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MULTIDIMENSIONAL SCALING WITH
RESTRICTIONS ON THE CONFIGURATION

Jan DE LEEUW and Willem HEISER
Department of Data Theory, University of Leiden, Netherlands

A convergent algorithm model for multidimensional scaling with restrictions is
described. The algorithm model is applied to accelerating MDS iterations, to fitting
models similar to the ones used in the analysis of covariance structures, and to fitting
individual differences models.

1. Introduction

It is difficult to define the precise methodological status of multidimen-
sional scaling (MDS) techniques, and it is equally difficult to evaluate their
usefulness. There are many applications of MDS, with results that are
apparently regarded as useful by the people who have used the technique.
Most of them, of course, have been in the social and behavioural sciences.
Bibliographies covering most of these applications have been compiled by
Bick et al [3] and by Nishisato [35]. Recently MDS has also been applied,
apparently with success, in geography (Colledge and Rushton [11]), cartog-
raphy (Gilbert [22]), genetics (Lalouel [32]), archeology (Kendall [27]), and
biochemistry (Crippen [13, 14]).

If we study these applications carefully, it turns out that there are at
least four different types. The first possibility is that a Euclidean spatial
structure is known to exist, but is (partially) undetermined. We want to
recover the structure ‘optimally’ by using MDS on the inexact or incom-
plete distance measurements. This type of application does not seem to
occur in the behavioural sciences, but an example is Crippen’s method for
the conformation of molecules (Crippen [13, 14]). The second type of
application arises if we know that a particular spatial structure exists
(which is not necessarily Euclidean), and we want to compare an ‘optimal’
Euclidean map, based on dissimilarity data, with this known structure. In
the behavioural sciences applications of type II occur in multidimensional
psychophysics, more particularly in acoustics (an early example is Levelt et
al. [33]). Most of the applications of MDS in geography and cartography
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are of this type. An impressive example is the ‘maps from marriages’ paper
by Kendall (28). The third type of application starts with a theory about
dissimilarity data, which implies that they are related in a well-defined way
to Euclidean distances. We want to test the theory and perhaps find the
‘hidden structure’. Applications of this type occur in mathematical psy-
chology. According to Shepard [41, p. 374-375] this is the type of applica-
tion he had in mind when he started developing MDS as we know it now.
The developments in measurement theory (Beals et al. [1]) and in statistical
methods for MDS (Ramsay [37, 38]) are mainly relevant for applications of
this type. The problems of archeological seriation (Kendall [27], Wilkinson
[45]), and of genetic mapping of linkage groups (Lalouel [32]) are also of
type III.

For the fourth type of application there is no known a priori structure,
and there'is no theory which even tells us that a spatial representation is
appropriate. We merely want to find an ‘optimal’ spatial representation of
our dissimilarity data, and we apply MDS because ‘a picture is worth a
thousand numbers’. More sophisticated arguments for this approach are
based on invariance (we get the same picture from a wide variety of
dissimilarity data), stability (the spatial representation has greater statisti-
cal reliability than the individual dissimilarity estimates), or communicabil-
ity (cf. Shepard [41, p. 375-376]). Approximately 90% of the applications
in the behavioural sciences have been of this fourth type. Measurement
theory and traditional statistical theory are not very relevant here, because
they require the formulation of a definite algebraic or stochastic model.
MDS, as used in type IV, is a sophisticated technique for making plots. It
is obvious that the four types of applications differ because they require
different levels of external information (or theory). Type I requires more
theory than type II, type II more than type III, and type III more than
type IV, which seems to require no theory at all. In all cases, however, the
external information is used only after the MDS analysis has been com-
pleted. It is used in the interpretation of the results, to relate them to the
already existing body of theory. It is not incorporated directly into the
analysis, because most current MDS programs do not have the capability
to incorporate restrictions.

If we analyze the type IV applications in detail, however, it turns out
that even there some kind of external information often is available, which
is again used in the interpretation phase. The theory is, of course, much
less specific than the theory used in type I applications. As a consequence
it is often difficult to relate MDS results to external information, and the
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interpretations can easily become far-fetched. In type I or type II applica-
tions the existing theory is so specific that interpretation of MDS results is
unnecessary, they either make sense or they do not make sense. In type IV
applications there is so much freedom that it is almost always possible to
make some sort of sense out of MDS results. It follows from this discus-
sion that it would be desirable to have MDS algorithms, which can
incorporate all kinds of external information in the form of restrictions on
the configuration. Such algorithms could be used in type I or type II
situations, but there they would probably give the same results as unre-
stricted MDS methods. They will be especially useful in type III and type
IV situations, in fact they tend to make type IH applications out of type IV
applications. We need ‘confirmatory’ MDS if we want to use our prior
information efficiently.

