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A. A general algorithm is developed for minimizing any func-
tion φ of squared Euclidean distances between n points that has a bounded
second Hessian. The algorithm solves a sequence of eigenvalue prob-
lems. We apply the algorithms to squared distance scaling, distance
completion, unfolding, and fitting distance-based choice models.

1. I

In multidimensional scaling (MDS) and related techniques we typically
minimize loss functions of the form

σ(X) = φ(d12(X), · · · , dn−1,n(X))

over all n × p configurations X. Here di j(X) is the squared Euclidean dis-
tance between the points (rows) i and j in the configuration, and φ is any
real valued function. We use functions of squared distances for mathemat-
ical convenience, but of course any function of the distances can also be
written as a function of the squared distances, and vice versa.

We introduce some convenient notation to work with squared distances.
First,

di j(X) = (ei − e j)′XX′(ei − e j) = tr CAi j,

where C = XX′ and Ai j = (ei − e j)(ei − e j)′. Thus Ai j has +1 for elements
(i, i) and ( j, j) and −1 for elements (i, j) and ( j, i). All other elements are
zero. Also define di j(C) = cii + c j j − 2ci j.
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It follows that instead of minimizing σ(X) over X we can also minimize

σ(C) = φ(d12(C), · · · , dn−1,n(C))

over all n × n positive semi-definite matrices C of rank less than or equal to
p.

2. D

By the chain rule

(1a)
∂φ

∂C
=
∑∑
1≤i< j≤n

∂φ

∂di j
Ai j.

and

(1b)
∂2φ

∂cαβ∂cγδ
=
∑∑
1≤i< j≤n

∑∑
1≤k<`≤n

∂2φ

∂di j∂dk`
[Ai j]αβ[Ak`]γδ.

Here the notation [Ai j]αβ is used for element (α, β) of matrix Ai j.

We write M(C) for the n2×n2 matrix of second partials defined by (1b), and
H(C) for the

(
n
x

)
×
(

n
2

)
matrix with elements

h{i j}{k`}(C) =
∂2φ

∂di j∂dk`
.

We also use the Loewner ordering of symmetric matrices. If A and B are two
symmetric matrices, then A . B means that B − A is positive semi-definite.
Moreover vec(A) strings out a matrix to a vector.

Theorem 2.1. If there is a diagonal B with H(C) . B, and λ(V) is the
largest eigenvalue of

V =
∑∑
1≤i< j≤n

bi jvec(Ai j)vec(Ai j)′.

then M(C) . λ(V)I.

Proof. If U is an arbitrary symmetric matrix, then
n∑
α=1

n∑
β=1

n∑
γ=1

n∑
δ=1

uαβuγδ
∂2φ

∂cαβ∂cγδ
=
∑∑
1≤i< j≤n

∑∑
1≤k<`≤n

∂2φ

∂di j∂dk`
tr UAi jtr UAk`.
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Thus

n∑
α=1

n∑
β=1

n∑
γ=1

n∑
δ=1

uαβuγδ
∂2φ

∂cαβ∂cγδ
≤
∑∑
1≤i< j≤n

bi j{tr UAi j}
2 ≤ λ(V)tr U2.

�

Corollary 2.2. If H(C) . βI then M(C) . 2nβI.

Proof. We merely have to show that λ(V) = 2n if

V =
∑∑
1≤i< j≤n

vec(Ai j)vec(Ai j)′.

Instead of looking at the n2 × n2 matrix V , we look at the
(

n
2

)
×
(

n
2

)
matrix

S with elements si j,k` = tr Ai jAk`. S has the same eigenvalues as V . All
elements of S are non-negative, the diagonal elements are +4, and each row
has 2n−4 elements equal to +1. Thus the largest eigenvalue, corresponding
to an eigenvector with all elements equal to +1, is 2n. �

Corollary 2.3. If H(C) . B, where B is symmetric, then M(C) . τ(V)I,
with

τ(V) = 4 tr B +
∑

b{i, j},{k,`},

where summation is over the n(n − 1)(n − 2) pairs (i, j) and (k, `) that have
exactly one index in common.

Proof. The largest eigenvalue λ(V) is always less than or equal to the trace

tr V =
∑∑
1≤i< j≤n

∑∑
1≤k<`≤n

b{i, j},{k,`}tr Ai jAk` =

=
∑∑
1≤i< j≤n

∑∑
1≤k<`≤n

b{i, j},{k,`}(δ
ik − δi` − δ jk + δ j`)2.

Collecting terms, as in the proof of Corollary 2.2, gives the required result.
�
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3. M

To state our main result, which gives the basic property of our algorithm,
we define

B(C) =
∑∑
1≤i< j≤n

∂φ

∂di j

∣∣∣∣∣∣
C

Ai j,

C = C −
1
µ

B(C),

Theorem 3.1. If µ ≥ λ(V) and

C+ = argmin{tr (C −C)2 | C & 0, rank(C) ≤ p}.

then σ(C+) ≤ σ(C). Moreover if C+ , C then σ(C+) < σ(C).

