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1.1 History

A common assumption in much of classical statistics is that observations are
independently and identically distributed (or i.i.d.). In regression analysis,
using the linear model, we cannot insist on identical distributions, because
observations differ in expected value, but we generally continue to insist on
independence. In fact, we continue to assume that the stochastic parts of the
model, i.e., the errors or disturbance terms, are still i.i.d.

In educational statistics, and in various areas of quantitative sociology,
researchers early on began looking for statistical techniques that could incor-
porate both information about individuals and information about groups to
which these individuals belonged. They realized that one of the most challeng-
ing aspects of their discipline was to integrate micro and macro information
into a single model. In particular, in the applications educational statisticians
had in mind, students are nested in classes, and classes are nested in schools.
And perhaps schools are nested in districts, and so on. We have predictors for
variables of all these levels, and the challenge is to combine all these predictors
into an appropriate statistical analysis, more specifically a regression analysis.

Previously, these problems had been approached by either aggregating
individual-level variables to the group level or disaggregating group-level vari-
ables to the individual level. It was clear that both these two strategies were
unpleasantly ad hoc and could introduce serious biases. Trying to integrate
the results of such analyses, for instance by using group-level variables in
individual-level regressions, was known as contextual analysis [9] or ecologi-
cal regression [42]. It resulted in much discussion about cross-level inference
and the possibility, or even the unavoidability, of committing an ecological
fallacy [104].
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In school effectiveness research, which became popular in the 1970s follow-
ing the epochal studies of Coleman et al. [22] and Jencks et al. [62], educational
researchers realized early on that taking group structure into account could
result in dependencies between the individual observations. Economists and
biostatisticians involved in agriculture and breeding had realized this earlier
and had designed variance and covariance component models for the Anal-
ysis of Variance. But in school effectiveness research a somewhat different
paradigm developed, which looked at dependencies in a more specific way.
The emphasis was on regression analysis and on data of two levels, let’s
say students and schools. Performing a regression analysis for each school
separately was not satisfactory, because often samples within schools were
small and regression coefficients were unstable. Also, these separate analyses
ignored the fact that all the schools were part of the same school system and
that, consequently, it was natural to suppose the regression coefficients would
be similar. This similarity should be used, in some way or another, to improve
stability of the regression coefficients by what became known as borrowing
strength. Finally, in large scale studies there were thousands of schools and
long lists of regression coefficients did not provide enough data reduction to
be useful.

On the other hand, requiring the regression coefficients in all schools to be
the same was generally seen as much too restrictive, because there were many
reasons why regressions within schools could be different. In some schools, test
scores were relatively important, while in others, socio-economic status was a
much more dominant predictor. Schools clearly differed in both average and
variance of school success. Of course, requiring regression coefficients to be
constant did provide a large amount of data reduction, and a small sampling
variance, but the feeling was that the resulting regression coefficients were
biased and not meaningful.

Thus, some intermediate form of analysis was needed, which did not result
in a single set of regression coefficients, but which also did not compute re-
gression coefficients separately for each school. This led naturally to the idea
of random coefficient models, but it left open the problem of combining pre-
dictors of different levels into a single technique. In the early 1980s, Burstein
and others came up with the idea of using the first-stage regression coeffi-
cients from the separate within-school regressions as dependent variables in a
second-stage regression on school-level predictors. But in this second stage, the
standard regression models that assumed independent observations could no
longer be used, mainly because they resulted in inefficient estimates of the re-
gression coefficients and biased estimates of their standard errors. Clearly, the
first-stage regression coefficients could have widely different standard errors,
because predictors could have very different distributions in different schools.
The size of the school, as well as the covariance of the predictors within schools,
determined the dispersions of the within-school regression coefficients. Typical
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of this stage in educational research are Langbein [71], Burstein et al. [15],
and Burstein [14]. Attempts were made to estimate the second-stage regression
coefficients by weighted least squares techniques, or to adjust in some other
way for the bias in the standard errors [11, 50, 118]. These attempts were
not entirely successful, because at the time the statistical aspects of these
two-stage techniques were somewhat baffling. A more extensive historical
overview of contextual analysis and Burstein’s slopes-as-outcomes research
is in de Leeuw and Kreft [28] and Kreft and de Leeuw [67].

It became clear, in the mid-1980s, that the models the educational re-
searchers were looking for had already been around for quite some time in
other areas of statistics. Under different names, to be sure, and usually in a
slightly different form. They were known either as mixed linear models [51] or,
in a Bayesian context, as hierarchical linear models [72]. The realization that
the problems of contextual analysis could be imbedded in this classical linear
model framework gave rise to what we now call multilevel analysis. Thus,
multilevel analysis can be defined as the marriage of contextual analysis and
traditional statistical mixed model theory.

In rapid succession the basic articles by Mason et al. [81], Aitkin and Long-
ford [2], de Leeuw and Kreft [28], Goldstein [44], and Raudenbush and Bryk
[100] appeared. All these articles were subsequently transformed into success-
ful textbooks [46, 67, 76, 101]. The two major research groups in educational
statistics led, respectively, by Goldstein and by Raudenbush produced and
maintained major software packages [97, 102]. These textbooks and software
packages, together with subsequent textbooks, such as Snijders and Bosker
[111] and Hox [59], solidified the definition and demarcation of the field of
multilevel analysis.

1.2 Application Areas

We have seen that multilevel analysis, at least as we have defined it, started in
the mid-1980s in educational measurement and sociology. But it became clear
quite rapidly that once you have discovered ways to deal with hierarchical data
structures, you see them everywhere. The notion of individuals, or any other
type of objects, that are naturally nested in groups, with membership in the
same group leading to a possible correlation between the individuals, turned
out to be very compelling in many disciplines. It generalizes the notion of
intraclass correlation to a regression context. Moreover, the notion of regress-
ing regression coefficients, or using slopes-as-outcomes, is an appealing way to
code interactions and to introduce a particular structure for the dependencies
within groups.
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Survey Data

Many surveys are not simple random samples from a relatively homogeneous
population, but are obtained from nested sampling in heterogeneous sub-
groups. Larger units (e.g., states) are drawn first; within these larger units,
smaller units (e.g., counties) are drawn next; and so forth. Large surveys
typically contain multiple levels of nesting. Sometimes, all units from a certain
level are included, as with stratification. See, e.g., Muthén and Satorra [84] for
some examples of the complicated sampling schemes used in survey design.
The reason for such a complicated nesting structure of surveys is, of course,
that it is assumed that the units are different in some respect. It is then natural
to model the heterogeneity between groups through multilevel models. See,
e.g., Skinner et al. [109] for a book-length discussion of many aspects of the
analysis of survey data.

Repeated Measures

In repeated measures models (including growth study models) we have mea-
surements on a number of individuals that are replicated at a number of
fixed time points. Usually there is only a single outcome variable, but the
generalization to multivariate outcomes is fairly straightforward. In addition,
it is not necessary that all individuals be measured at the same time points.
There can be missing data, or each individual can be measured at different
time points. The number of books and articles on the analysis of repeated
measures is rapidly approaching infinity, but in the context of multilevel anal-
ysis, the key publications are Strenio et al. [116] and Jennrich and Schluchter
[63]. Chapter 7 of this volume discusses models for longitudinal data. For an
extensive treatment of these longitudinal models in the more general context
of mixed linear models, we refer to Verbeke and Molenberghs [122].

A different type of “repeated measures” is obtained with conjoint choice or
stated preference data. With such data, subjects are asked to choose between
several hypothetical alternatives, e.g., different products or different modes
of transport, defined by a description of their alternatives. When subjects
are given more than one choice task, a multilevel structure is induced by
the repeated choices of the same individual. The corresponding models for
such data are usually more straightforward multilevel models than in the case
of longitudinal data, where problems such as dynamic dependence, causing
non-interchangeability of the observations, and attrition (selective dropout of
the sample) often have to be faced. See, e.g., Rouwendal and Meijer [105] for
a multilevel logistic regression (or mixed logit) analysis of stated preference
data. Similar data are common in experimental psychology, where multiple
experiments are performed with the same subjects.
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Twin Studies

In school-based attainment studies we often deal with a fairly small number
of rather large groups. But the opposite can also occur, either by the nature
of the problem or by design. We can decide to use only a small number of
students from each class. Or, in repeated measures studies, we can only have
two measurements per individual (a “before” and “after”, for instance, with a
treatment in between). Another “small groups” example is the twin study, in
which group size is typically two. See Chapter 5 for a discussion of this type
of data.

Meta-Analysis

Data, including historical data, are now much more accessible than in the
past. Many data sets are online or are included in some way or another with
published research. This makes it attractive to use previous data sets studying
the same scientific problem to get larger sample sizes and perhaps a larger
population to generalize to. Such (quantitative) analysis of data or results
from multiple previous studies is called meta-analysis. In Raudenbush and
Bryk [99], multilevel techniques specifically adapted to meta-analysis were
proposed. Compare also Raudenbush and Bryk [101, Chapter 7].

Multivariate Data

There is a clever way, used by Goldstein [46, Chapter 6], to fit general mul-
tivariate data into the multilevel framework. If we have n observations on m

variables, we can think of these m observations as nested in n groups with m
group members each. This amounts to thinking of the n×m data matrix as
a long vector with nm elements and then building the model with the usual
regression components and a suitable specification for the dispersion of the
within-group disturbances. It is quite easy to incorporate missing data into
this framework, because having data missing simply means having fewer obser-
vations in some of the groups. On the other hand, in standard multilevel mod-
els, parameters such as regression coefficients are the same for different obser-
vations within the same group, whereas in multivariate analysis, this is rarely
the case. Thus, writing the latter as a multilevel model requires some care.

1.3 Chapter Outline

In this first chapter of the Handbook we follow the general outline of de Leeuw
and Kreft [29]. After this introduction, we first discuss the statistical models
used in multilevel analysis, then we discuss the loss functions used to measure
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badness-of-fit, then the techniques used to minimize the loss functions, and,
finally, the computer programs written for these techniques. By using these
various steps in the development of multilevel statistical methods, it is easy
to discuss the contributions of various authors. It can be used, for instance,
to show that the most influential techniques in the field carefully discuss (and
implement) all these sequential steps in the framework. After a section on
sampling weights, we give an empirical illustration, in which much of the the-
ory discussed in this chapter will be applied. We close with a few final remarks
and appendixes that discuss notation and other useful technical background.

1.4 Models

A statistical model is a functional relationship between random variables. The
observed data are supposed to be a realization of these random variables, or
of a measurable function of these random variables. In most cases, random
variables are only partly specified because we merely assert that their distri-
bution belongs to some parametric family. In that case, the model is also only
partly specified, and one of the standard statistical chores is to estimate the
values of the unknown parameters.

In this section we discuss the multilevel model in the linear case in which
there are, at least initially, only two levels. Nonlinear and multivariate gener-
alizations will be discussed in later chapters of this handbook. We also relate
it to variance components and mixed models, which, as we have mentioned
above, have been around much longer.

Notation is explained in detail in Appendix 1.A. Our main conventions are
to underline random variables and to write vectors and matrices in boldface.