2. Related work

For the very same reasons we discussed in the previous section a
number of special methods have been proposed in the recent MDS
literature which impose various kinds of restrictions on the solutions. In
order to compare them with the method we are going to propose we need
some terminology and notation. We follow Kruskal [31] as closely as
possible. The data of a classical MDS problem are collected in a matrix
A={4;} of dissimilarity measurements between n objects. We want to find
a configuration matrix X, of order nXp, in such a way that d(X) is
approximately equal to &, for all i,j=1,...,n. Here 4 {(X) is the Euclidean
distance between rows x; and X;, interpreted as points in p-dimensional
space. Thus

42(X) = (5= %) (x,~ ).

‘Approximately equal to’ is usually defined in terms of some real-valued
loss function, which measures departure from perfect fit. If this is the case,
then the MDS problem can be formulated in a more specific way: we want
to find X in such a way that the loss function is minimized.

A more general problem occurs if we have m dissimilarity matrices A,.
We then want to find configuration matrices X, in such a way that d,(X,)
is approximately equal to 8 forallij=1,...,n and for all k=1,....m. If
the X, are otherwise unrestricted the problem is equivalent to m separate
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classical scaling problems, and consequently not of independent interest. It
is therefore not surprising that the problem of imposing restrictions on
MDS configurations started in the area of individual differences scaling.

The key paper in this area is Carroll and Chang [7]. They discuss
restrictions of the form X, =YW,, with Y nXp, and W, pXp and
diagonal. Moreover they present an elegant algorithm for fitting this
model. The same model and algorithm were proposed, independently and
in a different context, by Harshman [25]). We shall refer to this model as
the INDSCAL model, using the name of the Carroll-Chang computer
program. In the same paper Carroll and Chang also discuss (briefly) the
more general model X, = YC,, with Y as before, and with C, again p Xp,
but not necessarily diagonal. This is the IDIOSCAL model, named after
another Carroll-Chang computer program. In [26] Harshman proposes the
PARAFAC-2 model, which is X, = YW, Z’, with Y as before, with W,
diagonal, and with Z another p Xp matrix. We shall simply call this
PARAFAC because in our context PARAFAC-1 is the same thing as
INDSCAL. A general discussion of the algebraic properties of these
models, their interrelationships, and of the corresponding algorithms, is
given in Carroll and Wish [8], Kroonenberg and DeLeeuw [29], and De
Leeuw and Pruzansky [20].

Existing MDS algorithms can be divided into two classes. In the first
place there are the gradient algorithms. They include MDSCAL, KYST,
SSA, and MINISSA. For MDSCAL and KYST we refer to Kruskal [30,
31], for SSA and MINISSA to Lingoes and Roskam [34]. And in the
second place there are the alternating least squares algorithms. These
methods divide the parameters of the problem into subsets, in such a way
that minimizing the least squares loss function over each subset, with the
other subsets fixed, is a comparatively simple problem. Kruskal [31, p. 309]
calls such subproblems, and the parameter subsets which define them,
‘nice’. The alternating least squares algorithms then cycles through its nice
subproblems until convergence. Examples are INDSCAL and ALSCAL of
Takane, Young, and De Leeuw [43].

The advantages of gradient methods in the MDS context have been
reviewed quite thoroughly by Kruskal [31]. We mention two problems with
the gradient method. The first one is that & (X) is not differentiable
everywhere, if x,=x; the partials do not exist. The second problem is the
choice of step-size procedure in gradient methods. Kruskal [31, p. 315-319]
has developed a step-size procedure based on some heuristic ideas, com-
bined with a great deal of numerical experimentation. The method (also
used in MINISSA) seems to work quite well in practice, but does not
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guarantee monotone convergence of loss function values. Because the
step-size is a complicated function of all previous gradients and function
values, it seems extremely difficult to give a precise analysis of convergence
behaviour of the procedure.

The disadvantages of ALS (i.e. alternating least squares) are of a
completely different nature. ALS procedures always start by transforming
the model (Kruskal [31, p. 309] would say ‘by neglecting errors’), either to
squared distances (as in ALSCAL) or to inner products (as in INDSCAL).
The resulting loss functions are differentiable everywhere, and by defini-
tion ALS gives monotone convergence. The main problem with ALS is
that transforming the model may be undesirable. In the first place the
transformations only make sense in the case of Euclidean distances, and
do not generalize to other scaling models. In the second place the transfor-
mations may affect the errors in undesirable ways. If large dissimilarities
have the largest measurement or sampling errors, for example, then it is
statistically unwise to apply unweighted least squares to the squared
dissimilarities. In fact Ramsay [37, 38] suggests applying unweighted least
squares to the logarithms of the dissimilarities, because this makes more
sense from the error theoretical point of view. Of course ALS cannot be
applied if we use logarithms. If the dissimilarity measurements are inde-
pendent, then the double-centering transformation that converts to scalar
products in the error-free case introduces dependencies. Again this makes
the use of unweighted least squares problematical.

