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1. Problem

The problem studied in this paper is to minimize a polynomial

P : Rm ⇒ R over the unit sphere S = {x | x′x = 1}. Clearly the

problem is well-defined, because the minimum always exists.

We use the standard notation P(x) =
∑
αpαxα for multivariate

polynomials, where α are vectors of m integers, and

xα =
m∏
j=1

x
αj
j .

2. Algorithm

We use quadratic majorization [Böhning and Lindsay, 1988; De

Leeuw and Lange, 2009]. This requires us to find an upper bound

for the quadratic term in the Taylor expansion of P . So, using g
and H for the gradient and Hessian,

(1) P(x) = P(y)+ (x −y)′g(y)+ 1
2
(x −y)′H(z)(x −y),
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where z is on the line between x and y . Thus

(2) P(x) ≤ P(y)+ (x −y)′g(y)+ 1
2
|(x −y)′H(z)(x −y)|.

Now, using ρ(z) for the spectral norm of H(z),

(3) |(x −y)′H(z)(x −y)| ≤ ρ(z)(x −y)′(x −y),

and for any submultiplicative matrix norm ‖H(z)‖

(4) |(x −y)′H(z)(x −y)| ≤ ‖H(z)‖(x −y)′(x −y)

because ρ(z) ≤ ‖H(z)‖.

Now each element of the gradient and the Hessian is, again, a mul-

tivariate polynomial. This can be used in finding upper bounds

for some conveniently chosen matrix norms. The easiest choice,

perhaps, is the `1 norm, for which

(5)

‖H(z)‖1 =
m∑
i=1

m∑
j=1

|hij(z)| =
m∑
i=1

m∑
j=1

|
∑
α
pαijzα| ≤

m∑
i=1

m∑
j=1

∑
α
|pαij|,

because if x and y are on the sphere we also have z in the sphere,

and thus |zα| ≤ 1. The upper bound in (5) is K1.

This can be improved by using the max-rowsum-norm in (4).

(6) ‖H(z)‖∞ =
m

max
i=1

m∑
j=1

|hij(z)| =

m
max
i=1

m∑
j=1

|
∑
α
pαijzα| ≤

m
max
i=1

m∑
j=1

∑
α
|pαij|,

Define K∞ as the bound on the right hand side.

It follows that the function

(7) Q(x | y) = P(y)+ (x −y)′g(y)+ 1
2
K(x −y)′(x −y),

with K equal to either K1 or K∞, is a majorization of P at y . A step

of the majorization algorithm minimizes Q(x | y) over x ∈ S.
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The minimum is attained at

x̂ =
y − 1

Kg(y)
‖y − 1

Kg(y)‖
,

and thus the majorization algorithm is the fixed step projected

gradient algorithm

(8) x(k+1) =
x(k) − 1

Kg(x
(k))

‖x(k) − 1
Kg(x(k))‖

.

3. Sharper Majorization

The inequality |zα| ≤ 1 can be improved. Define

τ(α, z) = log
m∏
j=1

|zj|αj =
1
2

m∑
j=1

αj log |z2
j |.

The function τ(α, z) attains its maximum τ?(α) over z with
∑m
j=1 z

2
j =

1 at

z2
j =

αj∑m
j=1αj

,

and the maximum is equal to

τ?(α) =
1
2

m∑
j=1

αj log
αj∑m
j=1αj

= 1
2


m∑
j=1

αj logαj −A logA

 ,
whereA =

∑m
j=1αj . Throughout we use the convention that 0 log 0 =

0.

Thus choosing

(9) K0 =
m

max
i=1

m∑
j=1

∑
α

exp(τ?(α))|pαij|,

is a sharper majorization of P at y , and a step of this improved

majorization algorithm minimizes (7) with this new K0 over x ∈ S.
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4. Examples

4.1. Small. Our first example uses the polynomial

P(x,y) =



y0 y1 y2

x0 3 −5 0

x1 4 0 0

x2 0 0 1

x3 −4 0 0

.
The gradient is

g1(x,y) =



y0 y1 y2

x0 4 0 0

x1 0 0 2

x2 −12 0 0

x3 0 0 0

 g2(x,y) =



y0 y1 y2

x0 −5 0 0

x1 0 0 0

x2 0 2 0

x3 0 0 0

,

and the Hessian is

h11(x,y) =



y0 y1 y2

x0 0 0 2

x1 −24 0 0

x2 0 0 0

x3 0 0 0

 h22(x,y) =



y0 y1 y2

x0 0 0 0

x1 0 0 0

x2 2 0 0

x3 0 0 0

.

h12(x,y) = h21(x,y) =



y0 y1 y2

x0 0 0 0

x1 0 4 0

x2 0 0 0

x3 0 0 0


It follows that K1 = 32, while K∞ = 30. For K0 we have to compute

the optimal weights exp(τ?(α)). They are



0 1 2

0 1.0000000 1.0000000 1.0000000

1 1.0000000 0.5000000 0.3849002

2 1.0000000 0.3849002 0.2500000

3 1.0000000 0.3247595 0.1859032

.
This shows that K0 = 28.
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In the Appendix we give R code that implements the majorization

algorithm using the multipol package [Hankin, 2009]. Through-

out the paper we iterate until the function decreases less than

ε = 1e − 10. The iterative majorization algorithm (8), started at

x = 1 and y = 0, converges to the function value −2.805344, at-

tained at x = −0.3588192 and y = 0.9334071. It can be verified

that this is indeed the unique minimum on the circle.

