
MAJORIZING A MULTIVARIATE POLYNOMIAL
OVER THE UNIT SPHERE,

WITH APPLICATIONS

JAN DE LEEUW AND PATRICK J.F. GROENEN

1. Problem

The problem studied in this paper is to minimize a polynomial

P : Rm ⇒ R over the unit sphere S = {x | x′x = 1}. Clearly the

problem is well-defined, because the minimum always exists.

We use the standard notation P(x) =
∑
αpαxα for multivariate

polynomials, where α are vectors of m integers, and

xα =
m∏
j=1

x
αj
j .

2. Algorithm

We use quadratic majorization [Böhning and Lindsay, 1988; De

Leeuw and Lange, 2009]. This requires us to find an upper bound

for the quadratic term in the Taylor expansion of P . So, using g
and H for the gradient and Hessian,

(1) P(x) = P(y)+ (x −y)′g(y)+ 1
2
(x −y)′H(z)(x −y),

Date: Wednesday 19th October, 2011 — 14h 15min — Typeset in Lucida

Bright.

2000 Mathematics Subject Classification. 49M20.

Key words and phrases. Majorization, Polynomial Optimization.
1

2 JAN DE LEEUW AND PATRICK J.F. GROENEN

where z is on the line between x and y . Thus

(2) P(x) ≤ P(y)+ (x −y)′g(y)+ 1
2
|(x −y)′H(z)(x −y)|.

Now, using ρ(z) for the spectral norm of H(z),

(3) |(x −y)′H(z)(x −y)| ≤ ρ(z)(x −y)′(x −y),

and for any submultiplicative matrix norm ‖H(z)‖

(4) |(x −y)′H(z)(x −y)| ≤ ‖H(z)‖(x −y)′(x −y)

because ρ(z) ≤ ‖H(z)‖.

Now each element of the gradient and the Hessian is, again, a mul-

tivariate polynomial. This can be used in finding upper bounds

for some conveniently chosen matrix norms. The easiest choice,

perhaps, is the `1 norm, for which

(5)

‖H(z)‖1 =
m∑
i=1

m∑
j=1

|hij(z)| =
m∑
i=1

m∑
j=1

|
∑
α
pαijzα| ≤

m∑
i=1

m∑
j=1

∑
α
|pαij|,

because if x and y are on the sphere we also have z in the sphere,

and thus |zα| ≤ 1. The upper bound in (5) is K1.

This can be improved by using the max-rowsum-norm in (4).

(6) ‖H(z)‖∞ =
m

max
i=1

m∑
j=1

|hij(z)| =

m
max
i=1

m∑
j=1

|
∑
α
pαijzα| ≤

m
max
i=1

m∑
j=1

∑
α
|pαij|,

Define K∞ as the bound on the right hand side.

It follows that the function

(7) Q(x | y) = P(y)+ (x −y)′g(y)+ 1
2
K(x −y)′(x −y),

with K equal to either K1 or K∞, is a majorization of P at y . A step

of the majorization algorithm minimizes Q(x | y) over x ∈ S.

MAJORIZE POLYNOMIAL 3

The minimum is attained at

x̂ =
y − 1

Kg(y)
‖y − 1

Kg(y)‖
,

and thus the majorization algorithm is the fixed step projected

gradient algorithm

(8) x(k+1) =
x(k) − 1

Kg(x
(k))

‖x(k) − 1
Kg(x(k))‖

.

3. Sharper Majorization

The inequality |zα| ≤ 1 can be improved. Define

τ(α, z) = log
m∏
j=1

|zj|αj =
1
2

m∑
j=1

αj log |z2
j |.

The function τ(α, z) attains its maximum τ?(α) over z with
∑m
j=1 z

2
j =

1 at

z2
j =

αj∑m
j=1αj

,

and the maximum is equal to

τ?(α) =
1
2

m∑
j=1

αj log
αj∑m
j=1αj

= 1
2


m∑
j=1

αj logαj −A logA

 ,
whereA =

∑m
j=1αj . Throughout we use the convention that 0 log 0 =

0.

Thus choosing

(9) K0 =
m

max
i=1

m∑
j=1

∑
α

exp(τ?(α))|pαij|,

is a sharper majorization of P at y , and a step of this improved

majorization algorithm minimizes (7) with this new K0 over x ∈ S.