1.4.1 Mixed Models

The mixed linear model or MLM is written as

y = Xβ +Zδ + ε, (1.1)

with X[n, r], Z[n, p], and(
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

To simplify the notation, we suppose throughout this chapter that both X
and Z have full column rank.

The regression part of the model has a component with fixed regression
coefficients and a component with random regression coefficients. Clearly,

y ∼ N (Xβ,V ),
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with
V

∆=ZΩZ′ +Σ. (1.2)

This illustrates the consequences of making regression coefficients random. We
see that the effects of the predictors in Z are shifted from the expected values
to the dispersions of the normal distribution. We also see that MLM is a linear
regression model with a very specific dispersion structure for the residuals. The
form of the dispersion matrix for the residuals in (1.2) is somewhat reminiscent
of the common factor analysis model [63], and this similarity can be used in
extending multilevel models to covariance structure and latent variable models
(see Chapter 12).

It is convenient to parametrize both dispersion matrices Σ and Ω using
vectors of parameters σ and ξ. From now on we actually assume that Σ
is scalar, i.e., Σ = σ2I. A scalar dispersion matrix means we assume the
disturbances ε are homoskedastic. This guarantees that if there are no random
effects, i.e., if δ is zero almost everywhere, then we recover the classical linear
model. We also parametrize Ω as a linear structure, i.e., a linear combination
of known matrices Cg. Thus,

Ω = ξ1C1 + · · ·+ ξGCG =
G∑
g=1

ξgCg, (1.3)

and, consequently, V also has linear structure

V = ξ1ZC1Z
′ + · · ·+ ξGZCGZ

′ + σ2I =
G∑
g=1

ξgZCgZ
′ + σ2I.

The leading example is obtained when Ω = (ωkl) is completely free, apart
from symmetry requirements. Then

Ω = ω11(e1e
′
1) + ω21(e2e

′
1 + e1e

′
2) + · · ·+ ωpp(epe

′
p),

with ek the k-th unit vector, i.e., the k-th column of I, {ξ1, . . . , ξG} =
{ω11, ω21, . . . , ωpp}, and {C1, . . . ,CG} = {e1e

′
1, e2e

′
1 + e1e

′
2, . . . ,epe

′
p}. An-

other typical example is a restricted version of this where ωkl is a given
constant (such as 0) for some values of (k, l). These two examples cover the
vast majority of specifications used in multilevel analysis.

In some cases it is useful to write models in scalar notation. Scalar notation
is, in a sense, more constructive because it is closer to actual implementation
on a computer. Also, it is useful for those who do not speak matrix algebra.
In this notation, (1.1) becomes, for example,

yi =
r∑
q=1

xiqβq +
p∑
s=1

zisδs + εi,
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or
yi = xi1β1 + · · ·+ xirβr + zi1δ1 + · · ·+ zipδp + εi.

A two-level MLM, which explicitly takes the group structure into account, is
given by

y
j

= Xjβ +Zjδj + εj , (1.4a)

with j = 1, . . . ,m, and(
εj
δj

)
∼ N

((
∅
∅

)
,

(
Σj ∅
∅ Ωj

))
. (1.4b)

and, using ⊥ for independence,

(εj , δj) ⊥ (ε`, δ`) (1.4c)

for all j 6= `.
As before, we assume that Σj = σ2

j I, while, in addition, we assume that
Ωj = Ω. Thus,

y
j
∼ N (Xjβ,Vj),

with
Vj

∆=ZjΩZ
′
j + σ2

jI,

and the y
j

for different j are independent.
Observe that the assumption that the Xj and the Zj have full column

rank can be quite restrictive in this case, because we could be dealing with
many small groups (as in Chapter 5).

In most applications of multilevel analysis, it is assumed that all σ2
j are

the same, so σ2
j = σ2 for all j. This is not always a realistic assumption

and, therefore, most of our discussion will use separate variances. This has
its drawbacks as well, because, obviously, the number of parameters increases
with the number of groups in the sample. Thus, when the sample consists
of, say, 1000 schools, we would estimate 1000 variance parameters, which is
unattractive. Furthermore, consistent estimation of σ2

j requires group sizes
to diverge to infinity, and therefore in a practical sense, good estimators
of σ2

j would require moderate within-group sample sizes (e.g., nj = 30). In
applications with many small groups, this is obviously not the case.

We can view σ2
j = σ2 as a no-between-groups variation specification and

all σ2
j treated as separate parameters as a fixed effects specification. From

this, it seems that it would be in the spirit of multilevel analysis to treat σ2
j

as a random parameter, σ2
j , and use a specification like

log σ2
j = z′j,p+1γp+1 + δj,p+1,

with, say, δj,p+1 ∼ N (0, ωp+1,p+1), which may be correlated with the other
random terms. Such a specification is uncommon in multilevel analysis, but it
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would be particularly straightforward to incorporate in the Bayesian approach
to multilevel analysis (Chapter 2). In the Bayesian approach, it is more com-
mon to use Gamma or inverse Gamma distributions for variance parameters
though, but adaptation of this specification to such distributions is fairly easy.

We will not further discuss specification of σ2
j as random parameters in

this chapter, and treat σ2
j as separate parameters. For a specification with

σ2
j = σ2, most expressions are unaltered except for dropping the j subscript.

However, there are some instances where the differences are a little bit more
pronounced, e.g., in the derivatives of the loglikelihood functions. Then we
will indicate how the expressions change. Thus, we cover both specifications.

1.4.2 Random Coefficient Models

The random coefficient model or RCM is the model with

y = Xβ + ε,

β = β + δ,

with (
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

Obviously, in an RCM we have

y = Xβ +Xδ + ε,

which shows that the RCM is an MLM in which Z = X.
The RCM in this form is not very useful, because without additional

assumptions, it is not identified. We give it in this form here to introduce
the notion of random coefficients and to prepare for the multilevel RCM.

The two-level RCM that has been studied most extensively looks like

y
j

= Xjβj + εj , (1.5a)

β
j

= β + δj , (1.5b)

with the same distributional assumptions as above for the two-level MLM.
Observe that the fixed part of β

j
is assumed to be the same for all groups.

This is necessary for identification of the model.
In this form the random coefficient model has been discussed in the econo-

metric literature, starting from Swamy [117]. It has also become more popular
in statistics as one form of the varying coefficient model, although this term
is mostly used for models with (partly) systematic or deterministic variation
of the coefficients, such as a deterministic function of time or some other
explanatory variable [54, 61].
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The fact that we are dealing with a two-level model here is perhaps clearer
if we use scalar notation. This gives

yij = xij1βj1 + · · ·+ xijpβjp + εij ,

β
js

= βjs + δjs.

An important subclass of the RCM is the random intercept model or RIM. It
is the same as RCM, except for the fact that we assume that all regression
coefficients that are not intercepts have no random component. Thus, all slopes
are fixed. For a two-level RIM, we consequently have, with some obvious
modifications of the notation,

y
j

= µ
j
1nj

+Xjβ + εj ,

µ
j

= µ+ δj .

There is an extensive discussion of RIMs, with many applications, in Longford
[76]. The econometric panel data literature also discusses this model exten-
sively; see, e.g., Chamberlain [18], Wooldridge [126, Chapter 10], Arellano [4,
Chapter 3], or Hsiao [60, Chapter 3]. Observe that for a RIM,

Vj = ω2E + σ2
j I,

where E has all its elements equal to +1. This is the well-known intraclass
covariance structure, with intraclass correlation

ρ2
j =

ω2

ω2 + σ2
j

.

1.4.3 Slopes-as-Outcomes Models

We are now getting close to what is usually called multilevel analysis. The
slopes-as-outcomes model or SOM is the model with

y = Xβ + ε,

β = Zγ + δ,

with X[n, p], Z[p, r], and(
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

The characteristic that is unique to this model, compared to others discussed
here, is that the random coefficients β are themselves dependent variables in
a second regression equation. Of course, in a SOM we have
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y = XZγ +Xδ + ε,

which shows that the SOM is an MLM in which the fixed regressors are
X = XZ and the random regressors are X.

The two-level SOM is

y
j

= Xjβj + εj , (1.6a)

β
j

= Zjγ + δj , (1.6b)

again with the same distributional assumptions. HereXj [nj , p] and Zj [p, r]. It
is possible, in principle, to have different numbers of predictors in the different
Xj , but we will ignore this possibility. The regression equations (1.6b) for the
random coefficients imply that differences between the regression coefficients
of different groups are partly explained by observed characteristics of the
groups. These equations are often of great substantive interest.

By substituting the second-level equations (1.6b) in the first-level equa-
tions (1.6a) and by stacking the resulting m equations, we find

y = Uγ +Xδ + ε,

with

U
∆=

 X1Z1

...
XmZm

 (1.7)

and with the remaining terms stacked in the same way, except X, which has
the direct sum form

X =
m⊕
j=1

Xj =

X1 ∅
. . .

∅ Xm

 .

Again, this shows that the two-level SOM is just an MLM with some special
structure. We analyze this structure in more detail below.

In the first place, the dispersion matrix of y has block-diagonal or direct-
sum structure:

y ∼ N
(
Uγ,

m⊕
j=1

Vj

)
,

with
Vj

∆=XjΩjX
′
j + σ2

jI.

Second, the design matrix U in the fixed part has the structure (1.7). In fact,
there usually is even more structure than that. In the two-level SOM, we often
have
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Zj =
p⊕
s=1

z′j ; (1.8)

i.e., Zj is the direct sum of p row vectors, all equal to a vector z′j with q

elements. The vector zj describes group j in terms of q second-level variables.
More elaborately,

Zj =


z′j ∅ ∅ · · · ∅
∅ z′j ∅ · · · ∅
∅ ∅ z′j · · · ∅
...

...
...

. . .
...

∅ ∅ ∅ · · · z′j

 .

This is easily generalized to direct sums of different vectors, even if they have
different numbers of elements. It follows that, if we partition γ accordingly
into p subvectors of length q, we have

E (β
js

) = z′jsγs.

Also
Uj = XjZj =

[
xj1z

′
j1 xj2z

′
j2 · · · xjpz

′
jp

]
,

where xjs is the s-th column of Xj . Thus, U is a block-matrix, consisting of
m by p blocks, and each block is of rank 1. Consequently, we say the U is a
block-rank-one matrix.

From the point of view of interpretation, each column of a block-rank-one
matrix is the product of a first-level predictor from X and a second-level
predictor from Z. Because generally both X and Z include an intercept, i.e.,
a column with all elements equal to 1, this means that the columns of X and
Z themselves also occur in U , with Z disaggregated. Thus, SOM models have
predictors with fixed regression coefficients that are interactions, and much
of the classical literature on interaction in the linear model, such as Cox [23]
and Aiken and West [1], applies to these models as well.

There is one additional consequence of the structure (1.8). We can write

[Uγ]ij =
p∑
s=1

xijsz
′
jγs =

p∑
s=1

q∑
v=1

xijsγsvzjv.

