−1.

If x′x ≤ 1 then
λ(D2fr(x)) ≥ 2r(2r − 1)λr

A.

Proof: We have
(u′Ax)2

x′Ax
≤ u′Au

as before. Thus
u′H(x)u ≥ (2r − 1)u′Au ≥ (2r − 1)λAu′u.

The result follows because in addition x′Ax ≤ λAx′x, and consequently (x′Ax)r−1 ≥
λ

r−1
A (x′x)r−1. Moreover if x′x ≤ 1 then (x′x)r−1 ≥ 1. QED

The following lemma, defining a type of uniform quadratic majorization (De Leeuw and
Lange 2009), is an additional useful tool. Because we work on the unit sphere, the quadratic
majorization actually becomes linear. This relies heavily on the fact that if x′x = y′y = 1
and z is on the segment [x, y] connecting x and y, then z′z ≤ 1.
Lemma 4.7: Suppose ϕ is any homogeneous function of degree s, x′x = y′y = 1 and
λ(D2ϕ(z)) ≤ κ for all z ∈ [x, y]. Then

ϕ(x) ≤ (1 − s)ϕ(y) + κ + x′(Dϕ(y) − κy).

In the same way, if λ(D2ϕ(z)) ≥ κ for all z ∈ [x, y] we have

ϕ(x) ≥ (1 − s)ϕ(y) + κ + x′(Dϕ(y) − κy).

Proof: We only prove the first part. The proof of the second part goes the same. By
Taylor’s theorem we have for all x and y

ϕ(x) ≤ ϕ(y) + (x − y)′Dϕ(y) + 1
2κ(x − y)′(x − y),

which simplifies to the stated result if x′x = y′y = 1 and ϕ is homogeneous of degree s.
QED

5 Majorizing rStress

We will now use the inequalities from the lemmas in the previous section to derive linear mi-
norizations of σr, by combining majorization of ηr and minorization of ρr. Our majorizations
are in the form f(x) ≤ x′g(y) + ϵ(y), where both g and ϵ are functions which do not depend
on x, only on y. Since the precise form of ϵ has no influence on the iterative algorithm we
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usually leave it unspecified, so in different formulas ϵ can refer to different funcions. Clearly
the majorization algorithm will have the form

x(k+1) = − g(x(k))
∥g(x(k))∥ . (7)

For the two key results of this paper we need to define matrices

Br(y) :=
n∑

i=1
wiδi(y′Aiy)r−1Ai, (8)

and
Cr(y) :=

n∑
i=1

wi(y′Aiy)2r−1Ai, (9)

and scalars
βr := (2r − 1)

n∑
i=1

wiδiλ
r(Ai), (10)

and
γr :=

n∑
i=1

wi(y′Aiy)2r−1λ(Ai), (11)

and
δr := (4r − 1)

n∑
i=1

wiλ
2r(Ai). (12)

Note that δr = β2r. Also y′Br(y)y = ρr(y) and y′Cr(y)y = ηr(y).
Theorem 5.1: If 0 < r ≤ 1

2 then (7) with

g(y) = −{(Br(y) − βrI) − α(Cr(y) − γrI)}y (13)

is a convergent majorization algorithm.
Proof: To majorize ηr we use lemma 4.5. After some calculation we find the linear ma-
jorization

ηr(x) ≤ 4rx′(Cr(y) − γrI)y + ϵ(y),
where ϵ is some function which only depends on y and not on x.
To minorize ρr we use lemma 4.7 with ϕ equal to fr. Note that fr is homogeneous of order
2r. Thus

(x′Aix)r ≥ (1 − 2r)(y′Aiy)r + κi + x′(2r(y′Aiy)r−1Ai − κiI)y
By lemma 4.6 we have κi = 2r(2r − 1)λr(Ai). Thus

ρr(x) ≥ 2rx′(Br(y) − βrI)y + ϵ(y).

