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Introduction

Hierarchical linear models, also known as multilevel models, have been studied quite
intensively in educational statistics in the last five years.  We refer to the basic papers
by Aitkin and Longford (1986), Raudenbush and Bryk (1986), and De Leeuw and Kreft
(1986), and to the books by Goldstein (1987), Bock (1989), and Raudenbush and Bryk
(1991). Most of these papers and books concentrate on two-level models, with measure-
ments (variables) on both levels of the hierarchy.

In this review paper we develop notation, terminology, and algorithms for fitting
general hierarchical models. The usual notation for multilevel analysis rapidly becomes
very complex if the number of levels increases (compare Kreft, De Leeuw, and Kim, 1990).
Therefor we shall use the somewhat simpler random coefficient notation.

Random coeflicient models

Notation
First we define a hierarchical indez structure (of level s). Suppose T = {1,...,n} is
an index set, and P, with r = 0,...,s + 1 is a hierarchical sequence of partitionings of T.

By this we mean that P, is a refinement of Pr: Pryi is the union of partitionings of the
sets in P,. For our real example we take the GALO data, used previously in De Leeuw
and Kreft (1986). There are 37 schools in the city of Groningen, The Netherlands, with
1290 students. School 1 has 12 students, school 2 has 26 students, ... , school 37 has 30
students. Thus the partitionings are

{{1’2a3, Tty 1290}}
{{1,2,3,---,12}{13,14,15,---,38} - - - {1261, 1266, 1267, - - -, 1290} }

{{1{2}{3}--- {1290} }

This defines a hierarchical structure with three levels. The first and the last partition in
this example are trivial, the middle one is nontrivial. We use index s for the highest (i.e.
finest) nontrivial level. For the GALO example s = 1. Level s+ 1 is always the individuals,
level 0 is always the whole index set.

There is some additional information about the data set that we shall need. For each
of the students we know gender, intelligence quotient (measured with the GIT, a general
intelligence test developed in The Netherlands in the fifties), father’s profession (classified
in six SES-type categories), and teacher’s advice. This last variable is the opinion of
the sixth grade teacher about the most appropriate form of secondary education for the
student. This is classified in seven categories, which are (or were) the seven main types
of secondary education in The Netherlands. For the time being we shall treat all four
variables as quantitative. This means that we have three quantititative predictors, and
a quantitative dependent variable. Clearly this is not entirely appropriate. Both father’s
profession and teacher’s advice are really categorical variables, even the “correct” order
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of the categories is somewhat in doubt. IQ is numerical, and SEX is binary, so it can
be treated as a numerical variable without any problems. If we decide to treat SES as
categorical, our number of predictors will increase from three to eight. If we decide to
treat teacher’s advice as categorical, we need to look for extensions of the basic linear
model which allow for categorical dependent variables.

We need some additional notation in order to get started. Remember the definition
of the Kronecker symbol, which is

6,'k_ 1, le———k,
T 0, ifi#k.

We generalize this by defining

sik — 1, if 7 and k are in the same set on level r;
T 10, otherwise.

The hierarchical nature of the partitionings implies that if §:¥ = 0 then ¥ = 0 for all
t > r. If students are not in the same school district, then they are not in the same school,
and certainly not in the same class.

Also remember the definition of the direct sum of a number of matrices. If 4;,---, A,
are m matrices, where A; has rj rows and ¢; columns, then the direct sum A = 4;®...©An
is a block-diagonal matrix with the A; along the diagonal. Thus the direct sum A has
S j—=1Tj Tows and > iy ¢j columns. It looks like

A O 0
0 A, 0
A= . ,

Using this definition makes it possible to write quite a number of expressions in a more
compact way.

