
An Alternating Least Squares Approach to Squared
Distance Scaling

Jan de Leeuw, Patrick Groenen, and Raoul Pietersz

Version 011, November 10, 2016

Abstract

We reproduce the 1975 derivation of the alternating least squares algorithm for
squared distance scaling, from an internal report that got lost in the folds of time.
In addition, we present a derivation and a substantial speed improvement based on
majorization.

Contents

1 Introduction 2

2 The ELEGANT Algorithm 2

3 Ekman example 4

4 ELEGANT Majorization 6

5 Beyond ELEGANT 8

6 Appendix: Code 9

References 13

Note: This is a working paper which will be expanded/updated frequently. All suggestions for
improvement are welcome. The directory deleeuwpdx.net/pubfolders/lost has a pdf version,
the complete Rmd file with all code chunks, the bib file, and the R source code.

1

http://deleeuwpdx.net/pubfolders/lost

1 Introduction

Volume 73 of the Journal of Statistical Software is a festschrift for Jan de Leeuw (me). It
contains a very nice article by Yoshio Takane, discussing our early interactions and some
of my “lost papers” (Takane (2016)). One of these lost papers is De Leeuw (1975), which
discusses the ELEGANT algorithm, an augmentation method for squared distance scaling.
The algorithm has been discussed in the past by Takane (1977), Takane (1980), Browne
(1987), De Leeuw, Groenen, and Pietersz (2004), and now again by Takane (2016), but
with different derivations than those in the original paper. In this paper we reconstruct the
original derivation, slighty generalized to include weights. Note that De Leeuw, Groenen,
and Pietersz (2004) also use weights, and also describe a close approximation of the original
algorithm.
Both Takane (1977) and Browne (1987) find the ELEGANT algorithm to be prohibitively
slow to converge. After discussing the original algorithm and analyzing its convergence rate
we use quadratic majorization to improve the convergence speed. The fact that the original
ELEGANT algorithm can also be derived by using quadratic majorization was first observed
by De Leeuw, Groenen, and Pietersz (2004), using a different derivation.

2 The ELEGANT Algorithm

The paper De Leeuw (1975) deals with the problem of minimizing the sstress loss function,
defined on the space of n × p configurations as

σ(X) := 1
2

n∑
i=1

n∑
j=1

wij(ϵij − eij(X))2. (1)

Here the wij are given non-negative weights and the ϵij are given non-negative dissimilarities.
Both weights and dissimilarties are symmetric and hollow, i.e. have a zero diagonal. The
eij(X) are squared Euclidean distances, defined by

eij(X) := (xi − xj)′(xi − xj) = (ei − ej)′XX ′(ei − ej) = tr X ′AijX,

where Aij := (ei − ej)(ei − ej)′ and the ei are unit vectors with a 1 in position i and 0
elsewhere. I am pretty sure the original formulation of ELEGANT did not include weights,
but we include them here for the reasons simlar to those reviewed by Groenen and Van de
Velden (2016), section 6. The alternative derivations by Takane (1977) and Browne (1987)
did not consider weights either, but De Leeuw, Groenen, and Pietersz (2004) did include
weights.
At that time we were trying to generalize the alternating least squares algorithms used for
fitting non-metric linear and bilinear models to multidimensional scaling, i.e. to the least
squares fitting of distances and squared distances. One way to attack this problem is the
approach chosen in ALSCAL (Takane, Young, and De Leeuw (1977)), where the problem of
fitting the optimal configuration is attacked by block coordinate descent. The approach in

2

De Leeuw (1975) is quite different, because it does not partition the variables into blocks,
but instead uses augmentation (De Leeuw (1994)). Note that augmentation was applied to
multidimensional scaling shortly before majorization became the preferred approach. In this
context majorization methods are another way to extend alternating least squares. They
were first announced in the proceedings of the 1975 US-Japan Seminar on Multidimensional
Scaling and Related Techniques.
To explain the original formulation we introduce, for each quadruple (i, j, k, l),

eijkl := (xi − xj)′(xk − xℓ) = (ei − ej)′XX ′(ek − eℓ) = tr XX ′(ei − ej)(ek − eℓ)′.