By combining the results for ρr and ηr we see that

σr(x) ≤ 4αrx′g(y) + ϵ(y)
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with g(y) defined by (13). QED

Theorem 5.2: If r ≥ 1
2 then (7) with

g(y) := −{(Br(y) − α(Cr(y) − δrI)}y (14)

is a convergent majorization algorithm.
Proof: We can use lemma 4.2 to get

ρr(x) ≥ 2rx′Br(y)y + ϵ(y).

Because ηr is homogeneous of order 4r we see from lemma 4.7 that

ηr(x) ≤ 4rx′(Cr(y) − δrI)y + ϵ(y).

By combining the results for ρr and ηr we see that

σr(x) ≤ 4rαx′g(y) + ϵ(y)

with g(y) defined by (14). QED

6 Special Considerations

If r = 1
2 we have βr = 0, and

Br(y) =
n∑

i=1
wi

δi√
y′Aiy

Ai,

and
Cr(y) =

n∑
i=1

wiAi.

These are precisely the matrices used in the SMACOF algorithm of De Leeuw (1977), im-
plemented in De Leeuw and Mair (2009), which is

x(k+1) = C+
r (x(k))Br(x(k))x(k),

where C+
r is the Moore-Penrose inverse. Also note that if r = 1

2 then γr = δr and the
algorithms of theorems 5.1 and 5.2 are the same.
The case r → 0 also requires some special attention. Define

σ0(x) :=
n∑

i=1
wi(log δi − log x′Aix)2.

Note that
n∑

i=1
wi(log δr

i − log(x′Aix)r)2 = r2σ0(x),
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which means that minimizing ∑n
i=1 wi(log δr

i − log(x′Aix)r)2 for any r > 0 can be done by
minimizing σ0.
Now use

log x = lim
r→0

xr − 1
r

.

Thus, for small r,
log δi − log x′Aix ≈ δr

i − (x′Aix)r

r
,

and
σ0(x) ≈ 1

r2

n∑
i=1

wi(δr
i − (x′Aix)r)2.

On the other hand, if δi ≈ x′Aix then for any r we have the approximation

log(x′Aix)r ≈ log δr
i + 1

δr
i

((x′Aix)r − δr
i ),

so that
σ0(x) ≈

n∑
i=1

wi

δ2r
i

(δr
i − (x′Aix)r)2.

Both approximatations to σ0 can be minimized by our iterative majorization algorithm for
r < 1

2 .
Note that our definition of rStress compares dissimilarities with powers of Euclidean dis-
tances. Alternatively, we can compare powers of dissimilarities with corresponding powers
of Euclidean distances, i.e. we can define another rStress as

σ̃r(x) :=
n∑

i=1
wi((δ2

i )r − (x′Aix)r)2. (15)

This is similar to our approach in the limiting case r → 0. We do not need an additional
algorithm to minimize σ̃r, because we can just input the (δ2

i )r instead of δi in our previous
majorization method.
The difference between σr and σ̃r disappears, of course, if we make the algorithm nonmetric.
In that case we alternate minimization over x with minimization over monotone transfor-
mations of δ (or of δr, which is of course the same thing). We could easily add a monotone
regression step to our alternating least squares algorithm.

7 Examples

7.1 Artificial

Let’s start with a small example that shows the flow of the algorithm. We perform one
iteration and write out the intermediary results in detail.
Suppose n = 3, the weights w are all one, and the dissimilarities are 1, 2, 3. The matrices A
are
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## [,1] [,2] [,3] [,4]
## [1,] 1 1 -1 -1
## [2,] 1 1 -1 -1
## [3,] -1 -1 1 1
## [4,] -1 -1 1 1

## [,1] [,2] [,3] [,4]
## [1,] 1 -1 -1 1
## [2,] -1 1 1 -1
## [3,] -1 1 1 -1
## [4,] 1 -1 -1 1

## [,1] [,2] [,3] [,4]
## [1,] 1 -1 1 -1
## [2,] -1 1 -1 1
## [3,] 1 -1 1 -1
## [4,] -1 1 -1 1

The largest eigenvalues of all three A matrices are equal to 4. Thus δr of (??) is 144.
Let’s start with x four random normals. We want to minimize rStress for r = 1, i.e. sStress.

