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Wo racantly developed a convergenca theory for multidimenatonal scaling nlgorithmuclonely
related to the Guttman«Lingoes-Roskam C-matrix method, The theory uses {deas from convex
analynin If applied to goneral Minkowskl metrics, but in the Buclidean case It can be dorlved
completely from the Cauchy-Schwartz inequality. .

This paper consists of three parts. In the first part we repeat some of the knownresulta for
the Euclldean case in n silghtly modified and extended form. In the second part we extend the
approach to partltioned data sets and loss functions that are normalized dlfferently. And In the
third part we extend the theory to Euclldean individual differences scallng.

Proofs of the theorems in the first part of the paper have been published elsewhere (De
Leeuw, 1977a). The second part of the paper s based on De Leeuw (1977b) and will be elab-
orated on in ﬂ’oung, De Leeuw, & Takane (1977). The third part is closely relnted to Heiser
{1975) and will be published in more detall elsewhere (De Leeuw & Helser, 1977).

11
In metric multidimensional scaling we minimize loss functions of  the
form:

49) 5+(X) = zszf'z;lwijk(a ik~ QXN

Here X is the n x p configuration matrix, assumed to be centered, the 3,
are given dissimilarities, the wy;, are given weights, and the d;;(X) are Eu-
clidean distances, defined on the rows of X by:

@ 45Xy = (5 - %)(x; - x)).

In De Leeuw [1977] a simple convergent algorithm for minimizing S,(X) was
proposed, which is closely related to Guttman's C-matrix method [1968]. We
review this algorithm briefly, without going into all the technical details.
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1:2

As a first step in the derivation of the algorithi we use the homogeneity
of the distance function d,(X). Because d;;(8X) = Bd;;(X) for 21l 820, we
can minimize S,(X) by minimizing:

@) 2033wy By - By (X))

over all non-negative B and over all normalized X, We call a centered confi-
guration matrix X normalized if #(X) = 1, where

1) (X)) = 2y 3, 5wy 4] (X).

For convenience we also assume that the dissimilarities A are normalizedin
the sense that 7(A) = 1, where

(5) 7}1([\) = ZkZ,E,’W“kﬁhk.
The minimum of (3) over 8 > 0 for a fixed normalized X is 1 - p*(X), with:

(8) P(X) = 3y, 3 Wy 8y dyy (X).

The minimum is attained for 8 = p(X). Thus, we can minimize Se(X) by max-
imizing p(X) over all normalized configurations. If X solves this maximiza-
tion problem, then p(X)-X minimizes So(X).

1:3
The second step in the derivation of the algorithm uses matrix notation.
From (4) it follows that there is a matrix V such that

) 7(X) = rXVX,

and from (6) it follows that there is a matrix B(X), depending on X, such that
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(8) p(X) = rXBX)X.

More precisely, V has off-diagonal olements

() Vipa=Za (Wygpe - Wy

and B(X) has off-diagonal elements

(9b) by (X) = = Sy WipeBiye + Wyindyae)/diy (XD,

The diagonal elements of both V and B(X) are then defined in such a way
that their rows and columns sum to zero. B(X) is closely related to the ma-
trix C (X) discussed by Guttman {1968}, ¢f., also Lingoes & Roskam [1973].
Some properties of B(X) are discussed by Guttman [1968] and by De Leeuw
{1977]. Observe that we have not derived B(X) by differentiating S.(X), but
simply as a notational device that makes it possible to write p(X) as if it
was a quadratic form on the space of configuration matrices. In this notation
the fundamental inequality on which our form of scaling is based can  be
written simply as

(10) p(X) = rXB(Y)Y.

The above inequality is true for all pairs of configuration matrices X,Y. It is
derived in De Leeuw [1977] by a straight forward application of the Cauchy-
Schwartz inequality to the definition (6) of p(X). The inequality shows that
p(X) majorizes a family of linear functions, and the algorithm derives from
this fact, Consequently, the algorithm is not based on local linear approx-
imation, but on global linear minorization. In the terminology of convex an-
alysis it is not a gradient but a subgradient method.

