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EDITORS’ INTRODUCTION 

1. Introduction 

To an ever increasing extent, econometricians do what psychometricians 
have been doing since the early days of their science: analyze large data sets. 
As a result, the developments in psychometrics are becoming more and more 
of interest to econometricians. The aim of this issue of the Annals of Applied 

Econometrics is to highlight eclectically a number of recent developments in 
psychometrics that are of actual or potential relevance in econometrics. In 
selecting the subjects, we have made no attempt at being very precise in 
defining what does or does not belong to psychometrics; some contributions 
might better fit under the heading of ‘multivariate analysis’ or just ‘statistics’, 
and at least some of the authors would certainly not call themselves 
psychometricians - be it as it is, we preferred to be led by the ‘relevance’ 
criterion without bothering unduly about deliminational problems. 

The idea of looking towards psychometrics is of course not new. In his 
1971 Psychometriku paper, entitled ‘Econometrics and psychometrics: A 
survey of communalities’, Arthur Goldberger described a number of themes 
shared by both sciences, and in his Schultz lecture in the same year, 
published in Econometrica in 1972, he indicated the relevance to 
econometricians of path analysis models and, more generally, structural 
equation models with latent variables. Due, to a large extent, to these efforts, 
latent variable modelling has received a lot of interest in econometrics over 
the past decade, reviving and generalizing the classical ‘errors-in-variables’- 
model that econometricians are familiar with and that, due to its inherent 
identification problem, has until recently been considered to constitute a 
hopeless problem, as is readily confirmed by a glance in almost any 
econometrics textbook. Yet, embedding an equation containing error-ridden 
or essentially unobservable variables in a multiple-equation or simultaneous 
equations context has now become common practice among 
econometricians. 

Apart from the theme of latent variables, which appear in almost all 
contributions to this issue, another important theme dominates throughout, 
to wit that of discrete or categorical variables. The link between both themes 
is evident: a discrete variable can often be thought of as the manifestation of 
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an underlying latent, continuous variable. Yet there is an important 
difference in the econometric and the psychometric tradition: whereas the 
latent variables ‘revival’ in econometrics was strongly inspired by 
psychometrics, the developments in the field of discrete variables have taken 
place almost independently in both sciences, the distinction roughly being 
that econometrics has emphasized choice behavior modelling, and 
psychometrics the analysis of large multi-way frequency tables. As a result, 
most econometricians will be unfamiliar with techniques like correspondence 
znalysis, loglinear models and multidimensional scaling, methods that aim at 
detecting the main relationships in such tables, and which are popular 
among psychometricians. 

Although these methods, by their ‘exploratory’ background, run the risk of 
being considered by econometricians with suspicion and disdain, it seems 
nevertheless worthwhile to present them here (they are discussed in several 
papers), as the practice in econometrics is not always so ‘confirmatory’ after 
all, and there is no reason why they can not be fruitfully integrated in 
economic modelling and estimation. We hope that this issue contributes to 
such integration. 

In the remainder of this Introduction, we briefly sketch the contents of the 
issue, and the interrelation between the various papers. 

2. Developments in linear structural models 

In the mid-seventies the basic models of path analysis (from biology and 
sociology), factor analysis (from psychology), and simultaneous equation 
theory (from economics) were merged into a single comprehensive model, 
mainly through the efforts of Joreskog and Goldberger. And, perhaps even 
more importantly, computer programs were written which made it possible 
to tit and test additional parametric specifications within the basic model, In 
his contribution to this issue Bentler presents an up-to-date review of current 
developments, starting with Joreskog’s important computer implementation, 
known as LISREL. 