Now define the balanced case of SOM, in which allXj are the same. This seems
very far fetched if we are thinking of students in classes, but it is actually quite
natural for repeated measures. There X could be a basis of growth functions,
such as polynomials or exponentials. If measurements are made at the same
time points, then indeed all Xj are the same. Other situations in which this
may happen are medical or biological experiments, in which dosages of drugs
or other treatment variables could be the same, or psychological experiments,
in which the stimuli presented to all participants are the same.
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In the balanced case, we can rearrange SOM as

Y = ZΓX ′ +∆X ′ +E,

where the (j, i)-th element of Y is yij , the j-th row of Z is z′j , the j-th row
of ∆ is δ′j , the s-th column of Γ is γs, and the meaning of the other symbols
follows. Thus, the rows are independent. This shows that SOM in this case is
a random coefficient version of the classical growth curve model of Potthoff
and Roy [91]. Conversely, SOM can be seen as a far-reaching generalization
of these classical fixed-effect growth models.

1.4.4 Multilevel Models

Most of the classical multilevel literature, with its origins in education and
sociology, deals with the SOM. But in more recent literature, multilevel
analysis can refer to more general Hierarchical Linear Models or HLMs, of
which the two-level MLM (1.4) and the two-level RCM (1.5) are examples. A
good example of this more general use, which we also follow throughout the
Handbook, is the discussion in Gelman [40].

1.4.5 Generalizations

We shall be very brief about the various generalizations of the multilevel
model, because most of these are discussed extensively in the subsequent
chapters of this Handbook.

Heteroskedasticity and Conditional Intragroup Dependence

Heteroskedasticity is the phenomenon that residual variances are different
for different units. More specifically, it usually means that the variance of the
residual depends in some way on the explanatory variables. Heteroskedasticity
is a frequently occurring phenomenon in cross-sectional data analysis (and
some forms of time series analysis, in particular financial time series). There-
fore, we may expect that heteroskedasticity will also be prevalent in many
multilevel data analyses. This is indeed the case. In fact, heteroskedasticity
is an explicit part of most multilevel models. For example, in the model that
we focus on, the covariance matrix of the dependent variables for the j-th
group, y

j
, is Vj = XjΩX

′
j + σ2

j I. Clearly, this depends on Xj , so if Xj

contains more than just the constant and the corresponding elements of Ω are
not restricted to zero, this induces heteroskedasticity. Furthermore, allowing
different residual variances σ2

j is also a form of heteroskedasticity.
However, in this specification, the residual variances within the same group

are the same, i.e., Var(εij) = σ2
j , which is the same for all i. Thus, there is
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heteroskedasticity between groups, but not within groups. This may be unreal-
istic in many applications. In such cases, one may want to specify an extended
model that explicitly includes within-groups heteroskedasticity. Such a model,
and how it can be used to detect heteroskedasticity and thus misspecification
of the random part of the model, is described in Chapter 3.

Another widespread phenomenon is lack of independence of observations.
Again, this is one of the features of a typical multilevel model: It is assumed
that observations within groups are dependent. This gives rise to the well-
known intraclass correlation. As we have seen, this is modeled in a typi-
cal multilevel model through the random coefficients and, more specifically,
through the random terms δj in our model specification. However, again this
feature does not extend to conditional within-groups comparisons. The units
are assumed conditionally independent within their groups, reflected in the
diagonality of the covariance matrix of εj . This assumption may also not
always be realistic. The leading example in which it is likely to be violated
is in longitudinal (or panel) data, where the within-groups observations are
different observations of the same subject (or object) over time. In such data,
residuals often show considerable autocorrelation; i.e., there is a high correla-
tion between residuals that are not far apart. This phenomenon, and how it
can be modeled, is discussed extensively in Chapter 7. A similar situation is
encountered with spatial data, such as data on geographic regions. Then there
tends to be spatial autocorrelation; i.e., neighboring regions are “more similar”
than regions further apart. See, e.g., Anselin [3] for an overview of modeling
spatial autocorrelation. This type of model was integrated in a multilevel
model with random coefficients by Elhorst and Zeilstra [37].

More Levels and Different Dependence Structures

Slopes-as-outcomes models can be generalized quite easily to more than two
levels. One problem is, however, that matrix notation does not work any
more. Switching to scalar notation, we indicate how to generalize by giving
the multi-level model for student i1 in class i2 in school i3, and so on. For a
model with L levels, it is

β
(v)
iv,...,iv+L−1

=
p
(v)
L+1,...,v+L−1∑
iv+L=1

x
(v)
iv,...,iv+L

β
(v+1)
iv+1,...,iv+L

+ ε
(v)
iv,...,iv+L−1

,

where superscripts in parentheses indicate the level of the variable. In order to
complete the model, we have to assume something about the boundary cases.
For level v = 1, βi1,...,iL is what we previously wrote as yij for a two-level
model, i.e., the value of the outcome for student ij. For the highest level
(L+ 1), the random coefficients are set to fixed constants, because otherwise



1 Introduction to Multilevel Analysis 15

we would have to go on making further specifications. Although the notation
becomes somewhat unwieldy, the idea is simple enough.

Other types of different dependence structures are cross-classifications and
multiple membership classifications. In the former, an observation is nested
in two or more higher-level units, but these higher-level units are not nested
within each other. An example is a sample of individuals who are nested within
the primary schools and secondary schools that they attended, but not all
students from a primary school necessarily attended the same secondary school
or vice versa. Multiple membership classifications occur when observations
are nested within multiple higher-level units of the same type. For example,
patients can be treated by several nurses. These two types of dependency
structure are discussed at length in Chapter 8. The notation that is used in
that chapter can also be applied to “ordinary” (i.e., nested) multiple-level
models, somewhat reducing the unwieldiness mentioned above.

Nonlinear Mixed Models

Nonlinear mixed models come in two flavors. And of course, these nonlinear
generalizations specialize in the obvious way to random coefficient and slopes-
as-outcomes models.

First, we have nonlinear mixed models in which the linear combinations
of the predictors are replaced by nonlinear parametric functions, both for
the fixed part and the random part. An obvious variation, to reduce the
complexity, is to use a nonlinear combination of linear combinations. These
nonlinear mixed models are usually fitted with typical nonlinear regression
techniques; i.e., we linearize the model around the current estimate and then
use linear multilevel techniques. For details we refer to Pinheiro and Bates
[89]. Detection and nonparametric modeling of nonlinearities in the fixed part
of the model is discussed in more detail in Chapter 3.

Second, we have generalized linear mixed models. In the same way as the
generalized linear model extends the linear model, the generalized linear mixed
model extends the mixed linear model. The basic trick is (in the two-level case)
to condition on the random effects and to assume a generalized linear model for
the conditional distribution of the outcomes. Then the full model is obtained
by multiplying the conditional density by the marginal density of the random
effects and integrating. This is, of course, easier said than done, because the
high-dimensional integrals that are involved cannot be evaluated in closed
form. Thus, sophisticated approximations and algorithms are needed. These
are discussed in many of the subsequent chapters, in particular Chapters 2,
5, and 9.

The leading case of applications of nonlinear models is the modeling of
nominal and ordinal categorical dependent variables. Several competing spec-
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ifications exist, and each has its advantages and disadvantages. These are
discussed and compared in detail in Chapter 6.

Multivariate Models, Endogeneity, Measurement Errors, and
Latent Variables

In this chapter, we focus on models with one dependent variable, called y,
and explanatory variables (generically called x and z) that are assumed to be
fixed constants. Instead of the latter, we can also assume that the explanatory
variables are strictly exogenous random variables and then do our analysis
conditionally on their realizations. This does not change the treatment, the
results, or the notation.

In fact, most of the multilevel literature is based on a similar setup, so
in that sense this chapter reflects the mainstream of multilevel analysis. In
many practical situations, however, this setup is not sufficient, or even clearly
incorrect, and extensions or modifications are needed. Here, we briefly mention
a few such topics that are somewhat related.

Of these, multiple dependent variables are often most easily accommo-
dated. In most situations, one can simply estimate the models for each of these
dependent variables separately. If the different equations do not share any
parameters and the dependent variable of one equation does not enter another
as explanatory variable, this should be sufficient. Also, as mentioned earlier,
multivariate models can be viewed as univariate models with an additional
level and thus be estimated within a relatively standard multilevel modeling
setup.

Endogeneity is the situation where (at least) one of the explanatory vari-
ables in a regression equation is a random variable that is correlated with
the error term in the equation of interest. Statistically, this leads to biased
and inconsistent estimators. Substantively, this is often the result of one or
more unobserved variables that influence both the explanatory variable and
the dependent variable in the equation. If it is only considered a statistical
nuisance, consistent estimators can usually be obtained by using some form
of instrumental variables method [e.g., 126], which has been developed for
multilevel analysis by Kim and Frees [65]. In many cases, however, it is of some
substantive interest to model the dependence more extensively. Examples of
such models are especially abundant in longitudinal situations. Chapter 7
discusses these in detail.

A special source of endogeneity that occurs frequently in the social sciences
is measurement error in an explanatory variable. Almost all psychological test
scores can be considered as, at best, imperfect measures of some concept that
one tries to measure. A notorious example from economics is income. Let us
assume that true (log) consumption c∗ of a household depends on true (log)
household income y∗ through a simple linear regression equation, but the
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measurements c and y of consumption and income are only crude estimates.
In formulas,

c∗ = β1 + β2y
∗ + ε,

c = c∗ + v,

y = y∗ + w,

where we assume that the error terms ε, v, and w are all mutually indepen-
dent and independent of y∗, and we have omitted the indices denoting the
observations. We can write the model in terms of the observed variables as

c = β1 + β2y + u,

where u = ε + v − β2w. Because w is part of both the explanatory variable
y and the error term u, these two are correlated and thus we have the en-
dogeneity problem. An extensive general treatment of measurement error, its
statistical consequences, and how to obtain suitable estimators, is given by
Wansbeek and Meijer [123]. Goldstein [46, Chapter 13] discusses the handling
of measurement errors in multilevel models.

Models that include measurement errors explicitly are a subset of latent
variable models. Latent variable models typically specify a relationship be-
tween substantive concepts, the structural model, and a relationship between
these concepts and the observed variables (the indicators), which is the mea-
surement model. The concepts may be fairly concrete, like income above,
but may also be highly abstract theoretical concepts, like personality traits.
Most latent variable models are members of the class of structural equation
models. Because of the flexibility in selecting (multiple) observed variables
to analyze and the flexibility in defining latent variables, structural equation
models encompass a huge class of models. In particular, multivariate models,
endogeneity, measurement errors, and latent variables can all be combined into
a single structural equation model. Structural equation models for multilevel
data are described extensively in Chapter 12.

Nonnormality

It is customary to specify normal distributions for the random terms in a
multilevel model. A normality assumption for error terms can typically be
defended by arguing that the error term captures many small unobserved influ-
ences, and a central limit theorem then implies that it should be approximately
normally distributed. However, normality of random coefficients is often not
at all logical. Empirically, in effectiveness studies of schools, hospitals, etc.,
we might find that many perform “average”, whereas there are a few that
perform exceptionally well or exceptionally poor. Such a pattern would suggest
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a distribution with heavy tails or a mixture distribution. Moreover, the normal
distribution has positive density for both positive and negative values, whereas
in many cases, theory or common sense (which often coincide) says that a
coefficient should have a specific sign. For example, in economics, a higher
price should decrease (indirect) utility, and in education, higher intelligence
should lead to higher scores on school tests.