There is a third type of algorithm, which does not use transformations,
uses weighted least squares to incorporate possible error-theories, leads to
monotone convergence without step-size choices, and has no problems
with differentiability. The method was originally derived in the unweighted
case by Guttman [24]. He assumed differentiability, however, and inter-
preted the method as a gradient method with constant step-size. He did not
show that the method worked, but empirical studies of Lingoes and
Roskam [34] indicated that it seemed to converge in practice. De Leeuw
[17] studied the method in the weighted least squares case, generalized it to
nonmetric scaling, discussed non-Euclidean models, and gave the first
formal convergence proof. An alternative derivation will be presented in
the next section of this paper.

The forms of restricted scaling that have been proposed in the literature
strongly depend on the type of algorithm that is used. Some constraints fit
nicely into a gradient framework, others can easily be combined with ALS.
In gradient algorithms, for example, it is very simple to fix some of the
coordinates of the configuration at constant values. In fact this possibility
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is already built into MINISSA. Bentler and Weeks [2] generalized this
considerably. The coordinates x; can be fixed, free, or proportional. By
proportional we mean that the restrictions are of the form x, =u, x;, with
the u, known, and with x;, a free coordinate. Bloxom [4] fits the general
individual differences model X, = Y, C,. The parameters in Y, and C, can
be either fixed or free, and some free parameters can be restricted to be
equal to others. This clearly has INDSCAL and IDIOSCAL as special
cases. It seems to us that Bloxom’s work cannot be generalized very much
any more. More general restrictions can only be fitted into a gradient
framework by using the much more complicated feasible directions
method of nonlinear programming.

Alternating least squares algorithms usually solve subproblems which
are linear regression problems. This is not true in all cases, the ALSCAL
subproblems for example amount to solving cubic equations, but generally
nice sets of variables enter linearly into the model equations. This implies
that ALS is especially valuable in fitting multilinear models, and that the
natural constraints that can be used with ALS are linear constraints. The
combination of multilinear models (principal component analysis, three-
mode component analysis, transformed Euclidean scaling) with linear
constraints has recently been studied by Carroll, Green, and Carmone [9]
and by Carroll and Pruzansky [10]. They show that incorporating linear
restrictions is possible by transforming the input matrix, and by applying
the CANDECOMP algorithm of Carroll and Chang [7] to this transformed
matrix. In the MDS context the constraints imposed by Carroll et al are of
the type X, = YCW,, with Y known, C and W, unknown, and W, diagonal
for each k. More general constraints are possible, but these seem to be the
most natural ones.

In the next section we show that our new algorithm combines the most
convenient features of gradient and ALS methods. We also show that it
can incorporate a very general class of constraints in a natural way.

3. Algorithm model

We want to minimize

o(X)= i é wij(sij_dij(X))z’

i=1j=1

over all X in Q, a given subset of R™, the space of all n X p matrices. The
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w;; are given non-negative weights, if w;;=0 we treat §,; as missing.
Without loss of generality we can assume that the dissimilarities are

normalized by

2 2 wij6i§ =1

i=1j=1
Then
o(X)=1-2p(X)+n*(X),

where

()= 3 3 wd,d,(X), and w(X)= 3 D w,dd(X).

i=1j=1 i=1j =1

The function n? is quadratic in X. If we define the matrix V'={q, i) by

n
v,;= —(wij+wj,.) for i#/, ;= > (w,j+ wji),
J#Ei

then
(X)=tr X' VX.

If w,=1 for all i#j, then V'=2(nl—ee’). If X is centered, ie. if the
centr01d of the n points x; is the origin, then in this case n*(X)=2ntrX'X.
In the general weighted case we assume that V is irreducible [17, p. 138],
which implies that, if ¥~ is the Moore—Penrose inverse of V, then
X=VV X=V VX for all centered X. The function p causes the trouble
with differentiability in gradient methods. Consequently we use another
regularity property. Because the FEuclidean distance is a convex and
positively homogeneous function, the same thing is true for p. Observe that
this result is true for much more general definitions of 4, in fact it remains
true for d(X)=pu(x;— x;), with p any gauge. By using this fact we can
extend at least some of our results to general Minkovski geometries, in
which distance is not necessarily symmetric. For convex functions the
notion of a gradient is replaced by that of a subgradient. The subgradient
dp(X) of p at X is a non-empty, convex, compact set, defined by ¥ €9p(X)
if p(Z)2p(X)+1trY'(Z—X) for all Z in R™. If p is differentiable at X,
with gradient Vp(X), then the subgradient is the singleton {Vp(X)}. For
proofs of these results we refer to Rockafellar [39, part V].
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Theorem 1. For all X, Y in R™ and for all Z €V ~93p(Y) we have
o(X)<1-9%(Z)+73(X—2).
For all X in R™ and for all Z €V ~3p(X) we have
o(X)=1—-9%(2)+7*(X—-2).