Basic Model

Now let us define the random coefficient regression model we are interested in. In order
to be perfectly explicit, we underline random variables or random vectors . Suppose for
each ¢ € 7 we have an observed random outcome y. and observations on, say, m predictors
variables, collected in a vector z;, which is supposed to be nonrandom. We also have a
h1erarch1cal index structure with s nontrivial partitionings. The model for the outcome of
individual ¢ is

v, =zif+oi(n .+ )+ e
For the vector disturbances ¥;, and the scalar disturbances ¢; we assume that they have
expectation zero. Moreover

E(e &) = §*a?,
E (ﬁijr’lgklt) = 6rt6ikwjlr-
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It follows that each of the ¥;, can be identified with one of the levels of the partitioning.
Disturbances of different levels are uncorrelated. Disturbances of the same level are cor-
related if the individuals are in the same subset on that level, and the correlation is the
same for all pairs of individuals. Thus the parameters in the problem are the m elements
of 3, the single parameter o2, and for each of the s levels an m x m matrix Q,. Of course
the €, are symmetric and positive semidefinite. We shall usually make the model more
specific, by requiring that some of the elements of 3 are zero, or that some of the elements
of the Q, are zero. If a f3; is zero, we say that the variable z; has no fized effect. If row j
and column j of €2, are zero, we say that variable j has no random effect on level r.
It follows from the specifications so far that

E(E,) =z,
s(i,k) . .
E ((2, -E (E,))(Qk - E(_y_k))) = (L‘:{ Z 61"k97‘}mk + 0'26“‘:,

r=1

where (7, k) is the highest level for which i and k are still in the same group. Thus if the
levels are district-school-class-student, then students in different classes in the same school
have s(i,k) = 2 and students in different districts have s(z,k) = 0.

Matrix notation

For computational purposes it is convenient to rewrite our model in matrix notation.
For the expected values this is trivially Ey = X 8.

The covariances are a bit more complicated. Remember that level r has k, groups.
We define X, as the direct sum of k, matrices X,,, where the X,, stacked on top of
each other are X. Level 0 has only one group, and thus X, = X. All X, contain the
same observed numbers, but these numbers are organized differently in the direcxt sum
matrices, reflecting the group structure on level r. Thus X;; in GALO has the values of
the independent variables for the 12 students in school 1, and so on. Because we have
three predictors plus an intercept, the matrix X; has 1290 rows and 37 x 4 = 148 columns.

Moreover we also define (2, by using the direct sum. Thus

k, times
Q. 0 - 0\
< 0 9, 0
0 o0 Q,

Using this notation we can now write

E((g - Xﬂ)(}i - X:B)I) = ZXrQrX:' + 0'2In-

r=1

There is an interesting property of the X, that will be important in further derivations.
If span(X,) is the space spanned by the columns of X, then span(Xy) C span(X;) C
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... C span(X,) C span(Xs+1). If null(X,) is the space of all z such that z'X, = 0, then
null(Xo) D null(X1) D -+- D null(X,) D null(X,s+1). If all rows of X are nonzero, then
null(X,41) = 0 and span(X,41) = R". In fact, it is true for all r that span(X,) and
null(X,) are two orthogonal complementary subspaces of R".

Relation to multilevel models

As explained in the introduction, random coefficient models often occur in the social
and behavioural sciences as multilevel models. In this subsecetion we explain the relation-
ship between the two types of mdoels. Multilevel models are usually specified in two or
more steps. We first assume a model of the form

y, = 2b; + &

Observe that the regression coefficients are now random variables. The first-level distur-
bances ¢; have the usual properties. The next step is to assume that there are second-level
predictors z; which predict the variation in the first-level regression coefficients b;. Thus

bij = zglij + &ij-
The disturbances §;; have expectation zero, as usual, but their covariance is
ik
E(Qij,ékl) =8,  wijt.

Thus disturbances for individuals which are not in the same subset on the highest non-
trivial level (in the same class in our small example, or in the same school in GALO) are
uncorrelated. Very often, although not always, we assume that the predictors z; also have
level s — 1, i.e. z; = z; if ¢ and k are in the same set on level s — 1.