Proof. The results so far imply that for all pairs C and C̃ we have σ(C̃) ≤
η(C̃,C), where the majorization function η is defined by

η(C̃,C) = σ(C̃) + tr B(C̃)(C − C̃) +
1
2
µ tr (C − C̃)2.

By completing the square we can rewrite this as

η(C̃,C) = σ(C̃) +
1
2
µ tr (C −C)2 −

1
2
µ tr B(C̃)2.

Thus we derive the sandwich inequality from majorization theory [De Leeuw,
1994],

σ(C+) ≤ η(C+,C) ≤ η(C,C) = σ(C).

�

The minimization in Theorem 3.1 is easily accomplished by

4. E

4.1. Squared Distance Scaling. Let us look at what is probably the most
straghtforward example of our theory. Suppose the function we are mini-
mizing is sstress [Takane et al., 1977], i.e.

(2) σ(C) =
1
2

∑∑
1≤i< j≤n

wi j(δi j − di j(C))2
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Clearly we can take B = W in this case, and apply Theorem 2.1, or use β =
max wi j and apply Corollary 2.2. By the general reasoning in the previous
sections, these provide convergent algorithms.

Many different algorithms have been proposed to minimize the loss func-
tion (2). Foremost of these is perhaps the ALSCAL method [Takane et al.,
1977], which is of the cyclic coordinate descent type. One ALSCAL itera-
tion consists of a cycle over all np coordinates of X, minimizing loss over
one coordinate at a time, while keeping the other coordinates fixed at their
current values. Since the loss function is a multivariate quartic in X, the
coordinate subproblems can be solved by finding the roots of a univariate
cubic (and choosing the one corresponding to the minimum).

Even before ALSCAL, De Leeuw [1975] proposed an augmentation algo-
rithm to minimize (2), in the case in which there are no weights. At the
time, the algorithm was called ELEGANT. It corresponds to our squared dis-
tance algorithm using Corollary 2.3, and it consequently uses the bound

τ(V) = 4
∑∑
1≤i< j≤n

wi j.

The 1975 paper was never published, but the algorithm has been discussed
by Takane [1977] and Browne [1987]. They did not include the original
derivation nor a convergence proof. This paper provides one version of that
proof, quite different from the original one, and much more generally appli-
cable. Our majorization proof also applies to the case of unequal weights,
and to a much more general class of functions.

Euclidean Completion.

Suppose, more generally, that

(3) σ(C) =
1
2

∑∑
1≤i< j≤n

wi j(ψ(δi j) − ψ(di j(C)))2.

Our approach is of somewhat limited value for this class of loss functions,
because the most popular choices of ψ lead to unbounded second deriva-
tives.



6 JAN DE LEEUW, PATRICK J.F. GROENEN, AND RAOUL PIETERSZ

The Hessian H is diagonal in the case of loss function (3), with elements

h{i j},{i j} = −wi jψ(δi j)ψ′′(di j) + wi j[{ψ′(di j)}2 + ψ(di j)ψ′′(di j)].

If ψ is the square root, for instance, we see that

h{i j},{i j} =
1
4

wi jψ(δi j)d
−3/2
i j .

This cannot be bounded, because it will become arbitrary large if i and j get
arbitrary close to each other. Similar problems occur if ψ is the logarithm.
On the other hand, if ψ(d) = exp(−d), then we can derive the useful bound

h{i j},{i j} ≤ 2wi j exp(−2di j) ≤ 2wi j.

4.2. Unfolding. There are some special cases of (2), which deserve some
attention. In (unweighted, metric, squared distance) unfolding, for example,
in which we have unit weights for off-diagonal distances with 1 ≤ i ≤ n1

and n1 + 1 ≤ j ≤ n1 + n2 and zero weights elsewhere. Computations like the
ones in Corollary 2.2 show that λ(V) = n1 + n2 + 2.

4.3. Choice model.

σ(C) = −N
n∑

i=1

m∑
j=1

yi j log πi j(C) + (1 − yi j) log(1 − πi j)

πi j(C) =
1

1 + αiβ j exp(−di j(C))
.

σ(C) = −
n∑

i=1

m∑
j=1

{yi jdi j(C) − log(1 + exp(di j(C))}

4.4. Gaussian Ordination.

4.5. Shepard-Luce Model.

σ(C) = −N
n∑

i=1

n∑
j=1

pi j log πi j(C)

πi j(C) =
αiβ j exp(−di j(C))∑n

k=1
∑n
`=1 αkβ` exp(−dk`(C))
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