4 JAN DE LEEUW AND PATRICK J.F. GROENEN

4. Examples

4.1. Small. Our first example uses the polynomial

P(x,y) =



y0 y1 y2

x0 3 −5 0

x1 4 0 0

x2 0 0 1

x3 −4 0 0

.
The gradient is

g1(x,y) =



y0 y1 y2

x0 4 0 0

x1 0 0 2

x2 −12 0 0

x3 0 0 0

 g2(x,y) =



y0 y1 y2

x0 −5 0 0

x1 0 0 0

x2 0 2 0

x3 0 0 0

,

and the Hessian is

h11(x,y) =



y0 y1 y2

x0 0 0 2

x1 −24 0 0

x2 0 0 0

x3 0 0 0

 h22(x,y) =



y0 y1 y2

x0 0 0 0

x1 0 0 0

x2 2 0 0

x3 0 0 0

.

h12(x,y) = h21(x,y) =



y0 y1 y2

x0 0 0 0

x1 0 4 0

x2 0 0 0

x3 0 0 0


It follows that K1 = 32, while K∞ = 30. For K0 we have to compute

the optimal weights exp(τ?(α)). They are



0 1 2

0 1.0000000 1.0000000 1.0000000

1 1.0000000 0.5000000 0.3849002

2 1.0000000 0.3849002 0.2500000

3 1.0000000 0.3247595 0.1859032

.
This shows that K0 = 28.

MAJORIZE POLYNOMIAL 5

In the Appendix we give R code that implements the majorization

algorithm using the multipol package [Hankin, 2009]. Through-

out the paper we iterate until the function decreases less than

ε = 1e − 10. The iterative majorization algorithm (8), started at

x = 1 and y = 0, converges to the function value −2.805344, at-

tained at x = −0.3588192 and y = 0.9334071. It can be verified

that this is indeed the unique minimum on the circle.

The small differences between K1, K∞ and K0 already indicate that

the choice of bound will not be very important in this case. For K1

we need 55 iterations, for K∞ 47 iterations, and for K0 44 iterations.

4.2. Full. We also tried the three-variable example

1 pisfull <- as.multipol (array (1 : 64, c (4, 4, 4)

))

We start with x = 1 and y = z = 0. For bound K1 = 54000,

the algorithm converges smoothly, albeit slowly, to a minimum

of −47.1303347324 at x = 0.3340020, y = 0.3194996, and z =
−0.8867709. This requires 4025 iterations (if ε = 1e − 10). Us-

ing K∞ = 20520 brings this down to 1907 iterations. Using K0 =
5143.482 as an upper bound leads to 510 iterations.

4.3. Sparse. A four-variable example with all coefficients zero or

one is given by

1 set.seed(12345)

2 psparse <- as.multipol (array (sample (c (0, 1),

81, replace = TRUE), c (3, 3, 3, 3)))

For K1 = 630 we need 3405 iterations, for K∞ = 166 we need 960,

and for K0 = 49.94036 we need 308.

6 JAN DE LEEUW AND PATRICK J.F. GROENEN

4.4. Large. This example involves large coefficients, and a rela-

tively high polynomial order.

1 plarge <- as.multipol (array (sample(1:5^5,5^5), c

(5,5,5,5,5)))

This taxes the method greatly. If we set ε = 1e − 3 and start at

c(1,0,0,0,0) the algorithm with K0 = 1,896,223 converges in

3,054 iterations to a function value of -2115. What is perhaps most

interesting is that we observe a long period in which the iterations

take larger and larger steps, instead of smaller and smaller steps.

This seems to happen in order to get away from a non-optimal

stationary point, and arrive at a lower function value.

If we use K∞ = 97,965,560 we see no convergence after 10,000

iterations. The function value is -523, the change in function value

in an iteration is still 0.030. We have not tried K1.

5. Applications

5.1. Eigenvalues and Singular Values. Consider the symmetric ma-

trix A

1 [,1] [,2] [,3]

2 [1,] 4 -2 -2

3 [2,] -2 5 -2

4 [3,] -2 -2 6

Its eigenvalues and eigenvectors are

1 $values

2 [1] 7.6298133 6.4802788 0.8899079

3

4 $vectors

5 [,1] [,2] [,3]

6 [1,] -0.1921651 0.7154086 0.6717612

MAJORIZE POLYNOMIAL 7

7 [2,] -0.4972795 -0.6611152 0.5618183

8 [3,] 0.8460412 -0.2260912 0.4828013

The quadratic form defined by A is the polynomial

1 > peigenv

2 , , z^0

3

4 y^0 y^1 y^2

5 x^0 0 0 5

6 x^1 0 -4 0

7 x^2 4 0 0

8

9 , , z^1

10

11 y^0 y^1 y^2

12 x^0 0 -4 0

13 x^1 -4 0 0

14 x^2 0 0 0

15

16 , , z^2

17

18 y^0 y^1 y^2

19 x^0 6 0 0

20 x^1 0 0 0

21 x^2 0 0 0

In this case K∞ = K0 = 20 and the majorization algorithm con-

verges in 14 iterations to the smallest eigenvalue and correspond-

ing eigenvector (started with x = 1 and y = z = 0 and using

ε = 1e − 10). The majorization algorithm is equivalent in this case

to the power method applied to the matrix I − 2
KV .