Proof. Suppose U €09p(X). By definition p(Z) > p(X)+trU'(Z—X) for
all Z in R™, and consequently also for all Z of the form aX, with a >0.
Using the homogeneity of p gives (1 —a)p(X)<(1—a)tr U’ X for all a >0,
which implies that p(X)=tr U’X. Substitute this again in the definition of
the subgradient. This gives p(Z) > tr U’ Z. If we substitute the last equation
and inequality in the formula o(X)=1-2p(X)+7?*(X), and simplify, we
obtain the results stated in the theorem.

In the same way we can prove that Z €9p(X) implies that Z is centered.
By definition we must have p(X + en’) > p(X)+trZ’ey’ for all p-vectors g,
1.e. for all translations. Because the distances are translation invariant this
simplifies to ¢’ Zu <0 for all g, which implies e’ Z =0.

Theorem 2. If Z €V ~0p(X), then nX(Z)< 1.

Proof. Because the dissimilarities are normalized applying Cauchy-
Schwartz to the definition of p gives p(X)<n(X) for all X in R™. The
second part of Theorem 1 gives p(X)=trZ’'VX <n(Z)n(X). The first part
gives p(Z)>trZ'VZ=n*Z). If we combine the three inequalities, we
obtain the chain

oX)

o(Z2)
n(X)

n(z) "

This is more than enough to prove the theorem.

<n(Z)<

We also define the metric projection Py, in the metric defined by V, as
PQ(X)={ Y €Qn*(Y - X)= min nZ(z—x)}.
Zeq

We assume that Q is defined in such a way that Py(X) is non-empty for all
X in R, In the terminology used in nonlinear approximation theory we
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assume that Q is proximinal. Tt is sufficient for proximinality that € is
either compact or closed and convex, but these conditions are by no means
necessary. Using the metric projection we can now describe our basic
algorithm model. We start with some X 0 in ©, and in each iteration we
find the update X * of our current solution by the rule

X * € Py(V~3p(X)).

There is one exception to this rule. If our current solution satisfies
X € Py(V ~9p(X)), then the algorithm stops. We call this an algorithm
model because it is incomplete. We have not specified how to select an
element from the subgradient, and we have not specified how we intend to
solve the metric projection problem. It is obvious that the practical
simplicity of our algorithm depends on the ease with which the metric
projection problem can be solved. To use the terminology of Kruskal once
again, some projection problems are nice while others are not so nice. We
now prove a first convergence theorem for the case in which the algorithm
generates an infinite sequence X k with corresponding loss function values
o(X5).

Theorem 3. o(X*) is a decreasing sequence, and consequently converges.
Proof. Suppose X €V ~dp(X). By part 1 of Theorem 1
o(X ) <1—nX (X )+79(X™ -X).

By assumption X & Pg(V ~9p(X)), and thus, by the definition of the metric
projection,

1-n2(X )+ (X ¥ =X ) <1=n*(X ) +7* (X - X).
By part 2 of Theorem 1:
1-73(X )+ 93X — X )=0a(X).

If we combine the results we find o(X *)<o(X), and because the sequence
is bounded below by zero it converges.

Theorem 3 is reassuring, but not entirely satisfactory because it tells us
nothing about the behaviour of the sequence X k. Before we study this in
more detail we prove a simple necessary condition for a minimum of o.
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Theorem 4. If X minimizes o on Q, then X € Po(V ~9p(X)).

Proof. Suppose X & Po(V ~9p(X)) and Y € Po(V ~3p(X)). By exactly the
same argument that proved Theorem 3 we show that ¢(Y) <a(X).

From now on we call points satisfying the necessary condition of
theorem 4 desirable. We already have the trivial result that if the algorithm
stops, it stops at a desirable point. What happens if it does not stop? To
study this we need some preliminary results.

Theorem 5. All X* are in the compact set {X |n(X)<1+/0(X%}.
Proof. From the proof of Theorem 3, using the same notation,

1= (X)) +9H X+ —X ) <o(X) <a(X0).
By using Theorem 2

M X+ — X )<o(X°).
But, by Cauchy-Schwartz,

— 2 _

(n(X*)=n(X)) <p*(X*-X),
which implies, by using Theorem 2 again, that

X *T)<1+y/o(XO).
Theorem 6. The point-to-set map X —>P9(V“8p(X )) is closed.
Proof. The subgradient map is closed (Rockafellar [39, p. 233]). The set
of all ¥~ 3dp(X), as X varies over R™, is compact by Theorem 2. The map
Py is closed, and consequently the composition is closed (Zangwill [46]).
Theorem 7. The sequence X* has convergent subsequences. Each sub-
sequential limit is a desirable point. All subsequential limits have the same

value of o.