For ease of reference we briefly summarize the basic model here, using the 
convention of printing random variables and vectors in bold type. The 
structural part of the mode1 is 

with 9 the endogenous variables, 5 the exogenous variables, and { the 
disturbances or shocks or errors-in-equations. None of these three sets of 
variables need to be observed or even observable; they are linked to the 
observed variables x and y by the measurement part of the model. This is 
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with 6 and E the measurement errors or errors-in-variab!es. The general model 
is a long way from being identified. Some steps in the direction of 
identification are taken by imposing the general specifications that c, [, 6, E 

are all uncorrelated and in deviations from the mean. Moreover B is non- 
singular. These assumptions make it possible to express the covariance 
matrix of the observed variables in terms of the parameter matrices occurring 
in (l)-(2) and in terms of the covariance matrices of {, 5, 6, E, which contain 
additional parameters. The parameters can be either free, restricted to be 
equal to given constants, or restricted to be equal to other parameters. If the 
additional specifications are sufficient for identification of the model, then we 
can proceed and estimate the parameters by fitting the expected covariance 
matrix to the observed covariance matrix. Fitting is done by some minimum 
distance method, i.e., we define a distance-like measure on the space of 
covariance matrices and minimize the distance between expected and 
observed. Distance can be defined by ordinary unweighted least squares, by 
multinormal weighted least squares, or by multinormal maximum likelihood. 
The computer algorithm used in LISREL is the Davidon-Fletcher-Powell 
variable metric method. The appropriateness of the model is tested and the 
asymptotic dispersion of the estimates is computed by making the additional 
assumption that the data are a random sample from a multivariate normal 
population. 

This is a brief outline of the LISREL-system of Joreskog, which consists of 
a model, an algorithm, and a computer program. Bentler points out that the 
usual econometric, psychometric, and sociometric models are special cases of 
the general model (lH2), and that they can consequently be fitted with the 
LISREL-program. Development of ad-hoc estimation methods and ad-hoc 
large sample theory for specific models is not necessary any more, because it 
is given directly by the general system. This does not mean, of course, that 
the system cannot be improved. Indeed Bentler discusses various possibilities 
for improvement. He reformulates the general model in such a way that it 
becomes more convenient to apply in some situations. In his EQS-system he 
also incorporates modelling of the expected values (or the moments around 
the origin). And, perhaps most importantly, he discusses alternative measures 
of distance between the observed and expected covariance matrix with 
superior computational and/or statistical properties. It is clear that the 
statistical component of Jiireskog’s LISREL-system is its weakest part. All 
statistical statements suppose that the data are a random sample from a 
multivariate normal distribution, an assumption which is both difficult to test 
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and almost certainly a poor approximation in most econometric and 
psychometric situations. Bentler presents results of Browne which make it 
possible to incorporate asymptotically distribution-free estimation into the 
linear structural equation context. These estimates, and their properties, are 
also discussed in this issue by De Leeuw. 

More or less independently from the work of Jiireskog another system 
which incorporates latent variables in simultaneous equation models has 
been developed by Hermann Wold. His work is discussed in this volume by 
Dijkstra, who compares Weld’s PLS-system in detail with the LISREL- 
system. It turns out that the differences are mainly on the statistical and 
computational level. The model Weld uses is a special case of (lH2), in 
which the matrices A, and A,, are the direct sums of a number of vectors. 
[Remember that the direct sum of ni x mi matrices Ai is a (1~) x (1 mi) 

matrix with the Ai as diagonal blocks and zeroes elsewhere.] Thus, for 
example, the m endogeneous variables cj partition the observed variables x 
into m subsets of k 1,. . . , k, variables each. Element (i, j) of A, is non-zero 
if and only if observed variable xi is in the subset corresponding to (is an 
indicator of) latent variable cj. 

Statistically the main difference between PLS and LISREL is that Weld 
does not assume multivariate normality, which is one reason why he calls his 
models soft. The softer assumptions are the linearity of the conditional 
expectations. In PLS the structural parameters are estimated by partial least 
squares. We start with ‘estimates’ or proxies for the latent variables 5 and q. 
Given these proxies we can compute estimates of the structural parameters 
by using simple linear regression. Then, given these estimates, new proxies 
are constructed. The new proxies are linear combinations of the 
corresponding indicators, with weights determined by the current estimates 
of the structural parameters. The two partial least squares steps (improve 
estimates given proxies and improve proxies given estimates) are repeated 
until convergence. Dijkstra studies the resulting algorithms and estimates in 
detail, and compares them with the corresponding LISREL-estimates. His 
discussion of the consistency of PLS-estimates of the structural parameters is 
especially interesting, because it shows how the problem of factor score 
indeterminacy familiar from psychometrics causes inconsistencies also in this 
context. It would also be interesting in this context to connect the PLS- 
methods discussed by Dijkstra with the EM-algorithm, briefly discussed in 
this issue by Muthen, Bartholomew, and De Leeuw, because the EM- 
algorithm computes maximum likelihood estimates by using least squares 
methods (and consequently does give consistent estimates). 