Also define

ϵijkℓ :=

ϵij if (i, j) = (k, ℓ),
arbitrary otherwise,

(2)

and wijkℓ := √
wijwkl.

We now define an augmented version of sstress, which is a function of both the configuration
X and the disparities ϵijkℓ.

σ⋆(X, E) := 1
2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkℓ(ϵijkℓ − eijkℓ(X))2, (3)

The relation with sstress from (1) is

σ(X) = min
E∈E

σ⋆(X, E),

where E is the set of disparities satisfying (2). The ELEGANT algorithm in De Leeuw
(1975) uses alternating least squares to minimize σ⋆. Thus we alternate minimization over
X keeping E fixed with minimization over E ∈ E keeping X fixed.
Minimizing σ⋆ over E ∈ E for fixed X is trivial. We simply set

ϵijkℓ :=

ϵij if (i, j) = (k, ℓ),
eijkℓ(X) otherwise.

(4)

The more complicated and interesting problem is to minimize σ⋆ over X for fixed E. Observe
first

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkℓϵijkℓeijkℓ =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkℓϵijkℓ(ei − ej)′XX ′(ek − eℓ) = tr X ′B(X)X,

with
B(X) :=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkℓϵijkℓ(ei − ej)(ek − eℓ)′. (5)

Next
n∑

i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkℓe
2
ijkℓ =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

w
1
2
ijw

1
2
kℓ(ei−ej)′XX ′(ek−eℓ)(ek−eℓ)′XX ′(ei−ej) = tr (X ′V X)2,

3

with
V :=

n∑
i=1

n∑
j=1

w
1
2
ijAij. (6)

It follows that the X minimizing σ⋆ for fixed E must satisfy the stationary equations
B(X)X = V X(X ′V X). If Z are the normalized eigenvectors corresponding with the p
largest eigenvalues of the generalized eigen problem B(X)Z = V ZΛ, with Z ′V Z = I, then
X = ZΛ 1

2 .
Working with four-dimensional arrays, and computing eijkl(X) for all quadruples, is unattrac-
tive. It can be avoided, however. Write (4) in the form

ϵijkℓ = δikδjℓϵij + (1 − δikδjℓ)eijkℓ(X) = δikδjℓ(ϵij − eij) + eijkl(X)

and substitute this into (5). After some simplification we find the value of B(X) at this ϵijkl

to be
B(X) = R(X) + V XX ′V, (7)

with
R(X) :=

n∑
i=1

n∑
j=1

wij(ϵij − eij(X))Aij. (8)

Note that (6) says that vij = −2√
wij for i ̸= j, and the diagonal is filled in such that rows

and columns add up to zero. In the same way (8) says rij(X) = −wij(ϵij − eij(X)) for i ̸= j,
and the diagonal elements again make rows and columns sum to zero.
The algorithm is now simply to compute the update X(k+1) by solving the generalized eigen
problem defined by B(Xk) and V . Note that the fixed point equations for this algorithm
(R(X) + V XX ′V)X = V X(X ′V X) are equivalent to R(X)X = 0, which are the stationary
equations found by setting the derivatives of σ equal to zero. It is easy to understand why, in
my youthful enthusiasm, I baptized the algorithm ELEGANT. Note that if all off-diagonal
weights are equal to one then V X = 2nX, and thus B(X) = R(X) + 4n2XX ′ and we must
compute eigenvalues and eigenvectors of XX ′ + 1

4n2 R(X).

3 Ekman example

data(ekman, package="smacof")
lbs<-attr(ekman, "Labels")
ekman <- (1 - as.matrix (ekman)) ˆ 2
ha <- elegant(ekman, verbose = FALSE, itmax = 5000)

The algorithm takes 3498 iterations to come up with sstress 3.3187849896 and the following
solution.