Proof. This follows from convergence Theorem A of Zangwill [46,p. 91].
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The type of convergence described in Theorem 7 is still quite weak. We
can prove a considerably stronger result by making the additional assump-
tion that € is convex.

Theorem 8. If § is convex, then n*(X**'— X*) converges to zero.

Proof. It follows from the proof of Theorem 3 that, if X €V 9p(X),
PX-X)—- Xt =X)=np)X* - X)+2tr(X " = XYV(X—X™) con-
verges to zero. If € is convex then, by convex approximation theory, the
last term on the right is nonnegative. The first term on the right is positive,
and thus both terms converge to zero.

The theorem does not say that the sequence X* converges. It tells us, by
a familiar theorem of Ostrowski, that either the sequence X* converges or
that the sequence has a continuum of accumulation points. Convergence
follows if we make additional uniqueness or smoothness assumptions.
From a practical point of view, however, the result of Theorem 8 is strong
enough. If we define an e-desirable point as a configuration X for which
the distance between X and the set Po(V ~9p(X)) is less than e, then the
theorem tells us that the algorithm finds an e-desirable point in a finite
number of steps, no matter how small we choose the positive number e.
We also observe that the assumption that £ is convex is not necessary for
nX(X**1'— X*)>0. It is often possible to prove this result from other
uniqueness or smoothness assumptions.

There is a generalization of the algorithm which can be extremely
important in those cases in which the metric projection problem is not
nice. Suppose Q is a closed point-to-set map from R™ X! into subsets of
©. Suppose moreover that Y € Q(Z, X) implies that n(Y — Z) <n*(X — Z),
with equality if and only if X €Pg(Z). The new algorithm is X te
O(V ~9p(X),X). Convergence Theorems 3 and 7 remain true for this
modified algorithm, which does not solve the metric projection problem
completely, but merely takes a step in the right direction. In many
examples the map Q can be defined by using alternating least squares.

There are some obvious relationships of our algorithm with alternating
least squares theory. In each iteration we have to solve a least squares
projection problem, if this subproblem is not easy to solve we can often use
one or more ALS cycles to improve our current best solution. One
interpretation of our algorithm is that the basic majorization result proved
in theorem | makes it possible to apply the powerful machinery of ALS,
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without first having to transform to squared distances or inner products.
There are also some relationships with gradient theory. Suppose o is
differentiable at X. Then Vo(X)=2VX —2Vp(X), and thus the algorithm
can be written as a gradient projection method of the form X * &P,
(X — 3V~ Vo(X)). If we want to relate our algorithm to the earlier work of
Guttman [24] we first have to specify how we select an element from the
subgradient of p. Define the matrix B(X) by

bij(X) =- (Wij'sij + w'isji)sij(X) if i/,

J

with s,,(X)=1/4d,(X) if d,(X)#0, and 5,,(X)=0 otherwise. Moreover

b(X)=— S b(X).

J#i

By simple algebra we find p(X)=trX’B(X)X, and from the Cauchy-
Schwarz inequality B(X)X €9dp(X). Thus one possible specification of our
algorithm is X * € Po(V ~B(X)X). If p is differentiable at X, then B(X)X
= Vp(X). Guttman studied the case in which £ is R, and in which the
off-diagonal weights are all unity. In this case we find X * =(1/2n) B(X)X,
which is basically Guttman’s correction matrix algorithm. Observe that the
mapping B is not continuous at X if some of the d,(X) are zero. This
implies that the limits of convergent subsequences generated by the algo-
rithm do not necessarily satisfy X € Po(¥V "B(X)X), although they must
always satisfy X € Po(V ~9p(X)).

4. Unrestricted scaling

It is convenient to introduce the Guttman-transform X of a configuration
matrix X as X=V "B(X)X. If  is R™, then the basic algorithm is
X * =X. The chain in the proof of Theorem 3 becomes

(X )< 1= (X)+n*(X* =X )=1-7*X)
<19 X)+7A(X-X)=0(X).

This immediately implies that p*(X * — X) converges to zero. If o(X*)
decreases to o, then n*(X*) increases to n2 =1—a,. Moreover from the
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proof of theorem 2 we find that p(X*) increases to p_=7%, and that
AMX*)y=p(X*)/n(X*) increases to A , =7,

As an example of a more general algonthm using the map Q(X X) we
have X * =X+ a(X — X). We find o(X *)<o(X)+(a®>— 1)n*(X — X), and
thus we have convergence if —1<a<+1. Moreover (X —X)=
(1—a)2n*(X—X) also converges to zero in this case. The reasons for
choosing a0 are as follows. Very slow linear convergence is typical for
MDS algorithms, and precise solutions are impossible if we do not apply
some sort of acceleration device. A more precise analysis of the conver-
gence rate of our MDS algorithms.will be given elsewhere. For the moment
we merely observe that using a=¢,—1, with ¢ a very small positive
number, preserves global convergence and approximately halves the num-
ber of iterations required to obtain a given precision, at no extra cost. The
explanation is, roughly, as follows. The basic algorithm X * = X converges
linearly with rate k,=1—g¢,, with ¢, another small positive number. If we
use any a0 we obtain the rate k, = ky+ a(l — k), and if a=¢;— 1 then
this is equal to (1—¢,)*+ ¢,(e,— &,), Which is approximately (1 —¢,)% Thus
the convergence rate is squared, the number of iterations is halved.