3. Developments in exploratory multivariate analysis 

Factor analysis can be interpreted as a structural errors-in-variables model, 
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which fits into the general framework of the previous section. Factor 
analysis, however, is confused continually with principal component analysis, 
which is basically an exploratory technique. In this context exploratory has 
several meanings, all of them rather vague. The most important aspects of 
exploratory data analysis seem to be that no definite statistical model is 
imposed and tested. The usual statistical optimality considerations 
consequently cannot be applied. Moreover there is a heavy emphasis on 
graphical techniques. In a sense the soft models of Wold’s PLS-system are 
closer to exploratory multivariate analysis than the hard, confirmatory 
models of the LISREL- or EQS-systems. 

The most popular exploratory multivariate analysis technique is principal 
component analysis, which has as its principal aim a graphical representation 
of the data matrix. Row-objects (often individuals) and column-objects (often 
variables) are presented as points in a low-dimensional Euclidean space. This 
is done in such a way that row-objects i and k are close in the representation 
if they have similar values on all column-objects, and column objects i and J 
are close if they have similar values on all row-objects. Many variations of 
this basic idea are possible; some of them go under the name of principal 
component analysis, others are called multidimensional scaling techniques. In 
all of them a data matrix is transformed into a picture, which is supposed to 
portray the most important relationships in the matrix. 

A particular form of principal component analysis, which has recently 
become quite popular, is correspondence anaJysis. It is discussed in this issue 
by Deville and Saporta, but it also occurs in the contributions of Heiser and 
Meulman, Keller and Wansbeek, Fienberg and Meyer, and De Leeuw. 
Deville and Saporta summarize some of the important work done in France 
on this class of techniques. Originally, correspondence analysis was 
developed to construct graphical representations of contingency tables. It has 
been extended from this basically bivariate situation to multivariate situations, 
and even to time series problems in which there is an infinite number of variables, 
Deville and Saporta discuss the relationships with classical principal 
component analysis, using the idea of optimal scaling. In another 
contribution to this issue Heiser and Meulman present correspondence 
analysis as a particular form of multidimensional scaling. They also discuss 
other graphical scaling techniques, such as unfolding and restricted scaling. 

At first it may seem as if the graphical exploratory techniques discussed in 
this section and the confirmatory techniques in the previous section are not 
related at all. A more precise comparison is possible by using a more formal 
definition. An important class of multidimensional scaling techniques can be 
interpreted as fitting the model 

Here the xij are elements of the data matrix, the a, are p-vectors which 
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represent the row-objects in p-space, and the b, are p-vectors which represent 
the column-objects in p-space. The function f defines the geometric model; it 
is usually distance in Euclidean space, but it can also be cosine of angle or 
inner product. There is no explicit stochastic structure. The algorithms, 
which can be very complicated indeed, minimize some distance-type measure 
between the observed and the reconstructed data matrix. 

Both multidimensional scaling and principal component analysis have 
been generalized in such a way that they can deal with categorical data (with 
nominal and ordinal variables). Heiser and Meulman discuss these forms of 
non-metric multidimensional scaling. In addition to (3) it is specified that 

where the x3 are now the observed data, and g is a transformation or 
quantification of the observed data. Instead of having a single transformation 
g it is also possible to have a separate transformation for each row or a 
separate transformation for each column. The transformations are usually 
chosen optimally, i.e., the criterion that was minimized over representations ai 
and bj is now minimized in addition over transformations g, with the 
restriction that g E G, a class of admissible transformations. The class G can 
be the class of all monotone transformations or the class of all quadratic 
polynomials, or whatever. 