1:4
We shall now describe the actual algorithm. It turns out to be identical
to Guttman’s C-matrix method, which was derived by differentiation and by
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setting the partials equal to zero. We use a subscript p for iterations. Sup-
pose Xp is our current best normalized solution., We first compute (using the
Moore-Penrose inverse V* of V)

> ‘57.\_ o

(11a) Y# = V"B(X#)X#.
and we then compute X#H by normalizing YI‘:
(11b) X#“ = Y#/q(Yﬂ).

In fact, it is clear from (11a) that it is not at all necessary to normalize; if we
substitute (11b) into (11a) we get the more direct algorithm:

(11c) Y#“ = V+B(X;1+1)Xy+1 = V*B(YF)Y#.
From (11a) and (8) we obtain

. (12) trX’;VYIL = trX"lB(X#)X“ = p(Xy),
which implies, by using Cauchy-Schwartz and (7),
13) P&y) < LX) VX rYp VY 1% = 9(Y ).
On the other-hand, from (11a), (11b), and (10),

(14) 71(Yl‘) = ”X;LHVY;A = erl'“,B(X#)X# < ()(X,“,).

Taken together (13) and (14) imply that both p(X,) and 1;(Y,‘) are bounded in-
creasing sequences, converging to the same limit. Because both X”a.nd XFH
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are normalized

(15) V’-”(X/L —"X{H‘l )V(XI‘ - X““) =1~ erI’—‘VX#”
=1- LrXPVY#/q(YF) =1~ P(Xp.)/’l(Yu)‘

The above implies that ||X, - X;1+1H converges to zero, which, in tum, im-
plies, by a familiar theorem of Ostrowski, that either the sequence XH con-
verges or that X, has a continuum of accumulation points, with each accumu-
1ation point having the same value of p(X) and n(X). In this specific sense
the algorithm converges. In theory, there may be pathological casesin which
it is not strictly true that we have convergence, but in those cases we clearly
would be satisfied with any one of the accumulation points.

For completeness, we also prove that the simpler algorithm (11¢) conver-
ges in the above same sense. We have p(Y#) = P(X;LH)"I(Y;J Thus, if
p(X#) and q(Y#) converge t0, Say, p., then p(YP) converges to pl, Moreover,
the identity

16) lr(Y# - Y,u 1)V(Y,,L - Yp.+ 1) = UZ(Y,;) + TIz(Yln 1) - QU(YF}p(X#“)

proves that |[Y, - Yy+1|] also converges to zero. All accumulation points of
both X“ and Y# are stationaty points of the algorithm, which implies that they
, also satisfy the stationary equations. For some technical problems connected
with the possibility that the loss function is not differentiable at an accumul-
ation point, which occurs if at least one of the d;;(X) vanishes, Wwe refer to
De Leeuw [1977].

1:5

We now explicate metric unidimensional scaling, a special case having
both theoretical and practical interest, as Guttman [1968] has already pointed
out. 'The busic algorithin becomes (in the simplest case where all weights
are equal and thore are no replications):

5 e
an Xt = Ej-a-u-(xl - X)) = 5,8, sign(x, ~ X).
1)

The above means that x*, the update of x, depends only on the rank order of
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the x;. Because there are only a finite number of possible rank orders andbe-
cause the algorithm cannot repeat any given rank order, this implies that we
converge on a stationary point of (17) in a finite number of steps, This sounds
nice, but, unfortunately, it only reflects the fact that the one-dimensional me-
tric MDS problem is a combinatorial optimization problem. If we do not know
(or can not assume) what the optimal order of the points on the dimension is
then it becomes almost impossible to find the global optimum (if n is at all
large). If, however, we do know the order (or can assume it for scaling pur-
poses), the problem becomes very simple indeed. We have to minimize:

18 o(x) = 308 - s4(x; - ;)]

over all x that satisfy s,,(x; - x,)> 0. The s;; are known numbers equal to
+1. But minimizing (18) is easily seen to be equivalent to minimizing:

(19) (% - 4)3
with
20) b= 01388,

over all x satisfying s;;(x, — x;) > 0. And, this last problem is a simple
monotone regression problem, Thus: if the order of the points on the dim-
ension is known (or fixed), then the metric one-dimensional MDS problem is
a monotone regression problem; if, on the other hand, the order is not known
or assumed, we then need a combinatorial search over the set of all possible
orders, and the finite algorithm (17) does not help very much.

1:6 - :

In De Leeuw [1977] we have also generalized the basic algorithm (11) in
such a way that it can also solve nonmetric scaling problems. This general-
ization turns out to be surprisingly simple. Define the loss function:

(1) SiX,A) = Ei Zy 3wy (8150 - Ay (P75 4wy (X).

Now the loss is a function of both the configuration X and the dissimilarities
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6”,(, which are also partially unknown. We do know that the admissible dis-
similarity quantifications are in some convex cone I" (usually the cone of mon-
otone matrices) and that we have to choose the optimally scaled §,,, fromthis
cone. In minimizing S,(X,A) we first apply homogeneity again, as in §1:2. We
have to minimize:

(22) Zkzizj Wi]k[asijk - Bdij(x)]z/zkzizj Wuk[Bdu X

over all ¢, > 0 and over all normalized configurations and dissimilarities.
Normalized configurations are defined by 7 (X) = 1, as before, normalized dis-
similarities satisfy n(A) = 1, where

(23) (D) = 2, 35wy O
Moreover, we also define
@4 P A) = By 5y % wy ) 8y jpeds (XD

The minimum of (22) over all a and S for fixed normalized X and Aturns out
to be 1 - p*(X,A). Thus, minimizing 8,(X,A) can be accomplished by maximi-
zing p(X,A) over all normalized X and over all normalized admissible A.

Now, define ~(X) as the maximum of p(X,A) over the normalized admissible
A, for fixed normalized X, and define A(X) as the maximizer. Thus, r(X)=
pIX,A(X)} and maximizing p(X,A) is equivalent to maximizing 7(X) over all
normalized configurations, In mathematical programming, the  process of
eliminating one set of variables by ‘inner maximization' is called projection;
in the MDS literature we could use Guttman’s terminology [1968}and call 7 (X)
the goodness of fit measure for a single phase algorithm, By generalizing
the matrix notation of §1:3 in an obvious way, we can write:

(25) 7(X) = rXBEAX)X,

and it turns out that even the inequality
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(26) #(X) > rXB(Y,A(Y)Y

remains valid. As a consequence, the complete convergence proof of §1:4 ]
also remains valid for the nonmetric algorithm:

(27a) Yy = BE AKX,

@) Kyey = Yu/n(¥p).

The only difference between the metric and the nonmetric case is in the
computation of Y,,, To find Z(X ) we have to solve a normalized cone re-
gression problem [De Leeuw, 1977b], which usually transforms to a simple
monotone regression problem (but in the additive constant case it is a simple
linear regression problem). Observe that our use of projection forces us to
employ monotone regression and not, for example, rank images. Only in this
sense is our algorithm (27) equivalent to Guttman’s single-phase C-matrix
algorithm, It is, of course, perfectly legitimate to use the rank images A* (X)
in the earlier iterations (this may speed up the process, cf., Lingoes & Ros-
kam [1973]). As long as one switches to A(X) in the final iterations conver-
gence will be achieved.