A further generalization of our basic algorithm can be used to derive
versions of the optimal gradient, memory gradient, and conjugate gradient
methods. In the unweighted case we have at a point where o is differentia-
ble that X * =X + a(X — X) can also be written as X ¥ = X — uVo(X) with

=(l1—a)/4n. If a=0 then p=1/4n, if a=—1 then p=1/2n. We can
also interpret o(X —uVo(X)) as a function of p and minimize it over
with our algorithm. To see how this is done consider the more general
problem of minimizing o(X) over all X of the form Y,+ >, p, Y, where the
Y,, including Y, are fixed matrices. This is a problem with linear restric-
tions. The solution by projection can be computed from g= C ~'b, where
C contains the elements tr Y/ VY,, and b the elements tr Y/ V(X — Y,). We
then use {1 to compute X *, compute its Guttman- transform and repeat the
procedure until convergence. Observe that by using a relaxation parameter
again, we can also set i=2C ~'b, and still obtain convergence.

In Table 1 we have collected the results of a number of experiments
with these step-size techniques. There are five different data sets.

K1: Nine Dutch political parties, data collected by Van der Kamp,

initial configuration Kruskal’s L-shape (cf. [30]).

K?2: Same data, initial configuration Young—Householder—Torgerson.

F1: Thirteen ethnic groups, from Funk et al. [21], initial L.

F2: Same data, YHT initial configuration.

D: Ten points, §;;=1 for all i/, initial L.
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Table 1
Speed of convergence of various step-size procedures

Example No it loss rate

K1, a=0 99 0.0444477 0.945592
Kl,a=~1 57 0.0444380 0.888642
K1, a=opt 47 0.0444365 0.855814
K2, a=0 62 0.0446179 0.912394
K2, a=—1 35 0.0446135 0.852053
K2, a=opt 32 0.0446115 0.831023
Fl,a=0 201 0.0655642 0.940073
Fla=—1 111 0.0655561 0.876544
F1l, a=opt 107 0.0655556 0.872367
F2,a=0 67 0.0602583 0.713715
F2,a=-1 36 0.0602560 0.507205
F2, a=opt 35 0.0602564 0.527138
D, a=0 123 0.0111065 0.927797
D, a=-1 72 0.0111058 0.853318
D, a=opt 59 0.0111057 0.812373

All analyses were in two dimensions, and unweighted. We iterated until
6—o0% <1076 For each example there were three runs, one with a =0, one
with « = — 1, and one which uses inner iterations for the optimal step until
|a* —a| <1073 The table lists the number of major iterations, the mini-
mum value of the loss function, and an empirical estimate of the linear
convergence rate (6" —o**)/(6—07). The examples show that indeed
a= —1 approximately halves the number of iterations and approximately
squares the convergence rate of a=0. Using the optimal step-size gives a
slightly better convergence rate, and fewer major iterations. But because
inner iterations are about as expensive as major iterations, computing the
optimal a is not worthwhile (the argument is the same as in [31, p.
315-316]). Even an ‘ideal’ step-size routine which finds the optimal a in a
single inner iteration would be as expensive as using a =0 throughout. The
step-size routine we use needs on the average between five and fifteen
inner iterations, which makes the complete algorithm about five times as
expensive as the one with a=0. Thus a= —1 is by far the most efficient
choice, and we have adopted this in our FORTRAN computer program
SMACOF1 for metric MDS. The examples also illustrate the completely
different point that using a good start can reduce the number of iterations
considerably, and that different starts can lead to different local optima.
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5. Linear restrictions

We have already analyzed one particular example of using linear
restrictions on X in the previous section. A more interesting example from
a practical point of view is X = YC, with Y a given n X g matrix, and C an
unknown g X p matrix. This can also be fitted with the gradient method of
Bloxom [4], and in an inner product framework by the ALS method of
Carroll et al [9]. Our algorithm simply gives

Xt=YC*=Y(Y'VY) 'Y'VX=Y(Y'VY) 'Y'B(X)YC,

provided that the inverse exists. It is clear that we can require without loss
of generality that Y’ VY =1, which simplifies matters even more. In ap-
plications Y can be an ANOVA-type design matrix, it can also be a matrix
with real valued measurements on g ‘independent’ variables. The last case
occurs, for example, in multidimensional psychophysics. Here Y contains
physical characteristics of the stimuli, such as frequency characteristics of
synthetically generated vowels.