In economics, marketing, and transportation, the lognormal distribution
has been proposed as a convenient alternative distribution for random coeffi-
cients in discrete choice models, perhaps after changing the sign of the explana-
tory variable. Meijer and Rouwendal [83] discuss this literature and compare
normal, lognormal, and Gamma distributions, as well as a nonparametric
alternative. In their travel preference data, lognormal and Gamma clearly
outperform normal and nonparametric, on the basis of fit and interpretability.
Chapter 7 further discusses the nonparametric maximum likelihood estimator.

For linear multilevel models, it is fairly straightforward that all the usual
estimators are still consistent if the random terms are nonnormally distributed
[121]. The standard errors of the fixed coefficients are still correct under
nonnormality, but standard errors of the variance parameters must be ad-
justed. This can be done by using a robust covariance matrix, which will be
discussed in Section 1.6.3 below, or by using resampling techniques specifically
developed for multilevel data (see Chapter 11).

Estimators of nonlinear multilevel analysis models are inconsistent if the
distribution of the random coefficients is misspecified. Robust covariance ma-
trices and resampling can give asymptotically correct variability estimators,
but it may be questionable whether these are useful if it is unclear whether
the estimators of the model parameters are meaningful under gross misspeci-
fication of the distributions.

An interesting logical consequence of the line of reasoning that leads to
nonnormal distributions is that it also suggests that in cases where the co-
efficient should have a specific sign, the functional form of the level-2 model
should also change. For example, if a level-1 random coefficient β should be
positive, then a specification β = z′γ + δ, even with nonnormal δ, may be
problematic, and a specification

log β = z′γ + δ

may make more sense, where now there is nothing wrong with a normal δ, be-
cause it induces a lognormal β. Remarkably, with this specification, although
both level-1 and level-2 submodels are linear in parameters, the combined
model is not.
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1.5 Loss Functions

Loss functions are used in statistics to measure the badness-of-fit of the model
and the given data. In most circumstances, they measure the distance between
the observed and the expected values of appropriately chosen statistics such as
the means, the dispersions, or the distribution functions. It is quite common in
the multilevel literature to concentrate exclusively on the likelihood function
or, in a Bayesian context, the posterior density function. We will pay more
attention than usual to least squares loss functions, both for historical and
didactic reasons.

1.5.1 Least Squares

A general least squares loss function for the multilevel problem (in particular,
the SOM) is of the form

ρ(γ) =
m∑
j=1

(yj −XjZjγ)′A−1
j (yj −XjZjγ), (1.9)

where the weight matrices Aj are supposed to be known (not estimated).
There is a simple trick that can be used to simplify the computations, and

to give additional insight into the structure of the loss function. Define the
regression coefficients

bj = (X ′
jA

−1
j Xj)

−1X ′
jA

−1
j yj

and the residuals
rj = yj −Xjbj .

Then yj = Xjbj + rj , and X ′
jA

−1
j rj = ∅. Now, for group j,

ρj(γ) = (bj −Zjγ)′X ′
jA

−1
j Xj(bj −Zjγ) + r′jA

−1
j rj . (1.10)

This expression of the loss function is considerably more convenient than (1.9),
because it involves smaller vectors and matrices.

If we choose Aj of the form Vj = XjΩX
′
j + σ2

j I, again with Ω and σ2
j

assumed known, then we can simplify the loss function some more, using the
matrix results in Appendix 1.C. Let Pj

∆=Xj(X
′
jXj)

−1X ′
j , and Qj

∆= I − Pj .
We will also write, in the sequel,

Wj
∆=Ω + σ2

j (X
′
jXj)

−1.

Observe that if bj
∆= (X ′

jXj)
−1X ′

jyj , then Wj is the dispersion of bj . Ac-
cordingly, from now on we redefine bj

∆=(X ′
jXj)

−1X ′
jyj and rj

∆=yj −Xjbj ,
regardless of the definition of Aj .
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From Theorem 1.2 in the appendix,

V −1
j = Xj(X

′
jXj)

−1W−1
j (X ′

jXj)
−1X ′

j + σ−2
j Qj , (1.11)

and thus
r′jV

−1
j rj = σ−2

j r′jrj = (nj − p)s2j/σ2
j

and
X ′
jV

−1
j Xj = W−1

j .

Hence,

ρj(γ) = (bj −Zjγ)′W−1
j (bj −Zjγ) + (nj − p)s2j/σ2

j . (1.12)

Computing least squares loss in this way is even more efficient than us-
ing (1.10).

1.5.2 Full Information Maximum Likelihood (FIML)

The least squares approach supposes that the weight matrix is known, but,
of course, in a more general case the weight function will depend on some
unknown parameters that have to be estimated from the same data as the
regression coefficients. In that case, we need a loss function that not only
measures how close the fitted regression coefficients are to their expected
values, but also measures, at the same time, how well the fitted dispersion
matrices correspond with the dispersion of the residuals. For this we use the
log-likelihood.

As is well known, the method of maximum likelihood has a special position
in statistics, especially in applied statistics. Maximum likelihood estimators
are introduced as if they are by definition optimal, in all situations. Another
peculiarity of the literature is that maximum likelihood methods are intro-
duced by assuming a specific probability model, which is often quite obviously
false in the situations one has in mind. In our context, this means that typically
it is assumed that the disturbances, and thus the observed y, are realizations
of jointly normal random variables. Of course, such an assumption is highly
debatable in many educational research situations, and quite absurd in others.

Consequently, we take a somewhat different position. Least squares esti-
mates are obtained by minimizing a given loss function. Afterward, we derive
their properties and we discover that they behave nicely in some situations.
We approach multinormal maximum likelihood in a similar way. The estimates
are defined as those values of γ, Ω, and {σ2

j } that minimize the loss function

LF (γ,Ω, {σ2
j })

∆= log |V |+ (y −Uγ)′V −1(y −Uγ). (1.13)

This loss function, which is the negative logarithm of the likelihood function
(except for irrelevant constants), is often called the deviance. The important
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fact here is not that we assume multivariate normality but that (1.13) defines
quite a natural loss function. It measures closeness of y to Uγ by weighted
least squares, and it measures at the same time closeness of R(γ) ∆= (y −
Uγ)(y −Uγ)′ to V .

This last property may not be immediately apparent from the form
of (1.13). It follows from the inequality log |A| + trA−1B ≥ log |B| + m,
which is true for all pairs of positive definite matrices of order m. We have
equality if and only if A = B. Thus, in our context, log |V | + trV −1R(γ)
measures the distance between V and the residuals R(γ). We want to make
residuals small, and we want the dispersion to be maximally similar to the
dispersion of the residuals. Moreover, we want to combine these two objectives
in a single loss function.

To find simpler expressions for the inverse and the determinant in (1.13),
we use the matrix results in Appendix 1.C, in the same way as they were used
in Section 1.5.1. From Theorem 1.1 in the appendix,

log |Vj | = (nj − p) log σ2
j + log |X ′

jXj |+ log |Wj |.

If we combine this with result (1.12), we find for group j, ignoring terms that
do not depend on the parameters,

LFj (γ,Ω, σ2
j ) = (nj − p)

(
log σ2

j + s2j/σ
2
j

)
+ log |Wj |
+ (bj −Zjγ)′W−1

j (bj −Zjγ).

To distinguish the resulting estimators explicitly from the REML estimators
below, these ML estimators are called full information maximum likelihood
(FIML) in this chapter.

1.5.3 Residual Maximum Likelihood (REML)

In the simplest possible linear model yi = µ + εi, with εi
iid∼ N (0, σ2), the

maximum likelihood estimator of µ is the mean and that of σ2 is the sum
of squares around the mean, divided by the number of observations n. This
estimate of the variance is biased and, as a consequence, the sample variance
is usually defined by dividing the sum of squares by n−1. The same reasoning,
adjusting for bias, in the linear regression model leads to dividing the residual
sum of squares by n− s, where s is the number of predictors.

We can also arrive at these bias adjustments in a slightly different way,
which allows us to continue to use the log-likelihood. Suppose we compute
the likelihood of the deviations of the mean, or in the more general case the
likelihood of the observed regression residuals. These residuals have a singular
multivariate normal distribution, and the maximum likelihood estimate of
the variance turns out to be precisely the bias-adjusted estimate. Thus, in
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these simple cases, residual maximum likelihood (REML; also frequently called
restricted maximum likelihood) estimates can actually be computed from full
information maximum likelihood estimates by a simple multiplicative bias
adjustment.

In multilevel models, or more generally in MLMs, bias adjustment is not
that easy, but we can continue to use the same reasoning as in the simpler
cases and then expect to get an estimator with smaller bias. Let us start with
the MLM y = Uγ +Xδ + ε. Suppose U is n × s and of full column rank.
Also suppose K is any orthonormal basis for the orthogonal complement of
the column space of U ; i.e., K is an n × (n − s) matrix with K ′K = I

and K ′U = ∅. Then define the residuals r ∆=K ′y ∼ N (∅,K ′V K). Thus, the
negative loglikelihood or deviance of a realization of r is, ignoring the usual
constants,

LR(Ω, {σ2
j }) = log |K ′V K|+ r′(K ′V K)−1r.

Observe that this is no longer a function of γ. Thus, we cannot compute max-
imum likelihood estimates of the fixed regression coefficients by minimizing
this loss function.

Now use Theorem 1.3 from Appendix 1.C, which shows that

r′(K ′V K)−1r = min
γ

(y −Uγ)′V −1(y −Uγ).

Harville [52] shows that

log |K ′V K| = log |V |+ log |U ′V −1U | − log |U ′U |

and, consequently, except for irrelevant constants,

LR(Ω, {σ2
j }) = log |U ′V −1U |+ min

γ
LF (γ,Ω, {σ2

j }).

It follows that the loss functions for FIML and REML only differ by the term
log |U ′V −1U |, which can be thought of as a bias correction. In SOM, we can
use

U ′V −1U =
m∑
j=1

Z ′jW
−1
j Zj ,

and, if (1.8) applies, then

U ′V −1U =
m∑
j=1

W−1
j � zjz

′
j .

1.5.4 Bayesian Multilevel Analysis

In the Bayesian approach to multilevel analysis, the parameters are treated
as random variables, so in our notation they would be written as γ, Ω, and
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{σ2
j}, jointly denoted as θ. Then a prior distribution for θ is specified, which

is completely known. The parameters of this prior distribution are called
hyperparameters and their values reflect the state of knowledge about θ.
In the absence of prior knowledge, this typically means that variances of
the parameters are chosen to be infinite or at least very large. Given the
specification of the prior distribution, the posterior distribution of θ, given
the observed sample, is found by application of Bayes’ theorem:

p(θ | y) =
f(y | θ)π(θ)

f(y)
= Cf(y | θ)π(θ),

where p(θ | y) is the posterior density, π(θ) is the specified prior density,
f(y | θ) is the conditional normal density that we have been using all along
(which is equal to the likelihood function), and C is a normalizing constant
that does not depend on θ. An explicit expression for C is rarely needed.
The posterior density contains all information about θ; all inferences about
θ are derived from it. It combines the prior information and the information
contained in the sample in a sound (and optimal) way.