## [1] 3.4514035 0.2191467 0.0485130

At the start sStress is 17.892093. Also ρ is 4.0352358 and η is 11.9625647. This means α is
0.337322 and the minimum of rStress over α is 12.6388263.
We now compute the matrices Br and Cr at x.
For Br we have

## [,1] [,2] [,3] [,4]
## [1,] 6 -4 0 -2
## [2,] -4 6 -2 0
## [3,] 0 -2 6 -4
## [4,] -2 0 -4 6

and for Cr

## [,1] [,2] [,3] [,4]
## [1,] 3.719063 3.183744 -3.622037 -3.280770
## [2,] 3.183744 3.719063 -3.280770 -3.622037
## [3,] -3.622037 -3.280770 3.719063 3.183744
## [4,] -3.280770 -3.622037 3.183744 3.719063
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Also, δr is equal to 144 and thus
Now g is

## [1] 9.408613 11.604293 -1.162210 -7.853545

and the new x is

## [1] -0.55613830 -0.68592383 0.06869765 0.46421904

With this x sStress is 12.4979159. We now go back, compute a new α, and so on.

7.2 Dutch Political Parties

De Gruijter (1967) collected dissimilarity measures for nine Dutch political parties.

## KVP PvdA VVD ARP CHU CPN PSP BP
## PvdA 5.63
## VVD 5.27 6.72
## ARP 4.60 5.64 5.46
## CHU 4.80 6.22 4.97 3.20
## CPN 7.54 5.12 8.13 7.84 7.80
## PSP 6.73 4.59 7.55 6.73 7.08 4.08
## BP 7.18 7.22 6.90 7.28 6.96 6.34 6.88
## D66 6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36

The solutions for 0.1, 0.25, 0.5, 0.75, 1, 2 are given in figure 1.
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Figure 1: De Gruijter Data: Separate Configurations
The basic structure for all solutions is the same, we see the familiar horseshoe, in which the
left-right scale is bended so that extreme left (CPN) and extreme right (BP) are close. This
is perhaps most clear for r = .75. If r becomes large, then we see increasing clustering.
We also give all six solutions plotted on top of each other (after Procrustus matching) in
figure 9. It shows that the two extreme parties are stable over solutions, but the middle is
more variable.
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Figure 2: De Gruijter Data: Joint Configuration
Plotting rStress in figure 3 as a function of r shows, somewhat surprisingly perhaps, an
increasing function. Because the data are average dissimilarities, it is likely there is a fairly
large additive constant, and additive constants correspond with lower values of r.
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Figure 3: De Gruijter Data: rStress
We put the nuber of iterations and the rStress values in a small table.
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## r: 0.10 iterations: 29103 rStress: 0.005464
## r: 0.25 iterations: 3605 rStress: 0.006310
## r: 0.50 iterations: 3566 rStress: 0.044603
## r: 0.75 iterations: 3440 rStress: 0.107113
## r: 1.00 iterations: 100000 rStress: 0.155392
## r: 2.00 iterations: 100000 rStress: 0.234877

Figure 4 shows the six Shepard diagrams. We see the clustering for r = 2. For r = .1 the
Shepard diagram becomes concave, indicating that the larger dissimilarities are underesti-
mated and reflecting the fact that for small powers the powered distances will all be close to
one.

