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Questioning Multilevel Models 

Jan de Leeuw 
University of California, Los Angeles 

Ita G. G. Kreft 
California State University, Los Angeles 

In this article, practical problems with multilevel techniques are discussed. 
These problems, brought to our attention by the National Center for Educa- 
tion Statistics (NCES), have to do with terminology, computer programs 
employing different algorithms, and interpretations of the coefficients in 
one or two steps. We discuss the usefulness of the hierarchical linear model 
(HM) in the most common situation in education-that of a large number 

of relatively small groups. We also point to situations where the more 

complicated HMs can be replaced with simpler models, with statistical 
properties that are easier to study. We conclude that more studies need to 
be done to establish the claimed superiority of restricted versus unrestricted 
maximum likelihood, to study the effects of shrinkage on the estimators, 
and to explore the merits of simpler methods such as weighted least squares. 
Finally, distinctions must be made between choice of model, choice of 
technique, choice of algorithm, and choice of computer program. While HMs 
are an elegant conceptualization, they are not always necessary. Traditional 
techniques perform as well, or better, if there are large groups and small 
intraclass correlations, and if the researcher is interested only in the fixed- 
level regression coefficients. 

In this article, we discuss some of the practical problems in using multilevel 
techniques, by looking into the choices users of these techniques have to 
make. It is difficult, of course, to define "user." Different users have different 
degrees of statistical background, computer literacy, experience, and so on. 
We adopt a particular operational definition of a "user" in this article, which 
certainly does not cover all users. Our "user" is defined by the set of questions 
asked by the Statistical Standards and Methodology Division of the National 
Center for Education Statistics (NCES). These questions were asked in the 
context of a grant, which has as one of its specific purposes to evaluate the 
practical usefulness of multilevel modeling in educational statistics. We can- 
not discuss, let alone answer, all the questions from NCES in this article. 
Even the ones we discuss will usually require additional statistical and compu- 
tational research, but they illustrate some of the practical methodological 
problems in using hierarchical linear models.' 

The statistics and mathematics will be kept as simple as possible. We shall 
concentrate on the situation in which we have a relatively large number of 
relatively small groups. The situation in which we have only two or three 
groups does not really interest us here, and the situation in which we have 
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a large number of very small groups (twins, couples) also requires a slightly 
different emphasis. There should be at least 20, but maybe as many as 1,000, 
groups of size at least 5, but maybe as large as 50. This seems to cover most 
studies in which the individuals are students and the groups are schools 
or classes. 

The NCES questions will be discussed in terms of a number of choices 
the user has to make. Here is a brief list. The user has to choose (a) a selection 
and coding of her variables, (b) a model from the class of regression models, 
(c) a loss function to measure goodness-of-fit, (d) an algorithm to minimize 
the loss function, and (e) a computer program to implement the algorithm. 
All these choices are nontrivial, but our discussion will mainly emphasize 
the choice of the model, the loss function, and the technique-and, of course, 
the consequences of these choices. 

Generalities on Linear Regression 
The first, rather general question posed by NCES is 

Question 1: Is some form of hierarchical linear model always preferable 
when conducting analysis with independent variables from two levels of a 
hierarchical data set? 

We shall try to answer this question in a very roundabout way. First, some 
terms need to be defined. Hierarchical data occur if the objects we study 
are classified into groups. Students within classes is one classical example; 
individual in census tracts or political districts is another one; and time points 
within individuals is a third one. We want to describe our hierarchical data 
by using a linear model, or, more precisely, a linear model which takes the 
hierarchical structure of the data into account. This is rather vague, but we 
shall make it more precise as we go along. 

In the usual (nonhierarchical) linear model there are n individuals and p 
predictors. The outcomes are collected in an n-element vector y = {yi), the 
values on the predictors in an n x p matrix X = {xis). We suppose 

y = Xp + E. (1) 

Random variables are distinguished from fixed quantities by underlining them 
(Hemelrijk, 1966). In discussing this class of regression models, the distinction 
between what is fixed and what is random is quite important, and the underlin- 
ing helps to emphasize the difference between the two. 

Throughout the article, frequentist terminology is used. Thus (1), for 
instance, is a model that describes a hypothetical sequence of replications of 
the experiment that generated the data. This statistical model does not describe 
the outcome of a single experiment, or of an actual sequence of replications, 
but it models a hypothetical sequence of replications. In this hypothetical 
sequence X remains fixed (i.e., it is exactly the same in each replication). 
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The coefficients 3 are also fixed over replications, but we do not know 
what their values are. They are parameters that have to be estimated. The 
disturbances e are different for each of the hypothetical replications, and 
they vary according to specific probability distributions. In particular, it is 
assumed, for their expected value and dispersion matrix, that 

E(e) = 0, (2) 

and 

V(e) = 
r'21. (3) 

The model (1)-(3) says, in essence, that the disturbances are independent 
and identically distributed; that is, they are not systematically related to X-or 
to anything else, for that matter. 