4

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

dimension 1

di
m

en
si

on
 2

434
445

465
472

490

504

537555

584

600

610

628
651
674

Figure 1: Ekman Unweighted

Now consider using the weights wij = (2ϵ
1
2
ij)−1. We have the approximation

σ(X) = 1
2

n∑
i=1

n∑
j=1

1
2ϵ

1
2
ij

(ϵij − eij)2 ≈ 1
2

n∑
i=1

n∑
j=1

1
ϵ

1
2
ij + e

1
2
ij

(ϵij − eij)2 = 1
2

n∑
i=1

n∑
j=1

(ϵ
1
2
ij − e

1
2
ij)2

Thus using these weights approximates an unweighted least squares loss function defined on
the distances, not the squared distances.

n <- nrow (ekman)
w <- ifelse (ekman == 0, 0, 1 / (2 * sqrt (ekman)))
hb <- elegant (ekman, w = w, verbose = FALSE, itmax = 5000)

After 306 iterations we find the following solution.

5

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

dimension 1

di
m

en
si

on
 2

434445

465
472

490

504

537555

584

600

610

628
651

674

Figure 2: Ekman Weighted

4 ELEGANT Majorization

The ELEGANT algorithm uses augmentation. Suppose we want to minimize a function
f : X → R, and the problem is too difficult or cumbersome to be attacked directly. It helps
if we can find an augmented function g : X ⊗ Y → R such that f(x) = miny∈Y g(x, y) for
all x ∈ X and the subproblems of minimizing g over x ∈ X for fixed y ∈ Y and minimizing
over y ∈ Y for fixed x ∈ X are both easy. We can then alternate the two subproblems to
update iterate (x(k), y(k)) by

y(k+1) = argmin
y∈Y

g(x(k), y),

x(k+1) = argmin
x∈X

g(x, y(k+1)),

and under weak conditions accumulation points of the sequence x(k) will be stationary points
of f (see De Leeuw (1994)). In ELEGANT the augmentation variables y are the off-diagonal
elements of the four-dimensional array E = {ϵijkℓ}.

6

Majorization algorithms (nowadays often called the MM algorithms, see Lange (2016)) are
augmentation algorithms that use a majorization function. Again f : X → R, but now
g : X ⊗ X → R satisfies g(x, y) ≥ f(x) for all x, y ∈ X and g(x, x) = f(x) for all x ∈ X.
This implies f(x) = miny∈X g(x, y) and x(k) = argminy∈Y g(x(k), y). Thus the majorization
algorithm is simply

x(k+1) = argmin
x∈X

g(x, x(k)).

One particular form of majorization we will use in this paper is the quadratic approximation
method of Vosz and Eckhardt (1980) or Böhning and Lindsay (1988), also known as the
quadratic upper bound method (Lange (2016), section 4.6). If f is twice differentiable and
D2f(x) ≲ B with B positive definite for all x ∈ X then

g(x, y) = f(y) + (x − y)′Df(y) + 1
2(x − y)′B(x − y)

is a majorization function. The majorization algorithm is

x(k+1) = x(k) − B−1Df(x(k)).

In order to get a quadratic upper bound for sstress we prove a useful inequality.
Lemma 1: [Inequality]

n∑
i=1

n∑
j=1

wij(Aij ⊗ Aij) ≲
 n∑

i=1

n∑
j=1

w
1
2
ijAij

 ⊗

 n∑
i=1

n∑
j=1

w
1
2
ijAij

 = V ⊗ V.

Proof: Suppose X and Y are an arbitrary n × p matrices, and define C = XY ′ and
c = vec(C). Also let eijkℓ(X, Y) = (xi − xj)′(yk − yℓ) and eij(X, Y) = (xi − xj)′(yi − yj).
Then

n∑
i=1

n∑
j=1

wije
2
ij(X, Y) =

n∑
i=1

n∑
j=1

wij tr AijC
′AijC =

n∑
i=1

n∑
j=1

wij c′(Aij ⊗ Aij)c, (9)

and
n∑

i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

wijkle
2
ijkl(X, Y) =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
ℓ=1

w
1
2
ijw

1
2
kltr AkℓC

′AijC = tr V C ′V C = c′(V ⊗V)c.