The small differences between K1, K∞ and K0 already indicate that

the choice of bound will not be very important in this case. For K1

we need 55 iterations, for K∞ 47 iterations, and for K0 44 iterations.

4.2. Full. We also tried the three-variable example

1 pisfull <- as.multipol (array (1 : 64, c (4, 4, 4)

))

We start with x = 1 and y = z = 0. For bound K1 = 54000,

the algorithm converges smoothly, albeit slowly, to a minimum

of −47.1303347324 at x = 0.3340020, y = 0.3194996, and z =
−0.8867709. This requires 4025 iterations (if ε = 1e − 10). Us-

ing K∞ = 20520 brings this down to 1907 iterations. Using K0 =
5143.482 as an upper bound leads to 510 iterations.

4.3. Sparse. A four-variable example with all coefficients zero or

one is given by

1 set.seed(12345)

2 psparse <- as.multipol (array (sample (c (0, 1),

81, replace = TRUE), c (3, 3, 3, 3)))

For K1 = 630 we need 3405 iterations, for K∞ = 166 we need 960,

and for K0 = 49.94036 we need 308.
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4.4. Large. This example involves large coefficients, and a rela-

tively high polynomial order.

1 plarge <- as.multipol (array (sample(1:5^5,5^5), c

(5,5,5,5,5)))

This taxes the method greatly. If we set ε = 1e − 3 and start at

c(1,0,0,0,0) the algorithm with K0 = 1,896,223 converges in

3,054 iterations to a function value of -2115. What is perhaps most

interesting is that we observe a long period in which the iterations

take larger and larger steps, instead of smaller and smaller steps.

This seems to happen in order to get away from a non-optimal

stationary point, and arrive at a lower function value.

If we use K∞ = 97,965,560 we see no convergence after 10,000

iterations. The function value is -523, the change in function value

in an iteration is still 0.030. We have not tried K1.

5. Applications

5.1. Eigenvalues and Singular Values. Consider the symmetric ma-

trix A

1 [,1] [,2] [,3]

2 [1,] 4 -2 -2

3 [2,] -2 5 -2

4 [3,] -2 -2 6

Its eigenvalues and eigenvectors are

1 $values

2 [1] 7.6298133 6.4802788 0.8899079

3

4 $vectors

5 [,1] [,2] [,3]

6 [1,] -0.1921651 0.7154086 0.6717612
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7 [2,] -0.4972795 -0.6611152 0.5618183

8 [3,] 0.8460412 -0.2260912 0.4828013

The quadratic form defined by A is the polynomial

1 > peigenv

2 , , z^0

3

4 y^0 y^1 y^2

5 x^0 0 0 5

6 x^1 0 -4 0

7 x^2 4 0 0

8

9 , , z^1

10

11 y^0 y^1 y^2

12 x^0 0 -4 0

13 x^1 -4 0 0

14 x^2 0 0 0

15

16 , , z^2

17

18 y^0 y^1 y^2

19 x^0 6 0 0

20 x^1 0 0 0

21 x^2 0 0 0

In this case K∞ = K0 = 20 and the majorization algorithm con-

verges in 14 iterations to the smallest eigenvalue and correspond-

ing eigenvector (started with x = 1 and y = z = 0 and using

ε = 1e − 10). The majorization algorithm is equivalent in this case

to the power method applied to the matrix I − 2
KV .
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Singular values of a rectangular A can be handled similarly by con-

sidering the bilinear form x′Ay , or the eigenvalue problem for I A
A′ I

.

5.2. Quadratic on Sphere. Consider the problem of minimizing

p(x) = c − 2b′x + x′Ax on the sphere. This is a classical problem

in numerical analysis, ever since the important papers by Forsythe

and Golub [1965] and Golub [1973]. It leads to the “secular equa-

tion” (A−λI)x = b, which must be solved over x′x = 1. There are

important applications to trust-region methods for general nonlin-

ear programming [Conn et al., 2000]. Note that there is no need for

A to be positive definite or non-singular in this case, because the

minimum on the sphere is always attained.

Let us use the same A as before, set c = 1, and set b1 = −b2 = −3

and b3 = 0. This leads to the polynomial

1 , , z^0

2

3 y^0 y^1 y^2

4 x^0 1 -6 5

5 x^1 6 -4 0

6 x^2 4 0 0

7

8 , , z^1

9

10 y^0 y^1 y^2

11 x^0 0 -4 0

12 x^1 -4 0 0

13 x^2 0 0 0

14

15 , , z^2

16
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17 y^0 y^1 y^2

18 x^0 6 0 0

19 x^1 0 0 0

20 x^2 0 0 0

As before K0 = 20. From x = 1 and y = z = 0 we converge to the

minimum -0.8825536818 in 74 iterations.