It is now possible to compare (1) with (3) in the case that the row-objects 
are individuals and the column-objects are variables. Because (3) introduces 
parameters for individuals it is a functional model. In the usual statistical 
context in which we increase the number of observations for a fixed number 
of variables, the bj are structural parameters and the ai are incidental 
parameters. Specification (4) can be compared with the measurement model 
(2); instead of an additive stochastic perturbation it provides for a nonlinear 
deterministic relation of the observed and latent variable. Clearly model (l)- 
(2) is much more specific than model (3H4). 

4. Developments in categorical data analysis 

We have seen in the discussion of Bentler’s contribution to this issue that 
multivariate normality is the exception rather than the rule in social science 
situations. In the linear structural model context this has led to the 
construction of asymptotically distribution-free estimates; it is also part of the 
motivation for the soft models of Wold. Exploratory multivariate analysis 
has developed partly as a reaction to the confirmatory forms of multivariate 
analysis expounded in textbooks, which did not seem applicable in most 
social science situations. But recently it has become more clear that the 
assumption of continuous multivariate normality is not only dubious because 
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of the normality, but also because of the continuity. After all, all variables 
are categorical, because of the limited precision with which we measure them. 
In physics, and often in economics, there are plenty of variables which can be 
approximated very nicely by continuous models. In psychology and 
sociology, however, and often in econometrics, variables classify individuals 
into a small number of categories, and they are inherently discrete or 
caregorical. 

In statistics the study of categorical variables and their association was 
started by Yule. His theory has developed, through the seminal work of 
Goodman and Kruskal on measures of association, into general loglinear 
analysis, which is discussed in this issue by Fienberg and Meyer. Loglinear 
analysis decomposes a discrete multivariate distribution (a multidimensional 
contingency table) in the same way as a conventional fixed-effects analysis of 
variance decomposes a higher-way layout. There are main effects, 
interactions of various orders, just as in the analysis of variance. The analysis 
is called loglinear, because we decompose the logarithms of the observed 
frequencies. Taking logarithms is useful both for statistical purposes and for 
ease of interpretation. Of course the assumptions of the analysis of variance 
(normal independent errors in each cell, with equal variance) can no longer 
be true. The statistical procedures for loglinear analysis use multinomial 
large-sample theory. Loglinear analysis has turned out to be an extremely 
useful class of techniques to analyze multivariate contingency tables. It is 
used mainly in sociology, under the influence of Leo Goodman, and it has 
been incorporated in computer-systems such as ECTA, BMDP, GLIM. 
Fienberg and Meyer discuss the basic saturated (just-identified) model for a 
multivariate table, and the various additional overidentilied submodels that 
are possible. They discuss the elegant maximum likelihood theory for 
hierarchical loglinear models, and the equally elegant iterative proportional 
fitting procedure. Their discussion covers the more classical linear logit 
models for binary dependent variables. 

Psychometricians had to deal with categorical variables right from the 
beginning. In psychometric test theory the answers to items in the test were 
either wrong or correct, which means that all variables are binary. In the 
early days this problem was evaded by computing subtest scores, which were 
then used in ordinary linear structural models such as factor analysis, but 
this solution is now considered to be unsatisfactory unless preceded by a 
detailed item analysis of the binary variables themselves. The model used for 
these purposes is the latent structure model, which is discussed in this issue in 
the contributions of Bartholomew, Andersen, De Leeuw, and Fienberg and 
Meyer. The basic idea in latent structure theory is that there are latent 
variables and observed variables, and that the observed variables are 
conditionally independent given the latent variables. This last assumption is 
very powerful; it generalizes the measurement model (2) in an elegant way. 
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Bartholomew shows that various interesting special cases arise by combining 
continuous/discrete latent/observed variables. Discrete latent together with 
discrete observed variables constitute Lazarsfeld’s latent class model, which 
has been fitted neatly into the general loglinear model by Goodman. 
Continuous latent together with continuous observed defines factor analysis, 
at least if we assume in addition that regressions of observed on latent are 
linear. This is closely related to the soft model assumptions used by Wold. In 
psychometrics, however, models with continuous latent variables and discrete 
observed variables were especially interesting. 