(10)
Thus

c′

n∑

i=1

n∑
j=1

wij (Aij ⊗ Aij)

 c ≤ c′(V ⊗ V)c

for all C of the form XY ′, which means for all C. QED
The inequality in lemma 1 is now used to obtain a quadratic majorization of sstress. Think
of sstress as a function of c = vec(C), with C = XX ′. Then

D2σ(c) =
n∑

i=1

n∑
j=1

wij(Aij ⊗ Aij), (11)

7

and thus for all pairs of square symmetric C and C̃

σ(C) ≤ σ(C̃) − tr R(C̃)(C − C̃) + 1
2tr V (C − C̃)V (C − C̃).

Differentiating the majorization function with repect to X and setting the derivative equal
to zero gives

(R(C̃) + V C̃V)X = V X(X ′V X),

which is the update formula for the ELEGANT algorithm.

5 Beyond ELEGANT

In the unweighted case we replace the current configuration X with the configuration giving
the best rank p approximation of XX ′ + 1

4n2 R(X). This leads to slow convergence, because
the inertia part XX ′ is weighted much more heavily than the change part R(X). Both
De Leeuw (1975) and Browne (1987) suggest using a step size procedure than gives a larger
weight to the change part. If the larger step size decreases the loss we go to the next iteration,
if it does not decrease the loss we take a smaller step size and try again. This is somewhat
ad hoc, but it works.
The majorization derivation of ELEGANT, however, gives us a more rigorous way to speed
up the algorithm. The expression (11) for the second derivatives of stress makes it possible
to easily derive bounds of the form D2σ(C) ≲ βI for some scalar β, where ≲ is used for the
Loewner order of square symmetric matrices, with A ≲ B if B − A is positive semidefinite.
The algorithm then computes best rank p approximations to XX ′ + 1

β
R(X). For ELEGANT

with unit weights β = 4n2.
For β we can make two choices. The first is the largest eigenvalue of the Hessian, the matrix
on the right hand side of (11).
Lemma 2: [Hessian] If wij = 1 for all i ̸= j then the largest eigenvalue of the Hessian is
4n.
Proof: Define the matrix S with elements sij,kℓ = tr AijAkℓ. S has the same eigenvalues
as the Hessian from (11). All elements of S are non-negative, each row has 4n − 8 elements
equal to +1 and two elements equal to +4. The other elements are zero. Thus the largest
(Frobenius) eigenvalue, corresponding to an eigenvector with all elements equal to +1, is 4n.
QED

Thus in the case of equal unit weights we can use β = 4n instead of 4n2, which suggests the
majorization algorithm based on the largest eigenvalue will be about n times as fast. It does
require initially solving the eigenvalue problem for a large matrix of order n2, however. If we
choose β as the trace of the Hessian we find β = 4 ∑n

i=1
∑n

j=1 wij, which becomes 4n(n − 1)
in the case of unit weights. This (almost) coincides with the original ELEGANT algorithm
for the unweighted case. We have programmed the majorization methods with a scalar β,
and the resulting simplications, in a separate R function beyond.

8

We’ll try these alternative majorization methods on the Ekman data. First with the eigen-
value bound.

data(ekman, package="smacof")
ekman <- (1 - as.matrix (ekman)) ˆ 2
hc <- beyond(ekman, bound = "eval", verbose = FALSE, itmax = 5000)

The beyond algorithm now takes 298 iterations (instead of 3498) to come up with sstress
3.3187849627, the same solution as ELEGANT. About 12 times faster in iteration count.
Individual iterations are also faster, but there is some overhead because of the large initial
eigenvalue problem.

data(ekman, package="smacof")
ekman <- (1 - as.matrix (ekman)) ˆ 2
hd <- beyond(ekman, bound = "trace", verbose = FALSE, itmax = 5000)

For the trace bound we need 3268 iterations to arrive at sstress sstress 3.3187849875, again
the same solution as ELEGANT. There is no overhead to compute the eigenvalue bound, but
the iteration gain is minimal (probably reflecting the difference between n2 and n(n − 1)).
Next we use microbenchmark (Mersmann (2015)) to compare computing times of ELEGANT
and the two quadratic majorization bounds.