2:1

It has been pointed out by Roskam [1968], Kruskal & Carroll [1969] that
loss function (21) is not appropriate for partitioned data sets, i.e., data sets
in which the dissimilarities can be partitioned into subsets in such a way that
all restrictions are within subsets and no restrictions are between subsets.
A familiar special case is matrix partitioning, in which there are m  cones:
Iy, Iy ..., Iy and A, is restricted to be in ', In these cases we would like
to minimize the partitioned loss function:

~

(28) S, (X,A) = Z 135wy [y - 4y (X)1/ 2, Zywyy 81 (X1

Unfortunately, however, it is impossible to apply the elegant analysisof§1:6
to this particular loss function. The main reason that we can not is that we
can not define normalization as
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(29) 25w, dE (X)) = mo1

for all k=1,2,...,m. 'The latter would be a requirement that is much too strong
in the general case; in fact, the system (29) may not even have a solution.
It does have a solution when W, = w,;; for all %,/ and in that case (whichis
the ordinary case in practice), it tuns out that the analysis in §1:6 can be
used and, in fact, the very same algorithm (27) minimizes (28) . The only
difference is that in the partitioned case we must solve m different regres-
sions, while in the unpartitioned case, only one regression over all m matrices
is required.

In the general case (where not all weight matrices are the same), the
single-phase approach cannot be used any more, but we might try a double-
phase (or normalized alternating least-squares) approach. Minimizing$§, (X,A)
for tixed X over A is easy enough, but minimizing S,(X,A) over X for fixed A
is not at al)l simple and we do not see any method of simplifying this problem.

The above considerations suggest that we use a different loss function in
the matrix conditional case with weights. Consider:

G0 85(X,A) = Zp 23wy (Bujie — Ay (K2 Ty w58y b

In the case of (30) it is possible to require that
31) EiZ,wUkS},k =m-1,

because the cones [, are completely independent and we can introduce sep-
arate normalization factors a, for each of the cones. Minimization of S,(X,A)
under the conditions (31) is again possible by the algorithm (27) with some
trivial modifications in the normalization. But, unfortunately, the minimization
of (30) under the conditions (31) is not equivalent to unconditional minimiza-
tion of (30). In the unpartitioned case the normalization conditions 7(X)=1
and n(A) = 1 could be imposed without loss of generality. If we try to apply
the same tactic here, the denominators do not vanish and the simplifications
of §1:6 are not possible, Again, the exception is the case of equal weights,
but this is not surprising, since Kruskal and Carroll and, more generally, De
Leeuw [1977b] have already shown that in the equal weights case normalizing
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loss functions by using dissimilarities or distances does not make 3 difference.

It is possible, however, to apply a double-phase alternating least-squares
procedure to (30). This is easily seen. Minimizing (30) over X for fixed A
is equivalent to an ordinary metric MDS problem and we can use one Or Sev-
eral steps of (11). Minimizing (30) over A for fixed X means solving m sepa-
rate normalized cone regression problems, which reduce to monotone or lin-
ear regression problems in the usual cases. From the general theory of alter-
nating least squares, these double-phase algorithms converge, independent
of the number of steps (11) one takes in the first phase.

We summarize the situation for the matrix conditional case. Loss function
(21) often gives unsatisfactory solutions. Loss function (28) is betterin this
respect, but there does not seem to be a simple algorithm  to minimize it,
comparable to the algorithm in §1:6. An exception is the case in which the
weight matrices are the same. Loss function (30) can be minimized by our
basie nonmetric algorithm (27), if we impose the conditions (31). If we do not
want to impose these conditions, we need a double-phase algorithm, excepting
again the case in which all weight matrices are equal.

2:2

The situation becomes slightly more complicated in the row-conditional
case, i.e., in those cases in which dissimilarities are compared only within
rows and there are mn cones I';. In a sense, the matrix conditional algorithms
can be used for some row-coiditional analyses as well. Suppose Wy =Wy 8
i.e., weight matrix k is empty, except for row k. Define §,, = §;;,. Then:

(32) Sy(X,A) = E,IE,WUI,BU ~ dl,(X)l’/EJw,,'df, .
In some cases, however, we may need a more general loss function.