In his contribution to this issue Andersen discusses latent trait models, 
with one single continuous latent variable and binary observed variables, A 
typical latent trait model is of the form 

prob(xj= 11 <=<)=@(t-O,), (5) 

with c the latent variable and @ the item characteristic, which is usually 
either the standard normal or the logistic distribution function. By using 
conditional independence and by integrating over the latent variable we 
derive a model for the observed 2”-contingency table. More often, however, 
the model (5) is used in its functional form. We use 

If @ is logistic, then (6) defines the Rasch model, which is discussed 
extensively by Andersen. Fienberg and Meyer also discuss the Rasch model, 
and the related BTL-model for paired comparisons, and give various ways to 
integrate it into the general loglinear model. Andersen gives a detailed 
discussion of the various statistical techniques used for fitting the Rasch 
model and similar latent trait models. 

5. Relationships 

In the previous three sections we have distinguished three content areas in 
which there have been important developments. Developments in linear 
structural equation modelling are covered in this issue by Bentler and 
Dijkstra, developments in exploratory multivariate analysis by Deville and 
Saporta and by Heiser and Meulman, and developments in categorical data 
analysis by Andersen and by Fienberg and Meyer. The remaining four 
papers in this issue deal mainly with relationships between these three 
content areas. 

We have seen that the statistical component in the LISREL-system is its 
weakest part: social science data are not multivariate normal, in fact they 
often are not even continuous. MuthCn presents a drastic modification of the 
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statistical component, which makes it much more realistic, and which at the 
same time brings it close to recent developments in categorical data analysis. 
In addition to the usual specifications (lH2) Muthen assumes that 

XI = cli(Xi), (74 

Yj* = Pj(Yj). (7W 

In (7) the xi, defined by (lH2), are not observed any more, they are the 
latent response variables. The same thing is true for the yj. The latent 
response variables are related to the observed variables XT and yj* by (7a) 
and (7b), in which the C+ and fij are non-decreasing step functions if the 
observed variables are ordered categorical and are identities if the observed 
variables are numerical, in which case they coincide with the latent response 
variables. In Muthen’s system the latent variables are assumed to be 
multivariate normal, which means that the observed variables are either 
normally distributed or are discretizations of normally distributed variables. 

This specification makes Muthen’s work a far-reaching generalization of 
Karl Pearson’s system of tetrachoric, polychoric, biserial, and polyserial 
correlation coefficients. Pearson had to abandon his work because of the 
unsurmountable computational difficulties associated with estimation of the 
parameters. Muthen reviews a number of techniques which are quite 
practical if there are not too many variables. The very same model, at least 
the measurement part (7), is also discussed this issue by De Leeuw. He 
proposes some alternative statistical methods, which could be more 
profitable. He also shows that the latent trait model (5), with @ the 
cumulative standard normal, is equivalent to the factor analysis model with 
one common factor in Muthen’s system. Bartholomew discusses the factor 
analysis model with 4 independent common factors, in which @ is the 
logistic. He gives a very useful approximation to the cross-product ratios, 
which can be used to construct approximate fitting methods that work even 
on very large data sets. It is clear from the papers of Muthen, De Leeuw, and 
Bartholomew that the fields of linear structural equation models and 
categorical data analysis are being integrated rapidly, although it is unlikely 
that a single all-embracing model will arise in the end. 

Keller and Wansbeek’s contribution to this issue integrates various forms 
of exploratory multivariate analysis with linear functional equation models. 
They start out with 

Xij = i a, b, + [ii, 
s=l 

which is clearly a specialization of (3). By introducing stochastic structure in 
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a specific way the symbol - in (3) gets a definite meaning. The function f in 
(3) is specialized to the inner product. It is assumed in addition that the 

vectors ci are independent, identically distributed, multinormal, with a known 
covariance matrix. Additional specifications on the form of this covariance 

matrix lead to various familiar regression and component type models. But 
Keller and Wansbeek do not stop here. They extend their approach in such 
a way that it can deal also with categorical variables. Suppose the observed 
variables X$ are categorical, variable j having kj possible values. We code the 

categorical variables by using dummies, i.e., binary vectors of length kj in 
which exactly one element is equal to one. The location of the one in the 

vectors indicates the value of the variable. Concatenate the dummies in an 
n x (1 kj) matrix X*, and add to (8) the specification 