Unit: milliseconds
expr min
elegant(ekman, verbose = FALSE, itmax = 5000) 377.305458
beyond(ekman, verbose = FALSE, bound = "eval", itmax = 5000) 146.537981
beyond(ekman, verbose = FALSE, bound = "trace", itmax = 5000) 327.689034
lq mean median uq max neval
393.6291195 438.6360222 410.2072370 496.1889500 617.064223 100
160.4949455 172.3918651 166.2576655 175.7148935 288.750251 100
341.1642785 372.9708581 349.6772660 380.0042220 509.351876 100

We see a speedup factor of about 2.2 if we use the eigenvalue bound, which is 56, and about
10 percent gain over ELEGANT if we use the trace bound, which is 4 × 13 × 14 = 728.
The speed gain is considerably less than the gain in iteration count. For larger problems we
expect a larger speed gain. Note our algorithms use the slanczos function from the mgcv
package (Wood (2016)) to compute one or a few dominant eigenvalues.

6 Appendix: Code

9

suppressPackageStartupMessages(library(mgcv, quietly = TRUE))

e <- function (i, n)
ifelse (i == 1:n, 1, 0)

a <- function (i, j, n)
outer (e(i, n) - e(j, n), e(i, n) - e(j, n))

torgerson <- function (delta, p = 2) {
doubleCenter <- function(x) {

n <- dim(x)[1]
m <- dim(x)[2]
s <- sum(x) / (n * m)
xr <- rowSums(x) / m
xc <- colSums(x) / n
return((x - outer(xr, xc, "+")) + s)

}
z <- slanczos(-doubleCenter(delta / 2), p)
v <- pmax(z$values, 0)
return(z$vectors %*% diag(sqrt(v)))

}

mpower <- function (x, p, eps = 1e-16) {
z <- eigen (x, symmetric = TRUE)
zval <- z$values[1:(nrow(x) - 1)] ˆ p
zvec <- z$vectors[, 1:(nrow(x) - 1)]
return (zvec %*% diag (zval) %*% t (zvec))

}

elegant <-
function (delta,

w = 1 - diag (nrow (delta)),
p = 2,
xold = torgerson (delta, p),
itmax = 1000,
eps = 1e-10,
debug = FALSE,
verbose = TRUE) {

itel <- 1
v <- -2 * sqrt (w)
diag (v) <- -rowSums (v)
vinv <- mpower (v,-1 / 2)
dold <- as.matrix (dist (xold)) ˆ 2
sold <- sum (w * (delta - dold) ˆ 2)

10

repeat {
b <- -w * (delta - dold)
diag (b) <- -rowSums (b)
h <- tcrossprod (v %*% xold)
s <- b + h
z <- slanczos (vinv %*% s %*% vinv, p)
u <- vinv %*% z$vectors
evz <- pmax(z$values, 0)
xnew <- u %*% diag(sqrt(evz))
dnew <- as.matrix (dist (xnew)) ˆ 2
snew <- sum (w * (delta - dnew) ˆ 2)
if (debug)

browser ()
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

sold,
digits = 10,
width = 15,
format = "f"

),
formatC (

snew,
digits = 10,
width = 15,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || (sold - snew) < eps)

break
itel <- itel + 1
xold <- xnew
dold <- dnew
sold <- snew

}
return (list (

x = xnew,
d = dnew,
itel = itel,
s = snew

))

11

}

beyond <-
function (delta,

w = 1 - diag (nrow (delta)),
p = 2,
xold = torgerson (delta, p),
bound = "eval",
itmax = 1000,
eps = 1e-10,
debug = FALSE,
verbose = TRUE) {

n <- nrow (delta)
itel <- 1
vv <- matrix (0, n ˆ 2, n ˆ 2)
if (bound == "eval") {

for (i in 1:n)
for (j in 1:n)

vv <- vv + w[i, j] * kronecker (a (i, j, n), a(i, j, n))
lbd <- slanczos(vv, 1)$values