Model (1)-(3) is really meant for situations in which the predictors in X 
are under experimental control, and can be assumed to be measured without 
error. That is, it is meant for designed experiments. The xi, are fixed quantities; 
that is, they remain the same over the hypothetical replications, which means 
that in order to use the model we must have a way of physically keeping 
them the same. This does not happen very often in educational statistics. If 
school success is regressed on IQ, we are usually not interested in replications 
in which the individual has the same IQ all the time, only different school 
success. Both variables covary; that is, it looks as if we should use a model 
with a random predictor. Fortunately, this problem can be solved quite easily, 
at least from a formal point of view. If it is assumed that (1) models the 
conditional distribution of y given xi = xi, then the marginal distribution 
of Xi can be modeled separately to get a model for the joint distribution of 
(Yi, Xi)" 

A second problem of (1)-(3) is that to assume linearity and homoscedastic- 
ity of the regression in the joint distribution is to make a very strong assump- 
tion which is unlikely to be even approximately true. It forces us to take a 
more modest approach, in which models are used as tools for compact 
description and/or as tools for prediction. There is no need to worry about 
the model being true (it obviously is not); the question is only if it does its 
job of summarizing the information in the data and extrapolating into the 
future well enough. It is still the general consensus that the linear regression 
model (1)-(3) does quite well, especially considering how strong and unrealis- 
tic it is. It is still the workhourse of applied statistics, and in fact it sometimes 
seems as if applied statistics is linear regression analysis. 

This leads to a third general point, which is of considerable importance, 
and which is not often discussed. Statistical models are languages that users 
in a particular field have to learn, and thay they use to talk to each other 
efficiently. Regression analysis, path analysis, factor analysis, and survival 
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analysis are all examples of this. There is a tendency to narrow down the 
language even more, so that in the 1970s, for example, LISREL became the 
language of choice for a large group of scientists in various disciplines. In 
educational statistics, the multilevel framework provides a language that 
encompasses and supersedes the older language of contextual analysis, and 
there seems to be a tendency to narrow it down even more to the language 
of the HLM program. But this means that in the field it becomes difficult to 
talk about hierarchical data structures without adoping the terminology (and 
constraints) of the HLM program. 

On Random Coefficients 
Another critical assumption in (1) is that the regression coefficients P are 

the same for all individuals. Starting with Wald in 1947, economists have 
(sometimes) been critical about this assumption. In his text book, Klein 
(1953) says, 

Individuals differ greatly in behavior, and it may not be possible to obtain 
observations on a sufficiently large number of variables so that each unit 
may be considered to behave according to the same structural equation. We 
are then faced with the problem of interpreting a single estimated equation 
as representative in some sense of a large number of underlying equations. 
(p. 216) 

This quotation is interesting in that it states explicitly that we need more 
than one regression equation because we do not have enough predictors. If 
we had all relevant predictors in our study, we could use a single equation 
for all individuals, but because this is impossible, or at least impractical, the 
equations will vary around some average equation. 

This can be formalized by using the notion of random coefficients. The 
model is 

Yi-= x'i + Ei, (4) 

Pi = - + - i, (5) 

where 6i are independent and identically distributed with zero expected value 
and dispersion 1, Moreover, they are independent of the Ei. Thus y has 
expectation Xp, as in the fixed coefficient model, but now there is hetero- 
scedasticity because 

V(yi) = x •fix + - 2. (6) 

Once again we emphasize that the distinction between fixed and random 
coefficients is important, because it changes the definition of the population 
over which we want to generalize. If we repeat our experiment, then we do 
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not expect individuals i to have the same regression coefficients in each 
replication. The regression coefficients vary, both within individuals and 
between individuals, around a population mean. 

Regression in Multiple Populations 
The more general situation in which there are m groups, indexed by j, is 

analyzed next. This moves towards the situation in which we have hierarchical 
data. A straightforward generalization of (1) is 

yj = Xjpj 
+ 

f_). (7) 

Now the yj and the _j are vectors of length nj, the number of individuals in 
group j. Matrix Xi is nj x m. It makes sense also to assume that 

E(ej) = 0, (8) 

and 

V(_j) = r;2I. (9) 

Finally, we assume the different _j are independent of each other. 
There is nothing wrong with model (7)-(9). It takes the hierarchical struc- 

ture of the data into account, although it merely says that the same regressors 
apply to each of the groups. The model can be fitted to each of the m groups 
separately, because none of the parameters are common to the groups. This 
is not very attractive, especially if there is a large number of relatively small 
groups-for instance, students from many school classes, where each class 
has somewhere around 10-20 students. It ignores the fact that schools are 
all part of the same system, and that consequently the regressions are likely 
to have something in common. One way to incorporate this commonality 
into the model is to require that some of the parameters are equal in all 
groups. There are two obvious choices: 

01 = 2 ... , (10) 

But this is a clear case of throwing the baby away with the bathwater. 
Although all schools are related, and must have something in common, we 
do not want to assume they are identical. There a number of ways out of 
this dilemma. We discuss two of them in this section, in order to be able to 
compare them at a later stage. The first approach uses linear restrictions. The 
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second uses a random coefficient model that takes the hierarchical structure of 
students in schools into account. 