From this description, it appears that the Bayesian approach does not
fit into our framework of specifying a loss function and then optimizing it.
However, in the Bayesian approach, it is common to use the posterior mode
or posterior mean as an “estimator” and to compute intervals that contain
100(1 − α)% (e.g., 95%) of the probability mass, which act as a kind of
“confidence interval”. The posterior mean µ̂g of parameter g is the argument
for which the loss function E [(θg − µg)2], where the expectation is taken
over the posterior distribution, attains its minimum, whereas the posterior
mode θ̂M is by definition the value for which the posterior density p(θ | y)
attains its maximum or, equivalently, the loss function −p(θ | y) attains its
minimum. Both are very natural loss functions and, thus, in this way the
Bayesian approach neatly fits within our framework. An important advantage
of the Bayesian “confidence intervals”, especially for the variance parameters,
is that they may be asymmetric, reflecting a nonnormal posterior distribution.
This is often more realistic for the variance parameters in small to moderate
samples.

An important reason for the increasing popularity of the Bayesian ap-
proach is that it is able to deal with nonlinear models in a fairly straightfor-
ward way, using Markov chain Monte Carlo (MCMC) techniques. This gives
good results where non-Bayesian approaches often have great difficulty in ob-
taining good estimators. Chapter 2 is an extensive discussion of the Bayesian
approach, and in several other chapters, especially those dealing with non-
linear models, it is also discussed, applied, and compared to likelihood-based
approaches. Therefore, we will not discuss it in more detail in this chapter.
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1.5.5 Missing Data

It is implicit in the discussion thus far that we have assumed that there are no
missing data. In practice, the fact that there are missing data is a widespread
phenomenon and often a problem. We can distinguish between unit nonre-
sponse, in which no information is available for a targeted observation, and
item nonresponse, where information is available for some variables but not
for others. If we assume that unit nonresponse is not related to any of the
random variables (δ, ε) of interest for the missing unit, we can simply proceed
by analyzing the observed data set. If it is suspected that unit nonresponse
leads to distortions, weighting can be applied (and is often applied) to let
the sample distribution of some key variables match the (assumed known)
population distribution. See Section 1.8 below for a discussion of sampling
weights in multilevel models.

With item nonresponse, the simplest and most frequently applied solution
is to simply omit all observations for which one or more variables are missing
(listwise deletion). Although widely used, it is generally considered a bad
method. It omits useful information and thus gives inefficient estimators. Even
more importantly, it may easily lead to biases in the analyses, if the missing
data patterns are related to the variables of interest. Chapter 10 extensively
discusses how missing data can be treated in a sound and systematic way.

1.6 Techniques and Algorithms

If we have a loss function, then the obvious associated technique to estimate
parameters is to minimize the loss function. Of course, for nonlinear opti-
mization problems there are many different minimization methods. Some are
general-purpose optimization methods that can be applied to any multivariate
function, and some take the properties of the loss function explicitly into
account.

1.6.1 Ordinary and Weighted Least Squares

As we have see in a previous section, the SOM model can be expressed in two
steps, as in

y
j

= Xjβj + εj , (1.14a)

β
j

= Zjγ + δj , (1.14b)

or in a single-step, as in

y
j

= XjZjγ +Xjδj + εj . (1.15)
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The one-step (1.15) and the two-step (1.14) specifications of the multilevel
model suggest two different ordinary least squares methods for fitting the
model. This was already discussed in detail by Boyd and Iversen [11]. We
follow the treatment of de Leeuw and Kreft [28].

The two-step method first estimates the βj by

bj = (X ′
jXj)

−1X ′
jyj , (1.16)

and then γ by

γ̂ =

(
m∑
j=1

Z ′jZj

)−1 m∑
j=1

Z ′jbj . (1.17)

Within the framework of Section 1.5.1, this is obtained by choosing Aj =
XjX

′
j +Qj , so that A−1

j = Xj(X
′
jXj)

−2X ′
j +Qj .

The one-step method estimates γ directly from (1.15) as

γ̂ =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jyj .

By using (1.16), we see immediately, however, that the one-step method can
also be written as

γ̂ =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jXjbj . (1.18)

Thus, the one-step estimate can be computed in two steps as well. Within
the framework of Section 1.5.1, the one-step estimate is obtained by choosing
Aj = I.

Both methods provide unbiased estimators of γ, they are non-iterative,
and they are easy to implement. An expression for their dispersion matrices
is easily obtained by using Cov(bj) = Wj , which was obtained above. Hence,
the dispersion matrix of the two-step estimator is(

m∑
j=1

Z ′jZj

)−1( m∑
j=1

Z ′jWjZj

)(
m∑
j=1

Z ′jZj

)−1

and the dispersion matrix of the one-step estimator is(
m∑
j=1

Z ′jX
′
jXjZj

)−1( m∑
j=1

Z ′jX
′
jXjWjX

′
jXjZj

)(
m∑
j=1

Z ′jX
′
jXjZj

)−1

.

Despite their virtues, these least squares estimators have fallen into disgrace in
the mainstream multilevel world, because they are neither BLUE nor BLUP
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[43, 103]. This is somewhat supported by the simulations reported (for a
three-level model) in Cheong et al. [21], where especially for level-1 covariates
efficiencies of ML estimators are substantially higher (up to 55%). The one-
step OLS estimator still enjoys a great popularity in economics, though.

The next candidate that comes to mind applies if both Ω and {σ2
j } are

known. We can then compute the WLS estimate

γ̂ =

(
m∑
j=1

Z ′jX
′
jV

−1
j XjZj

)−1 m∑
j=1

Z ′jX
′
jV

−1
j yj . (1.19)

As we have seen, this can be simplified to

γ̂ =

(
m∑
j=1

Z ′jW
−1
j Zj

)−1 m∑
j=1

Z ′jW
−1
j bj . (1.20)

Within the framework of Section 1.5.1, the WLS estimate is obtained by
choosing Aj = Vj . The dispersion matrix of the WLS estimator is obtained
analogously to the ones above, and in this case it simplifies to(

m∑
j=1

Z ′jW
−1
j Zj

)−1

.

The formal similarity of (1.17), (1.18), and (1.20) is clear. They can all be
thought of as two-step methods, which first compute the bj and then do a
weighted regression of the bj on the Zj . Of course, (1.20) is mostly useless by
itself, because we do not know what σ2

j andΩ are, but we can insert consistent
estimators of these instead. A method to compute consistent estimators of the
elements of the variance parameters from the OLS residuals is discussed in de
Leeuw and Kreft [28], and is also discussed below. The resulting method for
estimating γ is fully efficient and non-iterative.

For WLS estimators with estimators of the variance parameters inserted,
the exact covariance matrix generally cannot be computed. However, it follows
from standard large sample theory (Slutsky’s theorem; see, e.g., Ferguson [38]
or Wansbeek and Meijer [123, pp. 369–370]) that if the estimators of Ω and
σ2
j are consistent, then the asymptotic distribution of the WLS estimator of
γ is the same as the (asymptotic) distribution of the hypothetical estimator
(1.20) that uses the true values of Ω and σ2

j in the weight matrix, so we can
still use the covariance matrix given above, especially with larger sample sizes.

The BLUE and the BLUP

Consider the model y ∼ N (Uγ,V ). A linear estimator of the form γ̂ = L′y

is unbiased if L′U = I, and it has dispersion L′V L. The dispersion matrix
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is minimized, in the Löwner [77] ordering of matrices (i.e., A ≥ B if A −B
is positive semidefinite), by choosing L = V −1U(U ′V −1U)−1. Thus,

γ̂ = (U ′V −1U)−1U ′V −1y

is the best linear unbiased estimator or BLUE. In the SOM,

U ′V −1U =
m∑
j=1

Z ′jW
−1
j Zj

and

U ′V −1y =
m∑
j=1

Z ′jW
−1
j bj .

Thus, the BLUE is given by (1.20).
We can also look at estimates of the error components. Of course, this

means we are estimating random variables and, consequently, the best linear
unbiased predictor or BLUP is a more appropriate term than the BLUE. To
find the BLUP, we minimize the mean squared prediction error

MSPE ∆= E
[
(L′y + a− δ)(L′y + a− δ)′

]
(1.21a)

over L and a on the condition that

E (L′y + a− δ) = ∅. (1.21b)

From (1.21b) we obtain a = −L′Uγ, which means that the mean squared
prediction error (1.21a) is

MSPE = L′V L−L′XΩ −ΩX ′L+Ω

= (V L−XΩ)′V −1(V L−XΩ) +Ω −ΩZ ′V −1ZΩ

≥ Ω −ΩZ ′V −1ZΩ,

with equality if L = V −1XΩ, i.e., if

δ̂ = ΩX ′V −1(y −Uγ).

In the SOM, using (1.11),

δ̂j = ΩW−1
j (bj −Zjγ),

and thus
β̂j = Zjγ + δ̂j = ΩW−1

j bj + (I −ΩW−1
j )Zjγ. (1.22)

Thus, the BLUP of the random effects is a matrix weighted average [19] of
the least squares estimates bj and the expected values Zjγ. The within-group
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least squares estimates are shrunken toward the overall model-based estimate
Zjγ of the regression coefficients. This shrinking, which is common in BLUP
and related empirical Bayes procedures, is also the basis for the discussion of
borrowing strength, which has played a major role in the multilevel literature
[cf. 13, 101].

Of course, (1.22) contains unknown parameters, and in order to use it
in practice, we substitute whatever estimates we have for these unknown
parameters.

Estimating the Variance Parameters

As we have seen, for the WLS estimator of γ and the BLUP of the random
effects, we need consistent estimators of σ2

j andΩ. Moreover, estimating these
parameters is often one of the main goals of a multilevel analysis and the focus
on the random effects is perhaps the most salient difference between multilevel
analysis and ordinary regression analysis.

A simple unbiased estimator of σ2
j is, of course, the within-groups residual

variance s2j . Given the assumptions above,

(nj − p)s2j/σ2
j ∼ χ2

nj−p,

so that in addition to E (s2j ) = σ2
j , we also have Var(s2j ) = 2(σ2

j )
2/(nj−p). Fur-

thermore, s2j is independent of bj . However, the variance, chi-square distribu-
tion, and independence result depend critically on the normality assumption.
If all σ2

j are assumed equal, then its natural unbiased estimator is

s2
∆=

1
n− p

m∑
j=1

(nj − p)s2j ,

where n is total sample size. Under the model assumptions,

(n− p)s2/σ2 ∼ χ2
n−p,

so that E (s2) = σ2 and Var(s2) = 2(σ2)2/(n − p). Note that consistency of
s2j requires nj → ∞. This is a little problematic because in some standard
asymptotic theory for multilevel analysis (e.g., Longford [76, p. 252]; Verbeke
and Lesaffre [120, Lemma 3]), it is assumed that the group sizes are bounded.
However, close scrutiny of their theories reveals that the general asymptotic
theory should still be valid under a hypothetical sequence such that m→∞,
nj →∞, and nj/m→ 0. Maybe even weaker assumptions suffice. Of course,
with (many) small groups, nj →∞ may not be a useful assumption anyway.
On the other hand, consistency of s2 only requires n→∞, which is obviously
much weaker. However, the latter also requires the much stronger assumption
that all residual variances are equal.
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Observing that Ω = Cov(β
j
) = E

[
(β

j
−Zjγ)(β

j
−Zjγ)′

]
, a simple es-

timator of Ω is obtained by inserting the least squares estimators of β
j

and
γ in this expression:

Ω̂ =
1
m

m∑
j=1

(bj −Zj γ̂)(bj −Zj γ̂)′,

or perhaps with m − 1 instead of m in the denominator, and where γ̂ is
the one-step or two-step OLS estimator. Such an estimator is used in the
MLA program [16] as “least squares estimator” of Ω and as starting value
for the iterations for obtaining the ML estimators. However, this estimator is
biased for two reasons: The variability of γ̂ is not taken into account and the
covariance matrix of bj is not Ω, but Wj . The first cause of bias vanishes as
m→∞ and the second vanishes as nj →∞, so it is only a reasonably good
estimator if sample sizes at both levels are large. We can compute its exact
expectation and exact variances of its elements, but we will not do that here.
In addition to its simplicity, however, it has the virtue that it is guaranteed to
be positive (semi)definite. This may prevent numerical problems when used
as a starting value in an iterative procedure. Kovačević and Rai [66] propose
a similar estimator, with Zj γ̂ replaced by the sample average of the bj ’s, as
a “conservative approximation”.