8 JAN DE LEEUW AND PATRICK J.F. GROENEN

Singular values of a rectangular A can be handled similarly by con-

sidering the bilinear form x′Ay , or the eigenvalue problem for I A
A′ I

.

5.2. Quadratic on Sphere. Consider the problem of minimizing

p(x) = c − 2b′x + x′Ax on the sphere. This is a classical problem

in numerical analysis, ever since the important papers by Forsythe

and Golub [1965] and Golub [1973]. It leads to the “secular equa-

tion” (A−λI)x = b, which must be solved over x′x = 1. There are

important applications to trust-region methods for general nonlin-

ear programming [Conn et al., 2000]. Note that there is no need for

A to be positive definite or non-singular in this case, because the

minimum on the sphere is always attained.

Let us use the same A as before, set c = 1, and set b1 = −b2 = −3

and b3 = 0. This leads to the polynomial

1 , , z^0

2

3 y^0 y^1 y^2

4 x^0 1 -6 5

5 x^1 6 -4 0

6 x^2 4 0 0

7

8 , , z^1

9

10 y^0 y^1 y^2

11 x^0 0 -4 0

12 x^1 -4 0 0

13 x^2 0 0 0

14

15 , , z^2

16

MAJORIZE POLYNOMIAL 9

17 y^0 y^1 y^2

18 x^0 6 0 0

19 x^1 0 0 0

20 x^2 0 0 0

As before K0 = 20. From x = 1 and y = z = 0 we converge to the

minimum -0.8825536818 in 74 iterations.

5.3. Squared Euclidean MDS. The squared distance scaling can be

written as minimizing the polynomial p(x) =
∑n
i=1wi(δi−x′Aix)2,

where the Ai are known positive semi-definite matrices and the

weights wi and dissimilarities δi are known non-negative num-

bers [De Leeuw, 1993].

By transforming the variables linearly we can assume without loss

of generality that
∑n
i=1wiδiAi = I and we can scale the data such

that
∑n
i=1wiδ

2
i = 1. Thus p(x) = 1−2x′x+

∑n
i=1wi(x′Aix)2. Using

the homogeneity in the problem, as in De Leeuw [1977], shows

that this is equivalent to minimizing
∑n
i=1wi(x′Aix)2 on the unit

sphere, which can be done by our majorization algorithm.

6. Discussion

Clearly the same approach to algorithm construction can be used

when majorizing a general twice-differentiable function on a sphere,

as long as we can easily calculate upper bounds for the elements

of the Hessian.

By making the sphere large enough we can also tackle the prob-

lem of minimizing functions with continuous but not necessarily

bounded derivatives.

10 JAN DE LEEUW AND PATRICK J.F. GROENEN

References

D. Böhning and B.G. Lindsay. Monotonicity of Quadratic-

approximation Algorithms. Annals of the Institute of Statistical

Mathematics, 40(4):641–663, 1988.

A.R. Conn, N.I.M. Gould, and P.L. Toint. Trust-Region Methods. MPS-

SIAM Series on Optimization. SIAM, Philadelphia, PA, 2000.

J. De Leeuw. Applications of Convex Analysis to Multidimensional

Scaling. In J.R. Barra, F. Brodeau, G. Romier, and B. Van Cut-

sem, editors, Recent developments in statistics, pages 133–145,

Amsterdam, The Netherlands, 1977. North Holland Publishing

Company.

J. De Leeuw. Fitting Distances by Least Squares. Preprint Series 130,

UCLA Department of Statistics, 1993. URL http://preprints.

stat.ucla.edu/download.php?paper=130.

J. De Leeuw. Using Jacobi Plane Rotations in R. Preprint Series

556, UCLA Department of Statistics, Los Angeles, CA, 2008. URL

http://preprints.stat.ucla.edu/556/jacobi.pdf.

J. De Leeuw and K. Lange. Sharp Quadratic Majorization in One

Dimension. Computational Statistics and Data Analysis, 53:2471–

2484, 2009.

G.E. Forsythe and G.H. Golub. On the Stationary Values of a Second

Degree Polynomial on the Unit Sphere. Journal of the Society for

Industrial and Applied Mathematics, 13:1050–1068, 1965.

G.H. Golub. Some Modified Matrix Eigenvalue Problems. SIAM Re-

view, 15:318–334, 1973.