Linear Restrictions on Parameters 

The analysis of covariance is an example of the first approach. It assumes 
(11), and that all slopes, but not all intercepts, are equal. More generally, the 
assumption is that Oj = Zjy, where the Zi are chosen in such a way that 
some elements of the Pj are equal. In ANCOVA, for instance, we have mp 
parameters [,j, and we replace them by p - 1 slopes and m intercepts. If 
the slopes are in a vector P and the intercepts in a vector a, then we can set 

i 
j= z 

= 
(0 I )(0)' 

(12) 

with ej the jth unit vector. Thus, the partial identity approach leads to linear 
constraints on the Pj. Combining these constraints with (7) simply gives the 
fixed-effects linear model 

yj = XiZjy + EJ, (13) 

which can be fitted with ordinary least squares methods, because it is still 
the case that V (y ) = 2I. 

Random Coefficients Revisited 

In random coefficient models, a slightly different route is traveled. The 
model is in between "separate models for all schools" and "complete equality." 
It is given by 

yi = Xj4j + Ej, (14) 

with 

_j = 0 + -8j. (15) 

Compare this with (4)-(5). In the earlier model it is assumed that each 
individual has her own regression coefficients, and these coefficients are 
independent over individuals. In (14) the assumption is that each group has 
its own regression coefficients, which are independent over groups. But the 
coefficients are identical for different individuals in the same group. The 
coefficients are modeled as random, which means that the definition of a 
population (our hypothetical sequence of replications) is modified. The slopes 
and intercepts are no longer fixed numbers, which are constant within schools 
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and maybe even between schools, but they also vary over replications. In 
order to complete the specification we also assume that the second-level 
disturbances 8I are independent of each other, are independent of the first- 
level disturbances F_, have zero expectation, and have dispersion matrix 1,. 
If the second-level disturbances are identically equal to zero, then we are 
back in the situation (10)-(11). 

By combining (14) and (15) we see that 

yj = XjP 
+ 

Xj8j 
+ 

_ j, (16) 

which implies 

V(yj) = X fXJ + o(JI. (17) 

Individuals in the same school have correlated disturbances, and the correla- 
tion will be larger if their predictor profiles are more similar, in the metric 
f,. This is an interesting consequence of the specification (14)-(15), but 
understanding (14)-(15) itself is clearly more basic. It will be difficult, even 
for sophisticated users, to interpret the variance and covariance components 
in (17) directly. 

Random coefficient models are a convenient compromise between separate 
fixed coefficient models for each group, and models with all coefficients 
equal for each group. They are "convenient" because we expect them to give 
more stable estimates than separate models and more interesting parameters 
than equal coefficients. They are also more plausible, by the Klein argument, 
because it cannot be assumed that we have included all relevant variables. 

Multilevel Models 

Our regression situation becomes more complicated, but also more interest- 
ing, if we have variables describing individuals (students) as well as variables 
describing groups (schools). Combining them in a single analysis is called 
multilevel analysis. In multilevel analysis we combine the two approaches 
discussed earlier in this section. Linear restrictions of the form Pj = Z-y are 
used to reduce the number of free regression parameters, and the idea of 
random coefficients is used to model the idea that schools are sampled, and 
that we cannot expect to explain all relevant variation with only a few 
regressors. The combined model, which replaces (14)-(15), is 

yj 
= Xj j + fj, (18) 

Pj = Zjy + 8j. (19) 

There are clearly two different regression models on two different levels. 
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The first-level model (18) is complemented by the second-level model (19). 
If we substitute (19) into (18), we have 

yj = XjZj-y + XJ 8j + -E_. (20) 

Compare this with (13). 

Are Hierarchical Models Necessary? 

If we summarize our results so far, trying to answer the first NCES question, 
we see that the answer to this question is difficult to give, because of some 
possible conceptual confusion. Hierarchical models are any models that take 
the hierarchical nature of data into account. The multilevel model with random 
coefficients, (18)-(19), sometimes also known as the slopes-as-outcomes 
model (Burstein, Linn, & Capell, 1978), is only one single specific hierarchical 
model. If the question is interpreted as "Should we take the hierarchical 
nature of the data into account in our models?," then the answer is yes. We 
should because it is important prior information that can be used to increase 
the power and precision of our techniques, and also because it often reflects 
the way the sample is collected. 

But even if the hierarchical nature of the data is taken into account, and 
even if we have multilevel data, we still have a scale of modeling possibilities. 
Regression coefficients in all groups can be restricted to be equal, or they 
can be completely unrestricted, and vary freely over groups. The first possibil- 
ity may be too restrictive, and the second one may be too unrestrictive in 
typical school-effectiveness situations. Two natural intermediate classes of 
models can be formed by using linear restrictions on the parameters, or by 
using random coefficients. Neither of these is inherently superior to the other. 
In many school-effectiveness studies, however, the second-level units (i.e., 
the schools) are sampled from a population of schools. In those cases, the 
notion of random variation on both levels is very appealing. 