x=x*w, 

with W an (c kj) x m matrix of scale values (or weights or quantifications). W 
must be the direct sum of m vectors wj, of length kj. Eq. (9) is a specialization 

of (4). Of course the combination of (8) and (9) must be considered an 
approximate model for categorical variables, because (8) says that X is 
continuous multinormal and (9) says that X is discrete. Keller and Wansbeek 
give an interpretation of the model they are approximating in which the 
multinormal density is approximated on a discrete grid of points. The same 

model is briefly treated by Fienberg and Meyer, who relate it to earlier work 
of Goodman, and by De Leeuw, who calls it the point multinormal model to 
contrast it with the block multinormal model based on (7). Both Keller and 
Wansbeek and Fienberg and Meyer point out that the point multinormal 
model is related to correspondence analysis. In De Leeuw’s contribution a 
final model called the regression multinormal model is discussed and 
compared with block and point multinormal models. It is based on 
Lancaster’s work in the linear (not loglinear) analysis of multidimensional 
contingency tables, and it turns out to be even more closely related to 
correspondence analysis. 

In summary it is clear that the relationships discussed in this section are 
related to properties of the multinormal distribution that are being 
generalized to categorical data. In the block multinormal model the idea of 
discretization of latent response variables remains very close to the 
multinormal tradition. The corresponding 2 x 2 association measure is 
Pearson’s tetrachoric correlation. For the point multinormal model the idea 
that is generalized is the simple product structure of the bivariate 
interactions, and the sufficiency of the bivariate marginals. The 
corresponding association measure is the cross-product ratio. Bartholomew’s 
logit model also uses the cross-product ratio, but only as an approximation. 
The regression multinormal model, finally, generalizes the linearity of the 
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regressions. The corresponding association measure is the maximal 

correlation, which degenerates to the phi coefficient or point correlation in 
the 2 x 2 case. Much research remains to be done on the properties of these 
models, and on their appropriateness in the applications, but it is clear that a 
reconciliation of Pearson and Yule and possibly of exploratory and 
confirmatory multivariate analysis is in the making. 

6. Concluding remarks 

In this introduction, the ten papers in this issue have all been considered 

from several points of view. Keeping in line with the spirit of this issue, one 
may like to have some kind of overall view of the interrelation of the various 

papers and try to derive some simple representation thereof. 
In order to do so, we constructed a matrix of ‘distances’ between the 

papers, in the following simple manner: we counted, for each two papers, 

the number of references that they had in common, and grouped the result in 
a 10 x 10 matrix; the diagonal elements were set equal to the number of 

references in a paper that occurred in at least one other paper. (This choice 
for the diagonal elements is motivated by the large differences in number of 

references per paper - if the number set would be taken, undesired 
distortions in the representation would come up.) This matrix was next 

subjected to a correspondence analysis. The result is given in fig. 1.’ 
Fig. 1 represents the 10 x 10 matrix according to its two main axes. 

According to the first (horizontal) axis, two papers are separated from the 
rest: Heiser and Meulman, and Deville and Saporta. These papers stand 
apart due to their purely exploratory character. The second (vertical) axis can 
be interpreted as giving an ordering from discrete (top) to continuous 

(bottom); the papers by Andersen and Bartholomew focus on zero-one 
variables (and are indeed closely related), whereas the papers by Bentler and 
Dijkstra are all about continuous variables models. The papers by Muthin 
and Keller and Wansbeek take an intermediate position, in that the former 

extends the LISREL-model for continuous variables to ordered categorical 
ones, and the latter gives a unified setup, for two general classes of linear 
models, for both continuous and discrete variables. With this figure in hand, 
the reader is invited to choose his own route along the papers in this issue. 

Finally, we would like to thank the following people: Dennis Aigner for his 
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Rietveld, Dirk Sikkel. Henk Stronkhorst, Herman van Dijk, Wynand van de 
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Ven and Albert Verbeek, who provided expert opinion in reviewing the 
papers, and Wanda Hendriksz and Sandra Ikkersheim for their secretarial 
assistance. 
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Fig. 1. Two-dimensional representation of distances between papers. 
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