(33 S4X,A) = Ekziizjwljk[‘sljk - dlj(x)]’/z;wljk5fjk‘-

-

Again it turns out that the loss functions with d,,(X) instead of 8y;i in the
denominator ate inferior from the point of view of the simplicity of algorithms.,
As Kruskal [1964] has already obsesved, they seem slightly superior from the
intuitive point of view, such that we wish to do as little arithmetic as pos-
sible on the dissimilarities themselves. It is not known, at the moment, if
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the superior algorithmic properties of our loss functions also makes themmore
more well-behaved numerically.

2:3

There are other forms of partitioning which are interesting, for example,
the one suggested by the method of triads [Roskam, 1970]. The principle of
loss function and algorithm construction remain the same, Either we have to
impose explicit normalization conditions, such as (29) or (31), or we must
work with the implicit normalizations that are imposed by the minimization
routine. In the first case, we can apply the single-phase approachof§1:6,but
the normalizations we need may be much too restrictive or even contradictory.
In the second case, there are no problems of this kind, but we have touse the
less elegant (albeit more flexible) double-phase algorithm based on (11) and
normalized cone regression. Using implicit normalizations may lead to de-
generate solutions (as is sometimes found in unfolding, for example), using
explicit normalizations, on the other hand, may lead to well-defined but unin-
teresting solutions.

As a further application of these considerations, we shall now study the
loss functions which are obtained if we replace the sum of squares in the
denominator with a sum of squared deviations from the mean (Kruskal’s stress
formula 2 is the simplest example, while Roskam’s stress formula 3isa more
complex one), »Again, we must choose between explicit and implicit normali-
zations, Consider:

(34) S, (X'A) = Ekxlz_‘w,”‘[a”k - d”(X)J’/ZkE,ZJW“k(ﬁ,Jk - 5)1
with
(35) § = ZkEiEJWUkSUk,

where we suppose that

(36) Ekzlzjwm(: 1.

It is obvious from (34) that we can use explicit normalizations; minimiz-
ing (34) is equivalent to minimizing the numerator on the condition that the
denominator is unity (cf., Guttman’s **soft-squeeze’’ [1968]). By applying B8
as in §1:2, this is equivalent to minimizing 7*(A) - p*(X,A) on the condition
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that n?(A) - 5% = 1. In this case the projection procedure of §1:6 - would be
tantamount to minimizing the ratio of two non-negative quadratic forms in A
over the cone I". This is a nontrivial problem and, in general, it cannot be
solved by a finite procedure. Thus, the approach of §1:6 is theoretically fea-
sible, but practically more complicated than in the case of S,(X,A).

Consequently, we have to use the two-step alternating least-squares pro-
cedure again, if we want to minimize (34) efficiently. This means, in . this
case, that we apply the metric algorithm (11) in the first phase. In the second
phase we have to solve a normalized cone regression problem again, We can
find the optimal ;;, by first solving the cone regression problem of minimiz-
ing

37 Ekzizjwlik[auk - ([@;X) - DI

over the admissible 815, and then by adjusting the mean and scale factors af-
terwards [De Leeuw, 1977b]. In (37) we have used

(38) d= zkzlzjwljkdij(x)'

The same reasoning applies in those cases where we want both to partition
the data and to modify the denominator of the loss function, More conplicated
modifications of the denominator are also sometimes desirable,

3t

We shall now apply our method to individual differences scaling. More
specifically, we define the distance between points i and j on occasion k& by

G1) A1 (X,Cy) = (%) - X)) (x, - X))

which generalizes formula (2) in an obvious way. The matrix C, isrestricted
to be symmetric, but in some cases more restrictions may be imposed. It usu-
ally makes sense to require that C,. be non-negative definite, for example, and
in the popular Horan-Bloxom-Carroll-Chang-Harshman model, we require that
Cyis diagonal or diagonal and non-negative.
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Because of the extra parameters C, in (39) the problems with partitioned
data sets have to be considered all over again for individual difference mod-
els. We shall restrict ourselves to a relatively simple, but very common,
special case: matrix conditional data without weights. We use the loss
function;

(40) SG(XvaA) = Ekizlgj[ﬁuk - d”(X,Ck)]’/EiEdej (X,Ck)}.