To be sure, even in cases in which the multilevel model with random 
coefficients is the natural choice, it still does not follow that statistical tech- 
niques based on maximum likelihood or empirical Bayes (ML/EB) methodol- 
ogy should be used. This is a separate question which requires separate study. 
And finally, even if we decide to use ML/EB methods, this again does not 
imply the choice of a specific computer program. If we interpret the NCES 
question as "Is ML/EB necessary?" or "Is HLM necessary?," then we have 
at this point not enough information to give a reasonable answer. 

Separate or Single Equations 
The next NCES question is 

Question 2: Some analysts are more comfortable presenting HLM results 
in terms of a combined model, i.e., a single regression equation containing 
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interaction terms. Others prefer to discuss the coefficients without recourse 
to a single regression equation. Are the two approaches equally valid? 

There are two aspects of this question that we discuss separately. The first 
one is modeling in one or two steps; the second one is estimating in one or 
two steps. Again, there is some confusion in the literature about these two 
aspects of the question. 

One-Step or Two-Step Models? 

Let us translate this part of the question into formulas, because it is at 
least partly a question about formulas. If we look at the fixed part of (20) 
we see that 

E(yj) = XjZjy. (21) 

In (21) the cross level interactions are formed as products of the first-level 
regressors x, and the second-level regressors Zr. In a sense, there is not much 
to choose. The single-equation and two-equation formulations describe the 
same model. 

From the interpretational point of view, however, the two formulations are 
quite different. We feel it is very difficult, perhaps impossible, to interpret 
(20) without going back to (18)-(19). It is, of course, possible to interpret 
the fixed effects in (20), because there is a lot of experience with interpreting 
interactions in fixed-effect situations. Compare the useful reviews by Aiken 
and West (1991) and Cox (1984). It is, however, quite impossible to come 
up with a convincing interpretation of the structure of the disturbance term 
in (20) without referring to (18)-(19). The disturbance term in question is 

Xjj + _j, and its dispersion matrix is XjflX} + jrIl. We have seen, in the 
previous section, that it is difficult to make direct sense of these, and especially 
of the covariance components. 

One-Step or Two-Step Estimates? 

The one-step (20) and the two-step (18)-(19) specifications of the multi- 
level model, discussed in the previous section, suggest two different ordinary 
least squares (OLS) methods for fitting the model. This has already been 
discussed in detail by Boyd and Iverson (1979). We follow the treatment of 
de Leeuw and Kreft (1986). 

The two-step method first estimates the 3jI by 

[ij = (XJXj)-'XJyj, (22) 
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and then y by 

= (j Z )' .(23) 
j=1 j=1 

The one-step method estimates y directly from (20) as 

S= ( Zj;x;x ; Zj Xj y. (24) 
j= j=1 

By using (22) we see immediately, however, that the one-step method can 
also be written as 

S= ( ZjXj;XZ)Y ZjXjXj . (25) 
j=1 j=1 

Thus the "one-step estimate" can be computed in two steps, as well; in fact, 
this is often the best way to compute it because the matrices in (25) are much 
smaller than those in (24). 

Both methods provide unbiased estimates of y, are noniterative, and are 
easy to implement; and because they are linear in the observations, it is trivial 
to give an expression for their dispersion matrices. Nevertheless they have 
fallen into disgrace, because they are neither best linear unbiased estimates 
(BLUEs) nor best linear unbiased predictors (BLUPs). On the basis of the 
computational experience we have so far (which is quite minimal), we feel 
that they still deserve a fighting chance. 

The next candidate that comes to mind is based on the BLUE. If we knew 

J2 and 11, then we could compute the BLUE by 

nz -1 

? = ZjXj(Xnxlj + 2f1)-I'X}Z 

m (26) 
x ZjX) (Xj X; + Cl)- y j(26) 

j=1 

This looks horrible, but it can be simplified to 

t = Z{ Wz z1} ZJ W-zw , (27) 
j= tj=1 
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where 

Wi = 1 + r2(XJXj)-'. (28) 

Observe that Wj is the dispersion of the OLS estimate j. 
The formal similarity of (23), (25), and (27) is clear. They can all be 

thought of as two-step methods, which first compute the tj, and then do a 
weighted regression of the Pi on the Zj. Of course, (27) is useless by itself, 
because we do not know what '2 and 11 are, but a method to compute 
consistent estimates of these variance parameters from the OLS residuals is 
discussed in de Leeuw and Kreft (1986). This adapts a method proposed by 
Swamy (1971) to the multilevel model. The resulting method is fully efficient, 
noniterative, and uses unbiased estimates of the variance components. Of 
course, unbiasedness in this context is not necessarily good, because it inevita- 
bly leads to negative variance estimates. 

Again, we think a more detailed comparison of these simpler methods with 
the complicated iterative ML/EB methods such as HLM (Bryk, Raudenbush, 
Seltzer, & Congdon, 1988), or VARCL (Longford, 1990), or ML/3 (Rasbash, 
Prosser, & Goldstein, 1989) would be useful. The least squares methods are 
computationally simpler, and easier to understand and explain. Moreover, it 
is generally simpler to study their statistical properties. In the case in which 
the variance components have to be estimated first, the statistics are still 
quite complicated (Johansen, 1982). Some interesting Monte Carlo results 
on weighted least squares versus ML/EB estimation have been published by 
Kim (1990) and van der Leeden and Busing (1994). Also, see Kreft and 
Yoon (1994) for an overview of Monte Carlo results so far. 