In many special cases C can be restricted to be diagonal. In this case the
update is, supposing y, Vy,=1 for all s=1,...,q,

¢F=yVx,=cy.B(X)y,.

Observe that if ¢, >0, then ¢,* >0. And if ¢,=0 then ¢," =0. The model
with C diagonal can also be fitted with the gradient method of Bentler and
Weeks (2). A particularly interesting class of examples has both a diagonal
C and a binary Y. Here the squared distance has a set theoretical interpre-
tation. If H, is the set {s|y,=1}, and the measure of a subset of

(1,2,...,q) is defined as m(H)= 2, {c}|s€ H}, then
d;(X)=m(H,AH),

with A the symmetric difference. Thus in this case the squared Euclidean
distance is a metric too (cf. the discussion of the ADCLUS model by
Shepard [41, p. 414-417]). In some cases a graph theoretical interpretation
is possible. If we are fitting a simplex, for example, we use the matrix Y
defined by y,=1if i >s, and y, =0 otherwise. Call this matrix Y. In this
case d> 7(X) is the path length distance in a simple chain, i.e. (X ) can be
represented as a Euclidean distance in one dimension, while d (X)) itself
needs n—1 dimensions. This was already observed by Guttman [23].
Another possibility is fitting a circumplex, with width (k,,k,), where
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1<k, <k,<n. Then y, =1 if k, <|i—s| <k, and y,, =0 otherwise. We call
a matrix of this class Y. This makes dj(X ) the path length distance in a
circular graph, consisting of a single cycle. In the same way we can
construct for each tree a binary matrix Y such that dj( YC) is the path
length distance in the tree [6]. In the particular case Y =1 the tree is a star.
In factor analytic terminology Y =1 can also be interpreted as no com-
mon, only unique variance [2, p. 140].

The theory generalizes without any further complications to mixed
models in which parts are unrestricted and other parts are restricted. A
particularly attractive class of models is X =|X,|YC,|C,| in which X, is
nX q and unrestricted, Y is either Y or one of the Y, and C, and C, are
both square and diagonal. The models can be coded by a three digit
number g,4,49;. Here g, is the number of unrestricted dimensions, if 4,=0
the X, part is missing from the model. If g,=0 the YC, part is missing, if
g,=1then Y=Y, if g,=2 then Y is one of the Y. If g;=0 the C, part is
missing, if g;=1 it is not missing. Thus g0l is the g-dimensional MDS
model with uniquenesses, also discussed by Bentler and Weeks [2], model
010 is a simplex, 011 is a quasi-simplex, and so on.

In many types of applications unrestricted MDS finds semi-circular,
parabolic or horse-shoe shaped configurations in two dimensions. By using
the simplex and circumplex we can often find more parsimonious repre-
sentations. This is illustrated by the results in Table 2. We applied the
computerprogram SMACOF2, which fits these three-digit models, to a
number of dissimilarity matrices.

Table 2

Minimum loss for various models and various examples
Model K S L C DP DK Dy
100 0.4167 0.3493 0.3270
200 0.2214 0.1370 0.1772 0.1075 0.1068 0.1404 0.0784
010 0.2016 0.1029 0.1990 0.0681 0.0836 0.1755 0.0864
020 0.2051 0.2391 0.0985 0.2211
001 0.1588 0.2125 0.3181
101 0.0640 0.0430
201 0.0543 0.0388
011 0.1001 0.0513 0.1933 0.0561 0.0666 0.1314  0.0816
021 0.1245 0.1841 0.0829 0.2090
110 0.1466 0.0536 0.1644
210 0.0848 0.0221 0.0535

11 0.0185
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2N

Nine Dutch political parties, data collected by Van der Kamp in
1968, averaged similarity ratings, subjects 100 students.
Six Swedish political parties, data taken from Sjoberg [42].
15 musical intervals, taken from Levelt et al [33].
Nine number ability tests, data from Coombs [12].
P: 13 Dutch political parties, data from De Gruyter [15]. Data

averaged over students who vote PvdA (social democrat).

DK: Same data, but averaged over students who vote KVP (christian

democrat).
DV: Same data, but averaged over students who vote VVD (liberal
party).

Table 2 lists the minimum loss function values for various models. In this
table we use the square root of the loss, which is more convenient. For K,
S, and C the simplex 010 is considerably better than two-dimensional
MDS 200, despite the fact that 010 has only n-1 parameters while 200 has
2n—3 parameters. For K and S the quasi-simplex 011 is again consider-
ably better, and the scaling models with uniqueness 101 and 201 also
perform well. For L we would also prefer 010 to 200. In the data DP, DK,
and DV we expect that people from the middle will think that extremist
left and extremist right are quite alike, while people from the moderate left
and moderate right will think this to a lesser degree. This would imply that
the DK-data are more circumplex-like, while the DP and DV-data must be
more simplex-like. We do find something like this in Table 2.