By using homogeneity, this reduces, in the familiar way, to maximization of

(41) Po(X,CA) = 2y pb (X, Cy Ay ),
where
(42) P (X, Cu, Ay) = 245,85, d,;(X.Cy ).

The normalization restrictions are 7{A, ) = 1 for all & and 7X,Cp) =1 for all
k. We maximize (41) by a three-phase process. Maximization over the admis-

sible A, for fixed X and C is easy, but maximization over X for fized Ay and
C is more difficult. If Cy is positive definite, however, the Cauchy-Schwartz

inequality once again comes to our aid.
We first use the inequality in the form:

(43) 4y (X,Cy) = 145, (Y, Ci )l 1%y — x)Cye(y, - ¥y
Dofine tho matrices Z, by:

(44) zf, = EJ:IEtfl[(Bljk + 8y M/ (Y, Ci)ley oy - ¥50)-

Then, generalizing (10)

(45a) P (X,Cy, Ay) > rX7Z, (Y),
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while

(45b) Pe(X.Cic,Ay) = trX 7y (X).

Results (45) generalize the use of C-matrix type algorithms to individual dif-
ference scaling. But, it is not entirely obvious as yet how to use (45)in the
maximization of (41). The first possibility for consideration is:

(46) po(X.C.A) > 5,5 7 x, %, 30zl 2

We now have a quadratic form, majorized by p,(X,C,A). The normalization
condition 7(X,Cy) = &rC, XX = 1 for all k is not specific enough for our pur-
poses. If C,is not restricted to be diagonal (three-mode scalingor IDIOSCAL),
then we can require, without loss of generality, XX = I and uC,=1 for allk;
if C, is restricted to be diagonal (INDSCAL-PARAFAC), then we can require
diag(X’X) =] and also &rC, = 1. Maximizing (46) under quadratic constraints
such as XX = I or diag(X’X) = ] is not easy. But again, the majorization prin-
ciple can be used in combination with the Cauchy-Schwartz inequality.

If we denote the quadratic form in (46) by &(X,X), then Cauchy-Schwartz
says that £(X,X) > £1(Y,Y)E(X,Y). It follows that we can maximize £(X,X )
by an iterative algorithm that chooses XI‘“ as the maximizer of the linear
form f(Y,X#) over all normalized Y. If the normalization is XX = I, then we
must solve a Procrustes problem in each step; for the normalization, on the
other hand, diag(XX) = I, the steps are much simpler.

There is another, more direct, way in which we can use (45) in the maxi-
mization of (41). If we apply Cauchy-Schwartz directly to (41) we find:

4n p(X,C,8) 2 ps(Y,C, )3 pi (Y, Cr, A )1 (X, Gy A ).

If we define Z, or more precisely, Z(Y) by

(48) 2y = ps(Y,C,A)Z, p (Y.Cy Ay )zl -

then
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(49a) pd(X,C,A) = trX4(Y),
and

(49b) p#(X,C,A) = rXZ(X).

Now (49) can be used in the obvious way. In any case, we have proved that
maximization of (41) over X for fixed C and A can be done if we use the ma-
jorization principle and the Cauchy-Schwartz inequality twice. Of course, it
is neither necessary nor desirable to solve the maximization problem in this
second phase completely; if we use (49), for example, we will usually solve
only one Procrustes problem in this phase and then proceed to the next phase.
The question of what the best policy is with respect to the number of inner
iterations, the path to be followed through the various phases, etc., has not
as yet been answered. It seems difficult to give an analytical answerand con-
siderable numerical experimentation is required before we could give good
practical guide lines, It seems fairly obvious, however, that using the major-
ization principle twice in one phase will make the inequality estimates less
sharp and the convergence slower than in the non-individual-differences case.