Loss Functions and Global Fit Measures 

This also brings us to the next question asked by NCES: 

Question 3: Most discussion of HLM results centers on the individual 
coefficients: the betas and gammas. There is, of course, some interest in 
the overall measures, such as the proportion of variance explained. What 
is the best way to obtain and present overall measures when using HLM? 

Each of the two-step methods discussed above gives one way to compute 
the "proportion of variance explained." We have residual sums of squares in 
each of the two steps. 

The Analysis of Deviance 

We get a somewhat more integrated picture by using the analysis of 
deviance, which is based on the multinormal likelihood function. Fixed and 
random coefficient models are combined in 

yj 
= 

Xj.j + _j, (29) 
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_j 
= 

j + _8j. (30) 

The two additional specifications we can either impose, or test, or both, 
within this model are 

Pi = 
Zj, (31) 

and 

11 = 0. (32) 

A special case of (31) is equality of the 1j; another special case is (random 
effects) ANCOVA. Of course, (32) is the hypothesis that the regression 
coefficients have no random variation. 

The multinormal deviance for model (29)-(32) is, ignoring the usual 
constants, 

m 

A = logjXI Xj + 11X Ij 
j=1 

M (33) 
+ 

m(yj 
- 

Xir1)'[Xil Xj + fl]-'(y1 - Xj1jP). 
j=1 

This can be simplified by writing yj = XjPj + rj, where 1j is any OLS 
estimate. We find that, except again for some constants, 

A 
=. log IWj 

+ 
(nj 

- p) log o 
j 
+ 
r 

} 
j=1 

)?,W -- Id j) (34) + (A - p• ) ,W ;i • - i 00 

Here 6&2 is the OLS estimate of the residual variance, that is, 

U1 = J. (35) 
ni - p 

The derivation of (34) from (33) is, for example, in de Leeuw and Kreft (1986). 
It seems that all the "overall measures" that are useful are components of 

(34). The deviance itself is an overall measure of fit. We also see the residual 
individual level variance oj2 in each group, while the two components of Wj 
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are the parameter variance 11 and the estimation variance o2(X•X)-' . This 
is discussed extensively in Bryk and Raudenbush (1991). 

If we want to establish how much variance of the Pj is "explained" by the 
Zi, we merely have to compute the matrix 

m d Wvj(,- Z41)A - 4V(36) 
j=1 

and look at its diagonal or trace. Here •. and j are the maximum likelihood 
estimates, computed by minimizing the deviation (34) over the free parame- 
ters. An alternative discussion of measures of fit, based on the notion of 
"modeled variance," is given in Snijders and Bosker (1994). 

REML Versus ML Deviance 

In HLM, and in some of the other multilevel programs as well, the deviance 
that is actually minimized is defined slightly differently. Instead of minimizing 
the deviance of the data, they minimize the deviance of the least squares 
residuals. This leads to restricted maximum likelihood (REML) estimates 
(Harville, 1977). In the multilevel context, the relevant algebra is in the 
appendix of the book by Bryk and Raudenbush (1991), or in the paper by 
de Leeuw and Liu (1993). REML estimates are generally considered to be 
superior to the maximum likelihood estimates based on the deviance of the 
data, but the evidence of their superiority in complicated cases, and in multi- 
level analysis in particular, is not too convincing. The precise asymptotics 
for both ML and REML have been worked out (Cressie & Lahiri, 1993; 
Miller, 1977), but, as usual, the results are not very helpful. Careful Monte 
Carlo studies in simpler cases (Swallow & Monahan, 1984) do not lead to 
unambiguous recommendations. Clearly, a great deal more research, of the 
theoretical and the Monte Carlo varieties, is needed here. 

Shrinkage Estimates 

Another question which is of some interest from the practical point of 
view is how the 3j are estimated. Obviously, the unbiased and consistent 
estimates P3i or 13 = Zjy can be used, just as in the fixed coefficient case. 
This is not what is normally done, however. One of the key selling points 
of multilevel approaches is the shrinkage estimator, which is used to borrow 
strength from the other contexts (groups, schools). In this approach we esti- 
mate 3j by using the conditional expectation (or the linear regression, in the 
nonnormal case) of 3j, given y. The shrinkage estimate has the simple 
expression 

Pj 
= 

j13 + (I - 
01.)Z,, (37) 
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with 

0i = 11i; (38) 

Thus, the shrinkage estimator Pi is in the class of matrix weighted averages, 
and the algebra and geometry derived in Chamberlain and Leamer (1976) 
apply. Using the weighted average interpretation can help in understanding 
the regression coefficients. It can also help in understanding the frustration 
of the principal of an excellent school who sees the predictions of success 
of her students shrunken towards the mean. 