SOt

6. Nonlinear restrictions

There are many models possible which impose nonlinear restrictions.
We only discuss some examples, but do not work them out in detail. In
nonlinear problems computing the metric projection may not be simple.
Thus we may have to use alternating least squares inner iterations.

For the first example we discuss inner iterations are unnecessary. The
restrictions are x, € K,, with K a given convex cone. The subproblem is to
solve p cone projection problems, one for each dimension. If K| is the cone
of all vectors with a given ordering of the elements, for example, then the
subproblems are monotone regression problems. This problem was also
studied by Noma and Johnson [36], who used a completely different
algorithm. More generally the requirements x, €K, can be used to scale
dimensions which are defined nominally, ordinally, or numerically. These
extensions of MDS are closely related to recent extensions of principal
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component analysis such as PRINCIPALS [44] or HOMALS [16].

In the second example (inspired by Borg [5, p. 638]) we want to restrict
the representation of a subset of the objects in such a way that they are on
a straight line in two-space, or, more generally, on a g-dimensional linear
manifold in p-space. The corresponding projection problem is finding the
best rank g approximation to a submatrix, which is easy to solve by
computing the singular value decomposition. More generally it may be
interesting to require that some or all of the objects are on a nonlinear
manifold of some sort. In Levelt et al. [33], for example, it would make
sense to require that the tone intervals are on a quadratic manifold, in
colour studies we can require that the objects are on a circle. This generally
requires more complicated iterative techniques than the linear case.

The third example we discuss is X = YC, with Y binary and C diagonal
as before, but now with both Y and C unknown. This is the ADCLUS
model of Arabee and Shepard (discussed in [41]). We have to use ALS
here. Computing the optimal C for fixed Y has been explained in the
previous section, and computing the optimal binary Y for fixed C is also
quite simple. After one or more inner ALS cycles we compute a new
Guttman-transform, and start a new major iteration. The major problem
with the algorithm is not the amount of computation, but the fact that
there are so many desirable points. This is due to the discreteness of the
restrictions, and cannot be helped.

7. Individual differences

The theory of Section 13 generalizes in an obvious way to individual
differences scaling. For each iteration we have to minimize a function of
the form

21 tr(Z,— X,.) Vi Z.— X))

over the Z,, where X, are the Guttman-transforms of the X, from the
previous iteration, i.e. X, = Vi B,(X;) X, In the general weighted case we
need ALS techniques to fit the individual differences models discussed in
Section 2. This is true in particular if we also want to impose restrictions of
the form discussed by Bloxom [4]. If the weights are all equal the computa-
tions simplify considerably. We discuss the three most important models in
some detail, and show how the subproblems can be solved.
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For IDIOSCAL we define the nXmp supermatrix X, containing the
current X, «» and the p X mp supermatrix C, containing the C;. The problem
can be rewritten as minimization of tr(X— YC) (X = YC), which means
that we can set Y equal to the normalized eigenvectors corresponding with
the p largest eigenvalues of XX’, and set C, = Y’X,. For INDSCAL we can
proceed by fitting one dimension at a time. Define the n X m matrices X
which contain column s of each of the X,, and define the vectors c,, Wthh
contain diagonal element s of each of the C. Then we must minimize for
each s separately, tr(X —ysc) (X —y,c;). Thus we can set y, equal to the
normalized eigenvector corresponding with the largest eigenvalue of X X, X’
and we set ¢,;=y.X,.

For PARAFAC we have to minimize, in each subproblem,

§ (X, - YC,Z2') (X, — YC.Z).

k=1

But this is exactly the problem solved by the CANDECOMP algorithm of
Carroll and Chang [7]. From the general theory we know that it suffices to
perform just one CANDECOMP cycle before computing new Guttman-
transforms.

8. Nonmetric scaling

All the techniques discussed in this paper are for metric MDS, in which
the dissimilarities are either completely known or completely unknown (if
8, is unknown we set w;;=0). If the dissimilarities are partially known, for
example up to a linear transformation or up to a monotone transforma-
tion, then we have to apply nonmetric MDS. The loss is now a function of
the configuration and of the disparities, which are admissible transforma-
tions of the dissimilarities. De Leeuw [17] shows that in the unrestricted
case the basic algorithm X * = ¥V "B(X)X is still convergent, provided we
replace the normalized dissimilarities by the normalized disparities in each
iteration. The disparities are computed, in the classical case, by monotone
regression. This result remains true in the case in which there are restric-
tions on the configuration. De Leeuw and Heiser [19] study more general
partitioned loss function for nonmetric MDS, and show that the basic
algorithm can still be used, but that we must not only change the
dissimilarities in each iteration but possibly also the weights. Again this
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result remains true in the restricted case. Consequently for nonmetric MDS
with restrictions only the computation of the Guttman-transform becomes
more complicated, the metric projection problem remains exactly the same.
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