Based on earlier formulas of Swamy [117], de Leeuw and Kreft [28] derive
an unbiased estimator of Ω. The estimator of Ω is derived elementwise. Thus,
we look at its (k, l)-th element ωkl and define an unbiased estimator of this
element. By doing this for all distinct elements of Ω, we obtain an unbiased
estimator of Ω.

Consider the k-th element of β
j
, β

jk
. According to the model assumptions,

β
jk

= z′jkγk + δjk,

where γk is a subvector of γ. The corresponding subvector of the two-step OLS
estimator γ̂ is γ̂k. Let Zk be the m× qk matrix with j-th row z′jk, where qk
is the number of elements of zjk, i.e., the number of explanatory variables for
the k-th random coefficient. Correspondingly, let bk be the vector of length
m with bjk as its j-th element. Then it follows straightforwardly from the
derivation of γ̂ and the structure of Zj that

γ̂k = (Z ′kZk)
−1Z ′kbk.

Let t̂k be the vector of length m with t̂jk = bjk − z′jkγ̂k as its j-th element.
Then we have

t̂k = Qkbk = Qk(bk −Zkγk) = Qktk,

where Qk = Im − Zk(Z ′kZk)−1Z ′k and tk is implicitly defined. Note that
E (bk) = Zkγk and
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Cov(bk, b
′
l) =

m⊕
j=1

(Wj)kl = diag[(Wj)kl] = ωklIm +Σ∇kl,

where Σ is the diagonal matrix with j-th diagonal element equal to σ2
j and

∇kl is the diagonal matrix with j-th diagonal element equal to [(X ′
jXj)

−1]kl.
It follows that E (t̂k) = ∅ and

E (t̂k t̂
′
l) = Cov(t̂k, t̂

′
l) = ωklQkQl +QkΣ∇klQl.

It is now natural to define the estimator

ω̂kl
∆=

tr
[
t̂k t̂

′
l −QkΣ̂∇klQl

]
tr(QkQl)

=
1
m∗

[
t̂′lt̂k − tr(Σ̂∇klQlQk)

]
,

where m∗ = tr(QkQl) and Σ̂ is the diagonal matrix with j-th diagonal
element equal to s2j . This estimator of ωkl is optimal in the least squares
sense and it is evidently unbiased. However, unbiasedness in this context is
not necessarily good, because it can easily lead to negative variance estimates.

Noticing that ω̂kl is a quadratic function of the data, its variance can be
found by using standard results about the expectations of quadratic forms in
normally distributed random variables. The resulting expression is

Var(ω̂kl) =
1

(m∗)2


m∑
i=1

m∑
j=1

[
(Wi)ll(Wj)kk(QlQk)2ij

+ (Wi)kl(Wj)kl(QlQk)ij(QlQk)ji]

+
m∑
j=1

2(σ2
j )

2

nj − p
[(X ′

jXj)
−1]2kl(QlQk)2jj

 .

An estimator of this variance is obtained by inserting the estimators s2j for σ2
j

and Ω̂ for Ω (the latter in Wj) in this formula.
A somewhat related but slightly different method for estimating the vari-

ance parameters uses the same ideas as the WLS estimator above, but reverses
the roles of the fixed coefficients and the variance parameters. In particular,
assume that γ is known and that Ω is written in the linear form (1.3). Then

E
[
(y −Uγ)(y −Uγ)′

]
= V

=
m⊕
j=1

(XjΩX
′
j + σ2

j Inj
)

=
G∑
g=1

(
m⊕
j=1

XjCgX
′
j

)
ξg +

m∑
j=1

(eje
′
j � Inj

)σ2
j ,
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where ej is the j-th column of Im, and if all residual variances are equal,
the last summation reduces to σ2In. Clearly, this expectation is linear in the
parameters {ξg} and {σ2

j }.
Now, let U∗[n,G+m] be the matrix with g-th column equal to

U∗
g
∆=vec

(
m⊕
j=1

XjCgX
′
j

)

and (G+ j)-th column equal to

U∗
G+j

∆=vec(eje
′
j � Inj

).

Furthermore, let γ∗[G+m] be the vector with g-th element ξg (g = 1, . . . , G)
and (G + j)-th element σ2

j (j = 1, . . . ,m). If all σ2
j are equal, U∗ has G + 1

columns, the last one being vec In, and γ∗ has G + 1 elements, the last one
being σ2. The rest of the discussion is unaltered. Finally, let

y∗
∆=vec

[
(y −Uγ)(y −Uγ)′

]
. (1.23)

Then E y∗ = U∗γ∗, which suggests that the variance parameters in γ∗ can
be jointly estimated by a least squares method. Although an OLS method
would be computationally much easier, a WLS method is typically used, for
reasons that become clear in Section 1.6.2 below. From the characteristics
of the normal distribution, it follows that the dispersion matrix of y∗ is
2Nn(V �V ) (e.g., Magnus and Neudecker [79, Lemma 9]), where Nn[n2, n2]
is a symmetric idempotent matrix of rank n(n+1)/2, which projects a column
vector of order n2 onto the space of vec’s of symmetric matrices. It is therefore
called the symmetrization matrix by Wansbeek and Meijer [123, p. 361]. Thus,
the dispersion matrix of y∗ is singular, the reason being that y∗ contains du-
plicated elements. We can remove the duplicated elements and then compute
the nonsingular dispersion matrix and use it in a WLS procedure. Due to the
structure of the problem, this is equivalent to computing the estimate

γ̂∗ =
(
(U∗)′(V ∗)−1(U∗)

)−1(U∗)′(V ∗)−1(y∗), (1.24)

where V ∗ = 2(V � V ). From the derivation, it follows immediately that

Cov(γ̂∗) =
(
(U∗)′(V ∗)−1(U∗)

)−1
,

where the symmetrization matrix drops out because of the structure of the
matrices involved.

It appears that (1.24) suffers from a few problems. The first is that the
right-hand side contains unknown parameters: not only γ, but also the very
parameters that the left-hand side estimates, through its dependence on V ∗.
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Thus, as before, we have to insert (preliminary) estimators of these. This leads
to the following typical estimation procedure: (1) compute the 1-step or 2-step
OLS estimate of γ; (2) use this to compute an estimate of y∗ and compute a
preliminary estimate of γ∗ from (1.24) with V ∗ = I; (3) use this to compute
an estimate Ṽ of V and compute the WLS estimator of γ from (1.20); (4) use
this to compute an improved estimate of y∗ and compute the WLS estimate
of γ∗ from (1.24) with V ∗ = 2(Ṽ � Ṽ ). Variations, e.g., using the estimators
of de Leeuw and Kreft [28] as preliminary estimators, are possible, but as it
is presented here, it suggests further iterating steps (3) and (4). Indeed, this
is typically done and leads to the IGLS algorithm discussed in Section 1.6.2
below.

The second problem with direct application of (1.24) is that it is a com-
putational disaster. The matrix V ∗ is of order n2 × n2, so if n = 20, 000 as
in the application reported below, then we would have to store and invert a
400 million × 400 million matrix. Fortunately, however, the problem has so
much structure that this is not necessary: V ∗ = 2(V � V ), which reduces
the problem to n × n, but the direct sum form of V reduces this further to
nj × nj . Then, reductions like the ones used above to arrive at (1.20) as a
more convenient version of (1.19) further simplify the computations. Efficient
computational procedures are discussed in Goldstein and Rasbash [47].

A variant of (1.24) is obtained by recognizing that the WLS estimator γ̂
that is inserted in the computation of y∗ is not equal to γ, but is an unbiased
estimator with variance (U ′V −1U)−1, ignoring variance due to estimation
error in the preliminary estimate of V . More specifically, by writing

y −Uγ̂ =
[
I −U(U ′V −1U)−1U ′V −1

]
y,

it follows that

E
[
(y −Uγ̂)(y −Uγ̂)′

]
=
[
I −U(U ′V −1U)−1U ′V −1

]
V
[
I −U(U ′V −1U)−1U ′V −1

]′
= V −U(U ′V −1U)−1U ′,

or
E
[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′V −1U)−1U ′] = V .

This suggests replacing (1.23) by

y∗
∆=vec

[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′Ṽ −1U)−1U ′] (1.25)

and then proceeding with the estimation process as described above. The term
U(U ′Ṽ −1U)−1U ′ can be viewed as a bias correction. The resulting estimator
is again consistent with the same expression for the asymptotic covariance
matrix, but is generally less biased in finite samples. The iteration procedure
described above with this estimator leads to RIGLS estimators, which are also
discussed in Section 1.6.2 below.
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1.6.2 Maximum Likelihood

Except for some special cases, explicit closed-form expressions for the maxi-
mum likelihood estimators are not available. The loglikelihood function has
to be optimized by using some kind of numerical algorithm. This section
discusses several of the available algorithms. We can distinguish, on the one
hand, generic numerical optimization techniques that can be used for any well-
behaved function and, on the other hand, algorithms that are more specific
to the problem at hand.

Let f(θ) be a loss function of a parameter vector θ. We want to find the
value θ̂ of θ that minimizes f(θ). Throughout, we assume that f(θ) is well
behaved, i.e., that it is continuous and has continuous first and second partial
derivatives, is locally Lipschitz, etc. The loss functions for FIML and REML
satisfy these and other regularity conditions except in pathological situations
where the sample data have no variation or predictor matrices are not of full
rank. Thus, we assume these away.

For a short introduction to generic numerical optimization, we refer to
Appendix 1.B. The (modified) Newton-Raphson method mentioned there is
described for multilevel models by Jennrich and Schluchter [63] and Lindstrom
and Bates [73] and it is used in the BMDP5V program [107] for repeated
measures models and the nlme package [90] for multilevel analysis in R. The
BFGS method is implemented in most general-purpose optimization func-
tions and is used in the MLA program for multilevel analysis [16]. From
the discussion in Appendix 1.B, it is clear that we typically need at least
first partial derivatives of the loss function, and for Newton-Raphson also
the second partial derivatives. We will give their formulas for the FIML and
REML loss functions below.