The fact that we actually have three different estimates of 3j offers many 
opportunities for diagnostics which have not really been explored so far. In 
fact, the emphasis in the literature has been on the appropriateness and the 
plausibility of the model, and not on the ways in which the model can be 
violated. This is perhaps a useful attitude in the initial stages of development, 
but the time has come to become more critical. One possibility is to relax 
the assumptions and to fit more general models. As we know, going this 
route means going further into the minefield of Plausibility, declaring war 
on Parsimony and its faithful ally Stability. The other possibility is to use 
diagnostics, either graphical or computational. There have been a few attempts 
to develop such tools for the mixed linear model (Beckman, Nachtsheim, & 
Cook, 1987; Christensen, Pearson, & Johnson, 1992; Lange & Ryan, 1989), 
but their usefulness for multilevel analysis is just beginning to be explored 
by Hilden-Minton (1994, 1995). 

Algorithms and Computer Programs 
Some people think, perhaps, that it is irrelevant for the ordinary user which 

algorithm is used to compute, say, maximum likelihood estimates. Moreover, 
some may think, it is equally irrelevant which computer program is used to 
compute the estimates. But this is true in the same sense that it is irrelevant 
which means of transportation you use to get to your work. Eventually you 
will get there all right, no matter what means of transportation you use, but 
walking takes hours, the bus is unpleasant, and an old car breaks down all 
the time. The review by Kreft, de Leeuw, and Kim (1990) (see also Kreft, 
de Leeuw, & van der Leeden, 1994) shows that algorithms do matter, and 
that, consequently, the NCES question about software makes perfect sense. 
Related comparisons are in van der Leeden, Vrijburg, and de Leeuw (1991). 
On the basis of this comparison, the answer to 

Question 4: Are there alternatives to the HLM software that NCES should 
consider using? 

is a resounding yes. 
In the first place, this is a "yes" in the general sense. The two-step ordinary 

and weighted least squares methods deserve some additional study. The 
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nonparametric and semiparametric methods, and the path analysis and latent 
variable versions of the multilevel models, should also be studied in detail. 
And, perhaps most importantly, software should be developed that studies 
the deviations from the multilevel model, preferably in a graphical and inter- 
active way. 

Secondly, it is a "yes" in the narrow sense. As far as algorithms for 
maximum likelihood estimation are concerned, the alternatives are clear. We 
can choose between the scoring method in Longford's VARCL, the iterative 
generalized least squares (IGLS) methods in Goldstein's ML/2 and ML/3, 
and the EM algorithm in HLM and Mason's GENMOD. It is also obvious 
that there is no uniformly best method, and that none of the three may provide 
the final answer. Hilden-Minton's (1994) TERRACES package combines EM 
and scoring in a single algorithm. 

If we compare advantages and disadvantages, then EM has global conver- 
gence from any starting point to a solution which is always feasible (no 
negative variances). This advantage, however, is also its undoing in other 
situations. Global convergence means small steps, and thus slow convergence. 
If there is convergence to a boundary point, EM slows down to a crawl, and 
it will not get there in our lifetime. Technically, EM becomes sublinear in 
such circumstances. The user will have stopped long before this, at a point 
which looks stationary because nothing is really changing anymore. Because 
EM typically does not give information about the quadratic component of 
the likelihood function in the region in which it meanders, there is very little 
information available that can be used to diagnose this situation. Scoring is 
often said to have locally quadratic convergence, but this is true only if the 
model is true, which it is not, and if convergence is not to a boundary point 
or a point where the information matrix is singular. In examples that are ill- 
conditioned, VARCL also slows down and becomes linear or worse. Both 
VARCL and IGLS, however, give better indications that something is wrong. 
Variances become negative, inverses explode, and so on. 

From the results of Kreft et al. (1990) and Kreft et al. (1994), we conclude 
that VARCL is more difficult to use than HLM, but gets one to the same 
solution faster if the model is well-conditioned. If the model is way off, then 
VARCL has better ways of showing this. More or less the same thing is true 
for ML/3, but ML/3 is really an interactive software package with a much 
more general range than HLM. With ML/3 we can study residuals, compute 
summary statistics, make plots, and so on. The learning curve is much steeper, 
but this is unavoidable. Even steeper learning curves result if the user decides 
to write multilevel software in Xlisp-Stat or S-Plus, interactive statistical 
environments that are rapidly becoming more popular. These give the maxi- 
mum amount of user control, but also require the maximum amount of 
prior knowledge. 

To put it somewhat differently, the HLM program assumes from the start 
that the basic model is correct, and the number of variations and tests within 
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the basic model that can be tried out is consequently quite limited. Clearly, 
the developers of HLM have a different class of users in mind. Because 
NCES has to deal also with more sophisticated users, who want to explore 
their data, experiment with models, and investigate the residuals, we think 
ML3 should be available as well. We see the simple order, in terms of 
precookedness, 

HLM > VARCL - ML/3 > XLISP. 

This ordering implies that the programs cater to different groups of users. 

Discussion 

We have seen that the NCES questions can only partially be answered. 
This is partly because of the confusion between choice of model, choice of 
technique, choice of algorithm, and choice of computer program. Each of 
these choices requires some care. 