4 5 6 7 8

0.
5

0.
7

0.
9

r =  0.1

dissimilarity

di
st

an
ce

 p
ow

er

4 5 6 7 8

0.
3

0.
5

0.
7

0.
9

r =  0.25

dissimilarity

di
st

an
ce

 p
ow

er

4 5 6 7 8

0.
2

0.
4

0.
6

r =  0.5

dissimilarity

di
st

an
ce

 p
ow

er

4 5 6 7 8

0.
1

0.
3

0.
5

r =  0.75

dissimilarity

di
st

an
ce

 p
ow

er

4 5 6 7 8

0.
0

0.
2

0.
4

r =  1

dissimilarity

di
st

an
ce

 p
ow

er

4 5 6 7 8

0.
00

0.
10

r =  2

dissimilarity

di
st

an
ce

 p
ow

er

Figure 4: De Gruijter Data: Shepard Diagrams

7.3 Ekman Color Data

We use the color data from Ekman (1954), with two dimensions and unit weights. As we
know from previous analyses, MDS of the Ekman data gives a very good fit and a very clear
representation of the color circle.

## 434 445 465 472 490 504 537 555 584 600 610 628 651
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## 445 0.14
## 465 0.58 0.50
## 472 0.58 0.56 0.19
## 490 0.82 0.78 0.53 0.46
## 504 0.94 0.91 0.83 0.75 0.39
## 537 0.93 0.93 0.90 0.90 0.69 0.38
## 555 0.96 0.93 0.92 0.91 0.74 0.55 0.27
## 584 0.98 0.98 0.98 0.98 0.93 0.86 0.78 0.67
## 600 0.93 0.96 0.99 0.99 0.98 0.92 0.86 0.81 0.42
## 610 0.91 0.93 0.98 1.00 0.98 0.98 0.95 0.96 0.63 0.26
## 628 0.88 0.89 0.99 0.99 0.99 0.98 0.98 0.97 0.73 0.50 0.24
## 651 0.87 0.87 0.95 0.98 0.98 0.98 0.98 0.98 0.80 0.59 0.38 0.15
## 674 0.84 0.86 0.97 0.96 1.00 0.99 1.00 0.98 0.77 0.72 0.45 0.32 0.24

In our algorithm we always start with a classical metric scaling solution (Torgerson 1958).
We minimize rStress for r equal to 0.1, 0.25, 0.5, 0.75, 1, 2. The six solutions are plotted
jointly in Figure 5. Because of the very good fit, solutions for different values of r are similar
and very much on the color circle.
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Figure 5: Ekman Color Data: Configuration
The Shepard diagrams in figure 6 are interesting, because, unlike the configurations, they
are quite different, becoming more and more convex as r increases. The plot for r = .25
looks best.
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Figure 6: Ekman Color Data: Shepard Diagrams
We plot rStress as a function of r in Figure 7. The best fit is attained for r = .25, which
means fitting square roots of Euclidean distances to dissimilarities. Nonmetric MDS of the
Ekman data has already indicated that the optimal nonmetric fit is attained with a concave
increasing transformation.
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Figure 7: Ekman Color Data: rStress

## r: 0.10 iterations: 100000 rStress: 0.017839
## r: 0.25 iterations: 1361 rStress: 0.001910
## r: 0.50 iterations: 535 rStress: 0.017213
## r: 0.75 iterations: 3343 rStress: 0.054769
## r: 1.00 iterations: 13749 rStress: 0.093063
## r: 2.00 iterations: 100000 rStress: 0.181719

Especially when r is far from 1
2 it will make a difference if we minimize σr or the σ̃r of (15).

We illustrate this by choosing r = .01, which will presumably take us close to the logarithm.
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Figure 8: Ekman Color Data: Power Transformation
After 14837 iterations we find a σ̃r value of 0.000012. We see a rather clear deviation from
the circular pattern we found with rStress.