}
if (bound == "trace")

lbd <- 4 * sum (w)
dold <- as.matrix (dist (xold)) ˆ 2
sold <- sum (w * (delta - dold) ˆ 2)
repeat {

b <- -w * (delta - dold)
diag (b) <- -rowSums (b)
h <- tcrossprod (xold)
s <- b / lbd + h
z <- slanczos (s, p)
u <- z$vectors
evz <- pmax(z$values, 0)
xnew <- u %*% diag(sqrt(evz))
dnew <- as.matrix (dist (xnew)) ˆ 2
snew <- sum (w * (delta - dnew) ˆ 2)
if (debug)

browser ()
if (verbose) {

cat (
formatC (itel, width = 4, format = "d"),
formatC (

sold,
digits = 10,

12

width = 15,
format = "f"

),
formatC (

snew,
digits = 10,
width = 15,
format = "f"

),
"\n"

)
}
if ((itel == itmax) || (sold - snew) < eps)

break
itel <- itel + 1
xold <- xnew
dold <- dnew
sold <- snew

}
return (list (

x = xnew,
d = dnew,
itel = itel,
bound = lbd,
s = snew

))
}

References
Böhning, D., and B. G. Lindsay. 1988. “Monotonicity of Quadratic-approximation Algo-

rithms.” Annals of the Institute of Statistical Mathematics 40 (4): 641–63.
Browne, M. W. 1987. “The Young-Householder Algorithm and the Least Squares Multdi-

mensional Scaling of Squared Distances.” Journal of Classification 4: 175–90.
De Leeuw, J. 1975. “An Alternating Least Squares Approach to Squared Distance Scaling.”

Department of Data Theory FSW/RUL.
———. 1994. “Block Relaxation Algorithms in Statistics.” In Information Systems and

Data Analysis, edited by H. H. Bock, W. Lenski, and M. M. Richter, 308–24. Berlin:
Springer Verlag.

De Leeuw, J., P. J. F. Groenen, and R. Pietersz. 2004. “Augmentation and Majorization
Algorithms for Squared Distance Scaling.”

Groenen, P. J. F., and M. Van de Velden. 2016. “Multidimensional Scaling by Majorization:
A Review.” Journal of Statistical Software 73 (8): 1–26. https://doi.org/10.18637/jss.

13

https://doi.org/10.18637/jss.v073.i08
https://doi.org/10.18637/jss.v073.i08

v073.i08.
Lange, K. 2016. MM Optimization Algorithms. SIAM.
Mersmann, O. 2015. Microbenchmark: Accureate Timing Functions. https://CRAN.R-

project.org/package=microbenchmark.
Takane, Y. 1977. “On the Relations among Four Methods of Multidimensional Scaling.”

Behaviormetrika 4: 29–42.
———. 1980. Multidimensional Scaling (in Japanese). University of Tokyo Press.
———. 2016. “My Early Interactions with Jan and Some of His Lost Papers.” Journal of

Statistical Software 73 (7): 1–14. https://doi.org/10.18637/jss.v073.i07.
Takane, Y., F. W. Young, and J. De Leeuw. 1977. “Nonmetric Individual Differences in

Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scal-
ing Features.” Psychometrika 42: 7–67. http://www.stat.ucla.edu/~deleeuw/janspubs/
1977/articles/takane_young_deleeuw_A_77.pdf.

Vosz, H., and U. Eckhardt. 1980. “Linear Convergence of Generalized Weiszfeld’s Method.”
Computing 25: 243–51.

Wood, S. N. 2016. Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness
Estimation. https://CRAN.R-project.org/package=mgcv.

14

https://doi.org/10.18637/jss.v073.i08
https://doi.org/10.18637/jss.v073.i08
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.18637/jss.v073.i07
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/articles/takane_young_deleeuw_A_77.pdf
http://www.stat.ucla.edu/~deleeuw/janspubs/1977/articles/takane_young_deleeuw_A_77.pdf
https://CRAN.R-project.org/package=mgcv

	Introduction
	The ELEGANT Algorithm
	Ekman example
	ELEGANT Majorization
	Beyond ELEGANT
	Appendix: Code
	References