In phase three, we have to maximize (41) over C for fixed X and A, which
comes to the samé thing as maximizing (42) over C, for fixed X and A,. We
must consider two Separate cases: either C, is diagonal or it is not. In both
cases the normalization is #C, = 1 and in both cases we must take care that
Ci is non-negative definite, for otherwise the second phase may not work in
the next cycle. One easy way to guarantee that C, is non-negative definite
is to write C, = T/T,, with T, square matrices of order p, and to use the T,
as parameters. The constraint is now #'T,T, = 1; symmetry and non-negative
definiteness are guaranteed automatically. To maximize (42)in this third
phase we use, surprisingly enough, the majorization principle and the Cauchy-
Schwartz inequality, which is:

(50) dU (Xka) 2 [dlj(X7Sk)]-1(x1 - Xj )Tksk(xl - Xj)‘

If we define the matrix

(51) G = %% [0 /diy (K 8)I% - %)% — %,
then
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(52) X, T, Ay ) 2 orT, GS,.

In the IDIOSCAL case, the above means that we must choose the successor of
Ty proportional to T\, G; in the INDSCAL case, we must choose the sucecessor
proportional to diag(T, G). Again, we can make one or several inner iterations
based on (52) in phase three of the algorithm.

3:2

After all these formulas, it seems sensible to look back and see what we
have accomplished. In the first place, the alporithm of §3:18eems to be the
first of its type that directly uses distances (see, however, PINDIS, this book).
INDSCAL and IDIOSCAL first have to transform to scalar products, which
makes nonmetric extensions of these approaches complicated. = ALSCAL
[Takane, Young, & De Leeuw, 1977] must first transform to squared distances,
which makes treatment of ordinal data comparatively simple, but which makes
the analysis of the additive constant problem complicated. Moreover, it seems
to us that if the model is formulated in terms of distances, then the loss func-
tion should preferably be the normalized sum of squares of deviations between
optimally scaled dissimilarities and distances and not squared distances and
not scalar products. In the second place, it is obvious that the majorization
approach is a natural one, especially for distances of the form (39). It makes
it possible to treat the case with O diagonal and with C full in very much the
same way; it also makes it possible to treat metric and nonmetric applications
in very much the same way. The first advantage is also true for the scalar
product approaches (Schonemann [1972]; De Leeuw & Pruzansky [1977c]), but
they fail in the second respect. The second advantage is also true for
ALSCAL, but it fails in the first respect. It is clear that our approach canbe
extended to row-conditional or unconditional data without too much trouble,
although all the possible special cases have not as yet been investigated. By
using the results of De Leeuw [1977a] wé can easily construct individual dif-
ference versions of general Minkowski metrics; more specifically, of power
metries and apply the majorization approach to the resulting loss functions.
It is clear, however, that general Minkowski metrics lead to more unpleasant
computational”problems and, furthermore, we do not know how practical these
models and algorithms will be, It seems to us that since the majorization
approach can be applied to Minkowski metrics without any theoretical compli-
cations, this constitutes an additional advantage. Both sealar product and
squared distance approaches critically depend upon the Euclidean assumption,
If the distances are non-Euclidean, there is no reason at all to square and
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double center. The majorization approach can also be applied to dual algo-
rithms for individual differences scaling. Dual algorithms do notinsiston the
model (39); they allow each subject his own configuration matrix Y, , butthey
penalize if the Y, do not satisfy the constraints Y, = XT,, with T,  either
full, or diagonal, or the identity. This generalizes an idea of McGee {1968]
and is explained more fully in Heiser [1975] and De Leeuw & Heiser [1977].
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