Derivatives of FIML

Computing the partial derivatives of the loglikelihood function with respect
to the parameters is a straightforward, albeit tedious, application of (matrix)
calculus as developed by, e.g., Magnus and Neudecker [80]. Here we only give
the results, the derivations are available from us upon request. Throughout,
we will assume that Ω is parametrized as in (1.3). The first partial derivatives
are

∂LF

∂γ
= −2

m∑
j=1

Z ′jW
−1
j tj , (1.26a)

∂LF

∂σ2
j

= −(nj − p)

(
s2j − σ2

j

(σ2
j )2

)
− tr

[
Tj(X

′
jXj)

−1
]
, (1.26b)
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∂LF

∂ξg
= −

m∑
j=1

tr(TjCg), (1.26c)

where

tj
∆= bj −Zjγ,

Tj
∆=W−1

j (tjt
′
j −Wj)W

−1
j .

It is easy to check that the expected values of these partials (when viewed
as functions of random variables) are zero, as they should be. It follows im-
mediately from (1.26a) that after convergence (first partials are zero), (1.20)
holds. Thus, the FIML estimator of γ is a WLS estimator based on the FIML
estimates of the variance parameters.

The second partial derivatives with respect to the parameters are

∂2LF

∂γ ∂γ′
= 2

m∑
j=1

Z ′jW
−1
j Zj ,

∂2LF

∂γ ∂σ2
j

= 2Z ′jW
−1
j (X ′

jXj)
−1W−1

j tj ,

∂2LF

∂γ ∂ξg
= 2

m∑
j=1

Z ′jW
−1
j CgW

−1
j tj ,

∂2LF

∂σ2
j ∂σ

2
j

= (nj − p)

(
2s2j − σ2

j

(σ2
j )3

)
+ tr

[
Υj(X

′
jXj)

−1
]
,

∂2LF

∂σ2
j ∂σ

2
k

= 0 for k 6= j,

∂2LF

∂σ2
j ∂ξg

= tr(ΥjCg),

∂2LF

∂ξg ∂ξh
=

m∑
j=1

tr(TjChW
−1
j Cg +W−1

j ChTjCg +W−1
j ChW

−1
j Cg),

where

Υj
∆=Tj(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1Tj +W−1
j (X ′

jXj)
−1W−1

j .

As mentioned above, often it is assumed that all residual variances are the
same: σ2

j = σ2. This leads to fairly trivial changes in these formulas: Every
explicit or implicit occurrence of σ2

j on the right-hand side is replaced by σ2,
and the derivatives with respect to σ2 are simply the sums over all groups of
the derivatives with respect to σ2

j as given here:
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∂LF

∂σ2
= −

m∑
j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
Tj(X

′
jXj)

−1
]}

, (1.27)

∂2LF

∂γ ∂σ2
= 2

m∑
j=1

Z ′jW
−1
j (X ′

jXj)
−1W−1

j tj ,

∂2LF

∂σ2 ∂σ2
=

m∑
j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Υj(X

′
jXj)

−1
]}

,

∂2LF

∂σ2 ∂ξg
=

m∑
j=1

tr(ΥjCg).

The derivatives can now be used in a standard numerical optimization algo-
rithm to obtain the FIML estimates.

Derivatives of REML

The first partial derivatives of the REML loss function with respect to the
parameters are

∂LR

∂σ2
j

= −(nj − p)

(
s2j − σ2

j

(σ2
j )2

)
− tr

[
∆j(X

′
jXj)

−1
]
, (1.28a)

∂LR

∂ξg
= −

m∑
j=1

tr(∆jCg), (1.28b)

where

∆j
∆=W−1

j (t̂j t̂
′
j −Wj +ZjAZ

′
j)W

−1
j ,

t̂j
∆= bj −Zj γ̂,

γ̂
∆=A

m∑
j=1

Z ′jW
−1
j bj ,

A
∆=

(
m∑
j=1

Z ′jW
−1
j Zj

)−1

.

Note that there are no derivatives with respect to γ, because LR is not a
function of γ. We use γ̂ as a shorthand, but it is not a parameter, it is a
function of the data and the variance parameters. Of course, after convergence,
this same definition is used to obtain a WLS estimate of γ, but in deriving
statistical properties of the REML estimators, we must treat γ̂ as a function
and not as a mathematical variable.

The second partial derivatives of the REML loss function with respect to
the parameters are
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∂2LR

∂σ2
j ∂σ

2
j

= (nj − p)

(
2s2j − σ2

j

(σ2
j )3

)
+ tr

[
Θj(X

′
jXj)

−1
]

− 2û′jAûj − tr(ΛjAΛjA),

∂2LR

∂σ2
j ∂σ

2
k

= −2û′jAûk − tr(ΛjAΛkA) for k 6= j,

∂2LR

∂σ2
j ∂ξg

= tr(ΘjCg)− 2û′jAτ̂g − tr(ΛjAΞgA),

∂2LR

∂ξg ∂ξh
=

m∑
j=1

tr(∆jChW
−1
j Cg +W−1

j Ch∆jCg +W−1
j ChW

−1
j Cg)

− 2τ̂ ′hAτ̂g − tr(ΞhAΞgA),

where

Θj
∆=∆j(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1∆j +W−1
j (X ′

jXj)
−1W−1

j ,

Λj
∆=Z ′jW

−1
j (X ′

jXj)
−1W−1

j Zj ,

ûj
∆=Z ′jW

−1
j (X ′

jXj)
−1W−1

j t̂j ,

Ξg
∆=

m∑
j=1

Z ′jW
−1
j CgW

−1
j Zj ,

τ̂g
∆=

m∑
j=1

Z ′jW
−1
j CgW

−1
j t̂j .

When all σ2
j are equal, the first partial derivative with respect to σ2 becomes

∂LR

∂σ2
= −

m∑
j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
∆j(X

′
jXj)

−1
]}

(1.29)

and the second partial derivatives involving σ2 become

∂2LR

∂σ2 ∂σ2
=

m∑
j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Θj(X

′
jXj)

−1
]}

− 2û′Aû− tr(ΛAΛA),

∂2LR

∂σ2 ∂ξg
=

m∑
j=1

tr(ΘjCg)− 2û′Aτ̂g − tr(ΛAΞgA),

where

û
∆=

m∑
j=1

ûj ,
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Λ
∆=

m∑
j=1

Λj .

Standard Errors

For the standard errors, we need the expectations of the second derivatives
instead of the second derivatives themselves. This simplifies the formulas con-
siderably, because many terms have expectation zero and thus drop out. In
particular, using E (tj) = ∅, we obtain

E

(
∂2LF

∂γ ∂γ′

)
= 2

m∑
j=1

Z ′jW
−1
j Zj ,

E

(
∂2LF

∂γ ∂σ2
j

)
= ∅,

E

(
∂2LF

∂γ ∂ξg

)
= ∅.

Hence, the matrix of expectations of the second derivatives of the FIML
loss function is a block-diagonal matrix with a diagonal block for the fixed
coefficients and a diagonal block for the variance parameters.

For the latter part, we observe that E (T j) = ∅ implies that

E (Υ j) = W−1
j (X ′

jXj)
−1W−1

j .

Consequently,

E

(
∂2LF

∂σ2
j ∂σ
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j ∂ξg

)
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j ChW

−1
j Cg).

When all σ2
j are the same, the first three of these are replaced by
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∂σ2 ∂σ2

)
=

m∑
j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
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.
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The information matrix IF is defined as

IF ∆=E

(
− ∂2`F

∂θ ∂θ′

)
,

where `F is the FIML loglikelihood function viewed as a random variable and
θ is the parameter vector. Up till now, we have ignored some constants that
do not affect the estimators, but we need to be a little more precise for the
standard errors. In fact, LFj = −2(`Fj −Kj), where Kj is a constant that does
not depend on the parameters. Hence, it follows that

IF = 1
2
E

(
∂2LF

∂θ ∂θ′

)
,

so we have to divide the formulas that have just been given by 2. Standard
maximum likelihood theory tells us that the standard errors of the estimators
are the square roots of the diagonal elements of (IF )−1. In particular, the
submatrix of IF corresponding to γ is

IFγγ =
m∑
j=1

Z ′jW
−1
j Zj .

Because of the block-diagonal structure of IF , it follows that the standard
errors of γ̂ are the square roots of the elements of

(IFγγ)−1 =

(
m∑
j=1

Z ′jW
−1
j Zj

)−1

,

which corroborates the results obtained earlier for the WLS estimator.
Analogously, for the REML estimators, the expressions are

E

(
∂2LR

∂σ2
j ∂σ

2
j

)
=
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(σ2
j )2

+ tr
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−1W−1
j (X ′
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]
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E

(
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2
k

)
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)
= tr
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j Cg

]
− tr(ΛjAΞgA),

E

(
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∂ξg ∂ξh

)
=

m∑
j=1

tr(W−1
j ChW

−1
j Cg)− tr(ΞhAΞgA).
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When all σ2
j are the same, the first three of these are replaced by

E

(
∂2LR

∂σ2 ∂σ2

)
=

m∑
j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]}

− tr(ΛAΛA),

E

(
∂2LR

∂σ2 ∂ξg

)
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m∑
j=1

tr
[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
− tr(ΛAΞgA).

The information matrix IR is again obtained by dividing the formulas for the
expectations of the second derivatives by 2. Standard errors are the square
roots of the diagonal elements of the inverse of the information matrix.

As indicated above, after convergence, we use the expression for γ̂ used
in the expressions for the REML derivatives as an estimator of γ. It is im-
mediately clear that this is a WLS estimator with Wj based on the REML
estimators for the variance parameters. Hence, the standard error formulas
given for WLS above apply directly to this estimator.

Scoring

We have seen above that expressions for the second derivatives of the ML
loss functions are rather unwieldy, whereas the expressions for their expec-
tations are much simpler. In fact, because the asymptotic covariance matrix
of the estimators is a positive constant times the inverse of the matrix of
expected second derivatives, the matrix of expected second derivatives must
be a positive definite matrix. Furthermore, in large samples, the exact second
derivatives should be close to the expected second derivatives. Combining
these statistical observations with the general theory of numerical optimiza-
tion suggests that a convenient alternative to the Newton-Raphson algorithm
would be to replace the Hessian by its expectation. Because the expected
Hessian is guaranteed to be positive definite, this does not need to be checked
and modifications of it are not necessary. Thus, an easier expression is used,
which is computationally less demanding, and the block-diagonality of the
expected Hessian reduces the computational burden in computing the inverse
as well.

The resulting algorithm, which is specific to loglikelihood functions (but
certainly not to multilevel models), is called Method of Scoring, Fisher scoring,
or simply Scoring. It was proposed for multilevel models by Longford [74] and
implemented in the VARCL program [75]. It tends to be very fast and stable.