5.3. Squared Euclidean MDS. The squared distance scaling can be

written as minimizing the polynomial p(x) =
∑n
i=1wi(δi−x′Aix)2,

where the Ai are known positive semi-definite matrices and the

weights wi and dissimilarities δi are known non-negative num-

bers [De Leeuw, 1993].

By transforming the variables linearly we can assume without loss

of generality that
∑n
i=1wiδiAi = I and we can scale the data such

that
∑n
i=1wiδ

2
i = 1. Thus p(x) = 1−2x′x+

∑n
i=1wi(x′Aix)2. Using

the homogeneity in the problem, as in De Leeuw [1977], shows

that this is equivalent to minimizing
∑n
i=1wi(x′Aix)2 on the unit

sphere, which can be done by our majorization algorithm.

6. Discussion

Clearly the same approach to algorithm construction can be used

when majorizing a general twice-differentiable function on a sphere,

as long as we can easily calculate upper bounds for the elements

of the Hessian.

By making the sphere large enough we can also tackle the prob-

lem of minimizing functions with continuous but not necessarily

bounded derivatives.
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Appendix A. Code

1 library(multipol)

2 library(apl)

3
4 set.seed(12345)

5
6 psmally <- as.multipol (array (c (3, 4, 0, -4, -5, 0, 0, 0, 0, 0, 1, 0),

c(4, 3)))

7 pisfull <- as.multipol (array (1 : 64, c (4, 4, 4)))

8 psparse <- as.multipol (array (sample (c (0, 1), 81, replace = TRUE), c

(3, 3, 3, 3)))

9 plarger <- as.multipol (array (sample (1 : 5^5, 5^5), c(5, 5, 5, 5, 5)))

10 peigenv <- as.multipol (array (c (0, 0, 4, 0, -4, 0, 5, 0, 0, 0, -4, 0,

-4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0), c (3, 3, 3)))

11 pquadra <- as.multipol (array (c (1, 6, 4, -6, -4, 0, 5, 0, 0, 0, -4, 0,

-4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0), c (3, 3, 3)))

12
13 majPol <- function (p, xold, step = 3, itmax = 100, eps = 1e-10, verbose

= TRUE) {

14 if (!is.multipol (p)) {

15 p <- as.multipol (p)

16 }

17 d <- dim (p)

18 a <- astar (d)

19 r <- length (d)

20 s <- 1 : r

21 g <- lapply (s, function (i) deriv (p, i))

22 h <- lapply (g, function (f) lapply (s, function (i) deriv (f,i)))

23 K <- switch (step, k2 (h), k1 (h), k0 (h, a))

24 fold <- as.function (p) (xold)

25 itel <- 1

26 repeat {

27 grad <- sapply(s, function (i) as.function (g [[i]]) (xold))

28 xraw <- xold - grad / K

29 xnew <- xraw / sqrt (sum (xraw ^ 2))

30 fnew <- as.function (p) (xnew)

31 if (verbose) {

32 cat("Iteration: ",
33 formatC (itel, digits = 6, width = 6),

34 " f old : ",
35 formatC (fold, digits = 10, width = 15, format="f"),
36 " f new : ",
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37 formatC (fnew, digits = 10, width = 15, format="f"),
38 " diff : ",
39 formatC (fold - fnew, digits = 10, width = 15, format="f"

),

40 "\n")
41 }

42 if ((itel == itmax) || ((fold - fnew) < eps)) {

43 return (list (K = K, itel = itel, f = fnew, x = xnew))

44 }

45 itel <- itel + 1

46 fold <- fnew

47 xold <- xnew

48 }

49 }

50
51 k2 <- function (h) {

52 return (sum (abs (unlist (h))))

53 }

54
55 k1 <- function (h) {

56 return (max (sapply (h, function (x) sum (abs (unlist(x))))))

57 }

58
59 k0 <- function (h, a) {

60 m <- length (dim (a))

61 t0 <- 0

62 for (i in 1:m) {

63 s0 <- 0

64 for (j in 1:m) {

65 hh <- h[[i]][[j]]

66 dh <- dim (hh)

67 ah <- aplSelect (a, lapply (1:m, function (x) 1:

dh[x]), drop = FALSE)

68 s0 <- s0 + sum (abs (hh) * ah)

69 }

70 t0 <- max (s0, t0)

71 }

72 return (t0)

73 }

74
75 tstar <- function(a) {

76 a <- as.integer (a)

77 s <- sum (a)
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78 asum <- sum (s * ifelse (s == 0, 0, log (s)))

79 araw <- sum (a * ifelse (a == 0, 0, log (a)))

80 return (exp ( (araw - asum) / 2))

81 }

82
83 astar <- function (d) {

84 a <- array (0, d)

85 pd <- prod (d)

86 for (i in 1:pd) {

87 id <- aplEncode (i, d)

88 at <- tstar (id - 1)

89 a <- aplSet (a, at, id)

90 }

91 return (a)

92 }
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