It is now easy to see how we can proceed with a third step, specifying a model with
disturbances (and perhaps predictors) of level s — 2. In our artificial example this means
incorporating school-level errors. The only question which must be resolved is how to stop.
In the GALO example the school level is the highest (and only) non-trivial level. In that
case we stop after two specification steps, and assume that the 7,; are actually fixed, and

equal to ;. Thus the model now becomes, switching to element-wise notation,

m
Y, = injb.ij + €,
i=1

v

b.ij = Eziu’)’ju +_6_,'j-

u=1

If we substitute the second equation into the first one we find

m v m
Y. = Z injziu')/ju + injéij + €;.
Jj=1 '

j=1u=1
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We see that the multilevel model is a special random coefficient model in which the fixed
effects 7;, correspond with interactive variables z;;ziy. These interactive variables do not
have random effects. The only random effects come from the predictors in the first step
specification. It is possible, however, that some of the z;; or z;, are constants (they are
the same for all 7). If z;, = 1 for all ¢, then obviously z;;ziy = z;; and thus z;; can have
both fixed and random effects. This treatment generalizes easily to more than two levels
of specification.

The Loglikelihood function

We now compute the multinormal likelihood of the outcomes. As explained in De
Leeuw and Kreft (1986) this does not necessarily mean that we actually assume multivari-
ate normality, it merely means that we choose one particularly simple and appealing way
to measure loss. We measure, simultaneously, the fit of the expected values and the fit of
the residual dispersions. Expected values are fitted well if the residuals are small, residuals
are fitted well if they have the appropriate covariance structure. The multinormal log
likelihood combines the (weighted) sums of squares metric for the size of the residuals and
the log-determinant covariance metric for the fit of the structural part into one convenient
loss function.

The negative log likelihood function is simply (ignoring the usual irrelevant constants)

L =In det[S(0)] + (y — XB)'[Z()] " (y — XB)

Here 6 contains all the variance parameters, i.e. the 2, and ¢2%, and

=(8) = XX + oI,

r=1

A simplification at no cost

In order to simplify the calculations we first transform the outcomes by an orthonormal
transformation. This will not change the likelihood.

Start with X,, with s the highest nontrivial level. We know that X, is the direct sum
of ks matrices X,,, one for each group v on level s. Matrix X,, has, say, n, rows and m
columns, and rank p,. This means that we can write X,, = K,T,, with K, of dimensions
ny X py and orthonormal, and with T, of dimensions p, X m and of rank p,. Of course P
is the sum of the p,. Moreover K can be chosenas K = K1 & ... ® Ky, .

Suppose K is an orthonormal basis for the column space of X, with s the highest
nontrivial level, and suppose K, is an orthonormal basis for the complementary subspace
(the null space of X;). Suppose the dimension of K (the rank of X,) is p. Define

(2)= (&)
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Because of the hierarchical nature of the data we have K| X, =0 forall r =1,...,s, and
also K| X = 0. This implies that u and v are uncorrelated. Moreover

E(v) =0,
E(vv') = 0?I,—,.

Now let us look at u. We know that X is the direct sum of k; matrices X,,, one for each
group v on level s. Matrix X,, has, say, n, rows and m columns, and rank p,. This means
that we can write X,s = K,T,, with K, of dimensions n, X p, and orthonormal, and with
T, of dimensions p, X m and of rank p,. Of course p is the sum of the p,. Moreover K
can be chosenas K = K1 @ ... ® Kg,.

Define T, of order p X m, by stacking the T, on top of each other. Moreover we write
T, for K'X,, and we find that T, has exactly the same blockdiagonal structure as X,., but
with each of the X,, replaced by smaller matrices T,,. We illustrate this with our small
example which has four groups on the highest nontrival level (four classes), and two groups
on the level before that (schools).

Kl 0 0 0 X, 0 T, 0

0o K, 0 0 X, o) [m o

o o0 K oo x| o T

0o 0 0 K| 0 X, 0 T
It follows that

E((u—T8)u—Th)) = 3 T80T + 071,

r=1

Let us see what the effects of this simplication are on the GALO data. We have three
predictors (SEX,SES,IQ) and 37 schools. This means that T has (at most) p = 111
rows. If some of the X, are singular, p is even smaller.

Partitioning the loss even further

We now make an additional transformation, by defining
P1=Tiu

and .
r=u- Tlﬂl-