R.K.S. Hankin. multipol: multivariate polynomials, 2009. URL

http://CRAN.R-project.org/package=multipol. R package

version 1.0-4.

http://preprints.stat.ucla.edu/download.php?paper=130
http://preprints.stat.ucla.edu/download.php?paper=130
http://preprints.stat.ucla.edu/556/jacobi.pdf
http://CRAN.R-project.org/package=multipol

MAJORIZE POLYNOMIAL 11

Appendix A. Code

1 library(multipol)

2 library(apl)

3
4 set.seed(12345)

5
6 psmally <- as.multipol (array (c (3, 4, 0, -4, -5, 0, 0, 0, 0, 0, 1, 0),

c(4, 3)))

7 pisfull <- as.multipol (array (1 : 64, c (4, 4, 4)))

8 psparse <- as.multipol (array (sample (c (0, 1), 81, replace = TRUE), c

(3, 3, 3, 3)))

9 plarger <- as.multipol (array (sample (1 : 5^5, 5^5), c(5, 5, 5, 5, 5)))

10 peigenv <- as.multipol (array (c (0, 0, 4, 0, -4, 0, 5, 0, 0, 0, -4, 0,

-4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0), c (3, 3, 3)))

11 pquadra <- as.multipol (array (c (1, 6, 4, -6, -4, 0, 5, 0, 0, 0, -4, 0,

-4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0), c (3, 3, 3)))

12
13 majPol <- function (p, xold, step = 3, itmax = 100, eps = 1e-10, verbose

= TRUE) {

14 if (!is.multipol (p)) {

15 p <- as.multipol (p)

16 }

17 d <- dim (p)

18 a <- astar (d)

19 r <- length (d)

20 s <- 1 : r

21 g <- lapply (s, function (i) deriv (p, i))

22 h <- lapply (g, function (f) lapply (s, function (i) deriv (f,i)))

23 K <- switch (step, k2 (h), k1 (h), k0 (h, a))

24 fold <- as.function (p) (xold)

25 itel <- 1

26 repeat {

27 grad <- sapply(s, function (i) as.function (g [[i]]) (xold))

28 xraw <- xold - grad / K

29 xnew <- xraw / sqrt (sum (xraw ^ 2))

30 fnew <- as.function (p) (xnew)

31 if (verbose) {

32 cat("Iteration: ",
33 formatC (itel, digits = 6, width = 6),

34 " f old : ",
35 formatC (fold, digits = 10, width = 15, format="f"),
36 " f new : ",

12 JAN DE LEEUW AND PATRICK J.F. GROENEN

37 formatC (fnew, digits = 10, width = 15, format="f"),
38 " diff : ",
39 formatC (fold - fnew, digits = 10, width = 15, format="f"

),

40 "\n")
41 }

42 if ((itel == itmax) || ((fold - fnew) < eps)) {

43 return (list (K = K, itel = itel, f = fnew, x = xnew))

44 }

45 itel <- itel + 1

46 fold <- fnew

47 xold <- xnew

48 }

49 }

50
51 k2 <- function (h) {

52 return (sum (abs (unlist (h))))

53 }

54
55 k1 <- function (h) {

56 return (max (sapply (h, function (x) sum (abs (unlist(x))))))

57 }

58
59 k0 <- function (h, a) {

60 m <- length (dim (a))

61 t0 <- 0

62 for (i in 1:m) {

63 s0 <- 0

64 for (j in 1:m) {

65 hh <- h[[i]][[j]]

66 dh <- dim (hh)

67 ah <- aplSelect (a, lapply (1:m, function (x) 1:

dh[x]), drop = FALSE)

68 s0 <- s0 + sum (abs (hh) * ah)

69 }

70 t0 <- max (s0, t0)

71 }

72 return (t0)

73 }

74
75 tstar <- function(a) {

76 a <- as.integer (a)

77 s <- sum (a)

MAJORIZE POLYNOMIAL 13

78 asum <- sum (s * ifelse (s == 0, 0, log (s)))

79 araw <- sum (a * ifelse (a == 0, 0, log (a)))

80 return (exp ((araw - asum) / 2))

81 }

82
83 astar <- function (d) {

84 a <- array (0, d)

85 pd <- prod (d)

86 for (i in 1:pd) {

87 id <- aplEncode (i, d)

88 at <- tstar (id - 1)

89 a <- aplSet (a, at, id)

90 }

91 return (a)

92 }

Department of Statistics, University of California, Los Angeles, CA

90095-1554

Econometric Institute, Erasmus University Rotterdam, P.O. Box 1738,

3000 DR Rotterdam, The Netherlands

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

E-mail address, Patrick Groenen: groenen@few.eur.nl

URL, Jan de Leeuw: http://gifi.stat.ucla.edu

	1. Problem
	2. Algorithm
	3. Sharper Majorization
	4. Examples
	4.1. Small
	4.2. Full
	4.3. Sparse
	4.4. Large

	5. Applications
	5.1. Eigenvalues and Singular Values
	5.2. Quadratic on Sphere
	5.3. Squared Euclidean MDS

	6. Discussion
	References
	Appendix A. Code