Multilevel models with random coefficients are an elegant conceptualiza- 
tion. In some cases they are not really necessary-for instance, with very 
large groups, with very small intraclass correlation, and for researchers who 
are interested only in the regression coefficients y. 

If we decide to use these models, then it is unclear so far what the best 
estimation method is. Results of Busing (1993), van der Leeden and Busing 
(1994), and Kim (1990) show that y can be reliably estimated with any 
weighted or unweighted least squares method. This implies, by the way, that 
we cannot expect large differences between OLS and ML/EB as far as 
scientific conclusions based on y are concerned. The reason why this is 
especially important is that most researchers seem to be interested in the 
fixed-level regression coefficients, not in the shrinkage estimates for each 
school, and not in the variance and covariance components (Kreft & Yoon, 
1994). 

If we decide to use these models, and to use ML/EB, then we still have 
a choice of algorithm. So far, it seems that a safeguarded version of scoring 
and an accelerated version of EM are about equally fast and equally reliable. 
Finally, the choice of computer program is becoming more and more interest- 
ing. TERRACES (Hilden-Minton, 1994) is interactive, works on the Mac, 
with MS Windows, and with X11, and is free. It also has diagnostics, and 
is embedded in Xlisp-Stat, which means that additional statistical computa- 
tions can very easily be done on-line. Don Hedeker has published public 
domain versions of his MIXOR and MIXREG programs, which can deal 
with autoregressive residuals and categorical responses. These programs, 
which are not covered by Kreft et al. (1994), will present a serious challenge 
to the older packages. 
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Note 

'They also illustrate the dominant position of the terminology and notation of Bryk 
and Raudenbush (1991), and of the computer program HLM (Bryk, Raudenbush, 
Seltzer, & Congdon, 1988) in the field of "official" educational statistics. In many 
cases it seems as if "fitting a multilevel model" and "using HLM" are seen as identical 
activities. They are not, of course. To avoid confusion, we shall not use the term 
"hierarchical linear models," and if we say HLM we mean the computer program 
of that name. 

References 

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting 
interaction. Newbury Park, CA: Sage. 

Beckman, R. J., Nachtsheim, C. J., & Cook, R. D. (1987). Diagnostics for mixed- 
model analysis of variance. Technometrics, 29, 413-426. 

Boyd, L. H., & Iversen, G. R. (1979). Contextual analysis: Concepts and statistical 
techniques. Belmont, CA: Wadsworth. 

Bryk, A. S., & Raudenbush, S. (1991). Hierarchical linear models for social and 
behavioral research: Applications and data analysis methods. Newbury Park, 
CA: Sage. 

Bryk, A., Raudenbush, S. W., Seltzer, M., & Congdon, R. T. (1988). An introduction 
to HLM: Computer program and user's guide. Chicago: University of Chicago. 

Burstein, L., Linn, R. L., & Capell, F. J. (1978). Analyzing multilevel data in the 
presence of heterogeneous within-class regressions. Journal of Educational Statis- 
tics, 3, 347-383. 

Busing, F. M. T. A. (1993). Distribution characteristics of variance estimates in two- 
level models (Tech. Rep. No. PRM 93-04). Leiden, The Netherlands: University 
of Leiden, Department of Psychometrics. 

Chamberlain, G., & Leamer, E. E. (1976). Matrix weighted averages and posterior 
bounds. Journal of the Royal Statistical Society, B38, 73-84. 

Christensen, R., Pearson, L. M., & Johnson, W. (1992). Case-deletion diagnostics 
for mixed models. Technometrics, 34, 38-45. 

Cox, D. R. (1984). Interaction. International Statistical Review, 52, 1-31. 
Cressie, N., & Lahiri, S. N. (1993). The asymptotic distribution of REML estimators. 

Journal of Multivariate Analysis, 45, 217-233. 
de Leeuw, J., & Kreft, I. G. G. (1986). Random coefficient models for multilevel 

analysis. Journal of Educational Statistics, 11, 57-86. 
de Leeuw, J., & Liu, G. (1993). Augmentation algorithms for mixed model analysis. 

Los Angeles: University of California, Los Angeles, Department of Statistics. 
Goldberger, A. S. (1962). Best linear unbiased prediction in the generalized linear 

regression model. Journal of the American Statistical Association, 57, 369-375. 
Harville, D. A. (1977). Maximum likelihood approaches to variance component 

estimation and related problems. Journal of the American Statistical Association, 
72, 320-340. 

Hemelrijk, J. (1966). Underlining random variables. Statistica Neerlandica, 20, 1-7. 
Hilden-Minton, J. (1994). TERRACES: An XLISP-STATpackage for multilevel model- 

ing with diagnostics (Tech. Rep.). Los Angeles: University of California, Los 
Angeles, Department of Statistics. 

187 



de Leeuw and Kreft 

Hilden-Minton, J. (1995). Multilevel diagnostics for mixed and hierarchical linear 
models. Unpublished doctoral dissertation, University of California, Los Angeles. 

Johansen, S. (1982). Aymptotic inference in random coefficient regression models. 
Scandinavian Journal of Statistics, 9, 201-207. 