8 Code

torgerson <- function(delta, p = 2) {
doubleCenter <- function(x) {

n <- dim(x)[1]
m <- dim(x)[2]
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s <- sum(x) / (n * m)
xr <- rowSums(x) / m
xc <- colSums(x) / n
return((x - outer(xr, xc, "+")) + s)

}
z <-

eigen(-doubleCenter((as.matrix (delta) ˆ 2) / 2), symmetric = TRUE)
v <- pmax(z$values, 0)
return(z$vectors[, 1:p] %*% diag(sqrt(v[1:p])))

}

enorm <- function (x, w = 1) {
return (sqrt (sum (w * (x ˆ 2))))

}

sqdist <- function (x) {
s <- tcrossprod (x)
v <- diag (s)
return (outer (v, v, "+") - 2 * s)

}

mkBmat <- function (x) {
d <- rowSums (x)
x <- -x
diag (x) <- d
return (x)

}

mkPower <- function (x, r) {
n <- nrow (x)
return (abs ((x + diag (n)) ˆ r) - diag(n))

}

matchConf <- function (x,
eps = 1e-6,
itmax = 100,
verbose = TRUE) {

m <- length (x)
n <- nrow (x[[1]])
p <- ncol (x[[1]])
itel <- 1
dold <- Inf
repeat {

y <- matrix (0, n, p)
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for (k in 1:m)
y <- y + x[[k]]

y <- y / m
dnew <- 0
for (k in 1:m) {

s <- svd (crossprod(x[[k]], y))
x[[k]] <- tcrossprod (x[[k]] %*% (s$u), s$v)
dnew <- dnew + sum ((y - x[[k]]) ˆ 2)

}
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

dold,
digits = 10,
width = 13,
format = "f"

),
formatC (

dnew,
digits = 10,
width = 13,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || ((dold - dnew) < eps))

break ()
itel <- itel + 1
dold <- dnew

}
return (x)

}

rStressMin <-
function (delta,

w = 1 - diag (nrow (delta)),
p = 2,
r = 0.5,
eps = 1e-10,
itmax = 100000,
verbose = TRUE) {

delta <- delta / enorm (delta, w)
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itel <- 1
xold <- torgerson (delta, p = p)
xold <- xold / enorm (xold)
n <- nrow (xold)
nn <- diag (n)
dold <- sqdist (xold)
rold <- sum (w * delta * mkPower (dold, r))
nold <- sum (w * mkPower (dold, 2 * r))
aold <- rold / nold
sold <- 1 - 2 * aold * rold + (aold ˆ 2) * nold
repeat {

p1 <- mkPower (dold, r - 1)
p2 <- mkPower (dold, (2 * r) - 1)
by <- mkBmat (w * delta * p1)
cy <- mkBmat (w * p2)
ga <- 2 * sum (w * p2)
be <- (2 * r - 1) * (2 ˆ r) * sum (w * delta)
de <- (4 * r - 1) * (4 ˆ r) * sum (w)
if (r >= 0.5) {

my <- by - aold * (cy - de * nn)
}
if (r < 0.5) {

my <- (by - be * nn) - aold * (cy - ga * nn)
}
xnew <- my %*% xold
xnew <- xnew / enorm (xnew)
dnew <- sqdist (xnew)
rnew <- sum (w * delta * mkPower (dnew, r))
nnew <- sum (w * mkPower (dnew, 2 * r))
anew <- rnew / nnew
snew <- 1 - 2 * anew * rnew + (anew ˆ 2) * nnew
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

sold,
digits = 10,
width = 13,
format = "f"

),
formatC (

snew,
digits = 10,
width = 13,
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format = "f"
),
"\n"

)
}
if ((itel == itmax) || ((sold - snew) < eps))

break ()
itel <- itel + 1
xold <- xnew
dold <- dnew
sold <- snew
aold <- anew

}
return (list (x = xnew,

alpha = anew,
sigma = snew,
itel = itel))

}

9 NEWS

001 01/12/16 – First published version, without code and examples
002 01/12/16 – Added artificial example and code.
003 01/13/16 – Squashed two nasties
004 01/13/16 – Added Ekman Example
005 01/13/16 – Many small edits
006 01/13/16 – Reorganized proofs
007 01/13/16 – Added political parties example
008 01/13/16 – Added configuration matching
009 01/13/16 – Added Ekman power solution
010 01/14/16 – Text in examples – Additional plots
011 01/14/16 – small change in theorems and code
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