Kim, K.-S. (1990). Multilevel data analysis: A comparison of analytical alternatives. 
Unpublished doctoral dissertation, University of California, Los Angeles. 

Klein, L. R. (1953). A textbook of econometrics. Evanston, IL: Row, Peterson and Co. 
Kreft, I. G. G., de Leeuw, J., & Kim, K.-S. (1990). Comparing four different statistical 

packages for hierarchical linear regression: GENMOD, HLM, ML3, and VARCL 
(CSE Tech. Rep. 311). Los Angeles: University of California, Center for Research 
on Evaluation, Standards, and Student Testing. 

Kreft, I. G. G., de Leeuw, J., & van der Leeden, R. (1994). Review of five multilevel 
analysis programs: BMDP-5V, GENMOD, HLM, ML3, VARCL. The American 
Statistician, 48, 324-335. 

Kreft, I. G., & Yoon, B. (1994). Are multilevel techniques necessary? An attempt at 
demystification. Paper presented at the Annual Meeting of the American Educa- 
tional Research Association, New Orleans, LA. (ERIC Document Reproduction 
Service No. TM 021737) 

Lange, N., & Ryan, L. (1989). Assessing normality in random effects models. The 
Annals of Statistics, 17, 624-642. 

Longford, N. T. (1990). VARCL software for variance component analysis of data 
with nested random effects (maximum likelihood) [Computer software]. Princeton, 
NJ: Educational Testing Service. 

Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates in the 
mixed model of the analysis of variance. The Annals of Statistics, 5, 746-762. 

Rasbash, J., Prosser, R., & Goldstein, H. (1989). M12 software for two-level analysis: 
User's guide. London: University of London, Institute of Education. 

Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random 
effects (with discussion). Statistical Science, 6, 15-51. 

Snijders, T. A. B., & Bosker, R. J. (1994). Modeled variance in two-level models. 
Sociological Methods and Research, 22(3), 342-363. 

Swallow, W. H., & Monahan, J. E (1984). Monte Carlo comparison of ANOVA, 
MIVQUE, REML, and ML estimators of variance components. Technometrics, 
26, 47-57. 

Swamy, P. A. V. B. (1971). Statistical inference in a random coefficient model. New 
York: Springer. 

van der Leeden, R., & Busing, F. M. T. A. (1994). First iteration versus IGLS/RIGLS 
estimates in two-level models: A Monte Carlo study with ML3 (Tech. Rep. No. 
PRM 94-02). Leiden, The Netherlands: University of Leiden, Department of 
Psychometrics. 

van der Leeden, R., Vrijburg, K., & de Leeuw, J. (1991). A review of two different 
approaches for the analysis of growth data using longitudinal mixed linear models: 
Comparing hierarchical linear regression (ML/3, HLM) and repeated measures 
design with structured covariance matrices (BMDP-5V) (preprint). Los Angeles: 
University of California, Los Angeles, Department of Statistics. 

188 



Questioning Multilevel Models 

Authors 
JAN DE LEEUW is Professor, Departments of Psychology and Mathematics, UCLA, 

405 Hilgard Ave., Los Angeles, CA 90024-1555; deleeuw@stat.ucla.edu. He spe- 
cializes in multivariate analysis and computational statistics. 

ITA G. G. KREFT is Associate Professor, School of Education, California State 
University, 5151 State University Drive, Los Angeles, CA 90032-8143; 
kreft@stat.ucla.edu. She specializes in methods of research and data analysis. 

189 


	Article Contents
	p. 171
	p. 172
	p. 173
	p. 174
	p. 175
	p. 176
	p. 177
	p. 178
	p. 179
	p. 180
	p. 181
	p. 182
	p. 183
	p. 184
	p. 185
	p. 186
	p. 187
	p. 188
	p. 189

	Issue Table of Contents
	Journal of Educational and Behavioral Statistics, Vol. 20, No. 2, Special Issue: Hierarchical Linear Models: Problems and Prospects (Summer, 1995), pp. 109-240
	Front Matter
	[Introduction]: Hierarchical Linear Models: Problems and Prospects [pp.  109 - 113]
	Inference and Hierarchical Modeling in the Social Sciences [pp.  115 - 147]
	Longitudinal Data Analysis Examples with Random Coefficient Models [pp.  149 - 170]
	Questioning Multilevel Models [pp.  171 - 189]
	Hierarchical Models for Educational Data: An Overview [pp.  190 - 200]
	Comments
	Hierarchical Data Modeling in the Social Sciences [pp.  201 - 204]
	Hierarchical Models and Social Sciences [pp.  205 - 209]
	Reexamining, Reaffirming, and Improving Application of Hierarchical Models [pp.  210 - 220]
	Comment to de Leeuw, Kreft, Draper, Rogosa and Saner [pp.  221 - 227]

	Replies
	[Hierarchical Data Modeling in the Social Sciences]: Rejoinder [pp.  228 - 233]
	Reply to Discussants: Longitudinal Data Analysis Examples with Random Coefficient Models [pp.  234 - 238]
	Not Much Disagreement, It Seems [pp.  239 - 240]

	Back Matter