Iteratively Reweighted Least Squares

In (1.20), we have seen a simple, yet statistically efficient estimator of the
fixed coefficients γ, given knowledge of the variance parameters. In practice,
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this means that consistent estimators of the variance parameters are plugged
in. Conversely, in (1.24), combined with either (1.23) or (1.25), we have given
a (conceptually) simple and statistically efficient estimator of the variance
parameters γ∗, given γ and a preliminary estimate of the variance parameters.
As noted there, this suggests an iterative algorithm, in which these two steps
are alternated.

This algorithm was introduced for multilevel models by Goldstein [44]
using (1.23) to compute y∗ and by Goldstein [45] using (1.25) to compute y∗.
In the former case, the algorithm is called iterative generalized least squares
(IGLS), whereas in the latter, it is called restricted iterative generalized least
squares (RIGLS). Similar procedures, also known as iterative reweighted least
squares (IRLS), are used in many branches of statistics. For example, the
standard estimation method for generalized linear models is IRLS [82] and it
can be used to compute estimators based on “robust” loss functions, which are
less sensitive to outliers [48]. An overview, relating IGLS to various numerical
optimization algorithms, is given by del Pino [32]. From these sources, it is
known that IGLS produces maximum likelihood estimators.

The equivalence of IGLS to FIML was shown explicitly for the multilevel
model by Goldstein [44]. Goldstein [45] showed that RIGLS gives REML
estimators. Paralleling his proofs, we can see here, as we have noted above,
that setting (1.26a) to zero is equivalent to the IGLS/RIGLS condition (1.20).
Furthermore, it is easy to show that (1.24) combined with (1.23) and (1.20)
implies that (1.26b) and (1.26c) are zero. Thus, after convergence of the IGLS
algorithm, the first partial derivatives of the FIML loglikelihood are zero and,
thus (assuming regularity), the IGLS estimates must be equal to the FIML
estimates. Analogously, it is equally easy to show that (1.24) combined with
(1.25) and (1.20) implies that (1.28a) and (1.28b) are zero and, thus, that
after convergence, the RIGLS estimates are equal to the REML estimates.

EM Algorithm

The EM algorithm is an iterative method for optimizing functions of the
form f(θ) = log

∫
g(θ,z) dz with respect to θ. It was presented in its full

generality by Dempster et al. [33]. Typically, f(θ) is a loglikelihood function
and log g(θ,z) the complete-data loglikelihood function, i.e., the loglikelihood
function that would have been obtained if the realization of the random vari-
ables z would have been observed. Thus, both are also implicitly functions of
the observed data y. Maximization of f(θ) proceeds by iteratively maximizing
the expectation of the complete-data loglikelihood. That is, in each iteration,
the function

Q(θ | θ(i)) ∆=E
[
log g(θ,z) | y,θ(i)

]



1 Introduction to Multilevel Analysis 41

is maximized, where the expectation is taken over the conditional distribution
of z given the observed data y and the value θ(i) of the parameter vector after
the previous iteration. Appendix 1.D explains in more detail why this works.

For the multilevel model, z consists of the random effects {δj}, and θ and
y have their usual meaning. As derived in Appendix 1.D, when applied to
the FIML loglikelihood, this means that in the expectation step, the following
quantities are computed:

µ
(i)
j = ΩW−1

j (bj −Zjγ),

Σ
(i)
j = σ2

jΩW
−1
j (X ′

jXj)
−1,

where the right-hand sides are evaluated in θ(i). If Ω is completely free (apart
from the requirements of symmetry and positive definiteness, of course), the
maximization step leads to the updates
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1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′),
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(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
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Z ′jX
′
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(i)
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(σ2
j )

(i+1) =
1
nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

or, instead of the latter,

(σ2)(i+1) =
1
n

m∑
j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆=Σ(i)
j + (bj − µ

(i)
j −Zjγ

(i+1))(bj − µ
(i)
j −Zjγ

(i+1))′.

If Ω is restricted, typically by (1.3) with G < p(p+ 1)/2 parameters, the up-
date of the variance parameters ξ is a bit more complicated; see Appendix 1.D.

A great advantage of the EM algorithm is that the loglikelihood is im-
proved in each iteration, i.e., the algorithm is monotonic. Furthermore, the
computations in each iteration are often very simple, much simpler than with
other numerical optimization algorithms. Another strength of the EM algo-
rithm is that it is able to deal with missing data in a very natural way (see
Chapter 10). A drawback of EM is that it tends to converge very slowly. For-
mally, it converges linearly, whereas, for example, Newton-Raphson converges
quadratically when in the neighborhood of the optimum. On the other hand,
when far from the optimum, the EM algorithm shows more stable convergence
in the direction of the optimum. For this reason, the nlme package [90] uses
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EM for the initial iterations and switches to Newton-Raphson later on in the
algorithm. An incomplete list of other multilevel packages that use EM, either
as an option or for specific tasks, is BMDP-5V [107], MLA [16], and especially
HLM [102], which popularized the algorithm for multilevel analysis. The EM
algorithm is described for multilevel analysis and especially its special case
of repeated measures models in Dempster et al. [34], Laird and Ware [70],
Jennrich and Schluchter [63], Laird et al. [69], Lindstrom and Bates [73], and
Raudenbush and Bryk [101, Chapter 14].

Further Numerical and Computational Issues

As we have seen, most formulas for computing estimates for multilevel models
can be expressed in different ways. Some of these are clearly computationally
inefficient, whereas others use the structure of the problem in better ways.
This pertains to usage of memory, sizes of inverses needed, and other ways to
compute the same expressions. Given the sizes of typical multilevel datasets
and the ways in which computations can be done inefficiently, implementing an
estimator for a multilevel model for general use needs considerable fine-tuning.

In many cases, we have presented results using Zj , Wj , bj , and a few
other matrices and vectors. These are of smaller sizes than Uj , Vj , and yj , so
that this already improves the computations considerably. Longford [74] gives
further computational formulas, such that the amount of storage needed is
further reduced (but dimensions of inverses do not become smaller).

However, our formulas still use expressions like bj = (X ′
jXj)

−1X ′
jyj .

Actually computing an estimator in this way is generally considered undesir-
able, because it exacerbates any numerical problems that may exist. A good
way to compute a least squares estimator is to use the QR decomposition.
Pinheiro and Bates [89] discuss these issues at length and present detailed
analyses in which the multilevel loglikelihood is transformed in a way that
makes computations fast, numerically stable, and memory efficient. We do
not present these here, but recommend their book to interested readers.

1.6.3 Robust Covariance Matrix Estimation

We have seen above that the two-step OLS estimator of γ is

γ̂ =

(
m∑
j=1

Z ′jZj

)−1 m∑
j=1

Z ′jbj = A
m∑
j=1

Z ′jbj ,

with A implicitly defined. Its covariance matrix is

C
∆=Cov(γ̂) = A

(
m∑
j=1

Z ′j Cov(bj)Zj

)
A.
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If m → ∞, γ̂ is a consistent estimator of γ, and instead of using the model-
based estimator of C presented earlier, C can be straightforwardly estimated
by the cluster-robust covariance matrix [e.g., 98]

Ĉcr = A

(
m∑
j=1

Z ′j t̂j t̂
′
jZj

)
A,

where t̂j = bj − Zj γ̂. When m is large, this is an accurate estimator, but
in moderately large samples, it tends to be biased because the variability in
estimation of γ is not taken into account. That is, the difference between t̂j
and tj

∆= bj −Zjγ is ignored. Inspired by similar problems with the (Eicker-
Huber-)White heteroskedasticity-consistent covariance matrix, and fairly suc-
cessful corrections thereof [25, pp. 552–556], corrections to the cluster-robust
covariance matrix can be computed, which take the form of multiplication by
a certain factor, e.g.,

m

m− 1
n− 1
n− r

,

where n is total sample size and r is the number of elements of γ. Cameron
and Trivedi [17, p. 834] mention this correction in the context of the one-step
OLS estimator.

Analogously, abusing the same notation for different estimators, the one-
step OLS estimator is

γ̂ =

(
m∑
j=1

U ′
jUj

)−1 m∑
j=1

U ′
jyj = A

m∑
j=1

U ′
jyj .

Thus, we can estimate its covariance matrix by the cluster-robust covariance
estimator

Ĉcr = A

(
m∑
j=1

U ′
j r̂j r̂

′
jUj

)
A,

[e.g., 126, p. 152], where r̂j = y
j
−Uj γ̂. As observed above, the one-step OLS

estimator can also be written as

γ̂ = A
m∑
j=1

Z ′jX
′
jXjbj ,

where A is now written as

A =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1

.

Hence, the cluster-robust covariance estimator can be rewritten as
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Ĉcr = A

(
m∑
j=1

Z ′jX
′
jXj t̂j t̂

′
jX

′
jXjZj

)
A,

where it is now natural to use the one-step estimator of the coefficient vector
γ in the definition of t̂j .

In the same way, a straightforward cluster-robust covariance matrix of the
WLS estimator γ̂ is found to be

Ĉcr = Â

(
m∑
j=1

U ′
jV̂

−1
j r̂j r̂

′
jV̂

−1
j Uj

)
Â,

where now the WLS estimator of γ is used in the definition of r̂j ,

V̂ j = XjΩ̂X
′
j + σ̂2

jInj
,

Â =

(
m∑
j=1

U ′
jV̂

−1
j Uj

)−1

,

or, equivalently,

Ĉcr = Â

(
m∑
j=1

Z ′jŴ
−1
j t̂j t̂

′
jŴ

−1
j Zj

)
Â,

with

Ŵ j = Ω̂ + σ̂2
j (X

′
jXj)

−1,

Â =

(
m∑
j=1

Z ′jŴ
−1
j Zj

)−1

,

and the WLS estimator of γ is used in the definition of t̂j . Note that for the
asymptotic results, it does not matter which estimators of Ω and σ2

j are used,
as long as they are consistent. Of course, in finite samples, it does matter and
we would expect that more precise estimators of Ω and σ2

j result in better
estimators of γ and C.

Robust Covariance Matrices for ML Estimators

A robust covariance estimator for the FIML estimator of γ is immediately
obtained from the one for the WLS estimator given above. The same applies
to the two-step ML (“REML”) estimator obtained as a WLS estimator that
uses the REML estimates of the variance parameters in computing the weight
matrix.
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It is also possible to compute a robust covariance matrix for the variance
parameters. However, because no closed-form expression for the estimators of
the variance parameters exists, this requires a bit more asymptotic statistical
theory. The basic idea starts from the first-order condition for ML estimators

m∑
j=1

∂Lj
∂θ

(θ̂) = ∅.

Then a first-order Taylor series expansion of this, around the true value θ0,
is taken, giving

m∑
j=1

{
∂Lj
∂θ

(θ0) +
∂2Lj
∂θ ∂θ′

(θ0) (θ̂ − θ0) +Op‖θ̂ − θ0‖2
}

= ∅.

Under suitable regularity conditions, a form of the central limit theorem im-
plies that

1√
m

m∑
j=1

∂Lj
∂θ

(θ0)
L=⇒N (∅,Ψ)

from some finite positive definite matrix Ψ , and a form of the law of large
numbers implies that

1
m

m∑
j=1

∂2Lj
∂θ ∂θ′

(θ0)
P=⇒H

for some finite positive definite matrix H. Combining results, we obtain

√
m(θ̂ − θ0) = −H−1 1√

m

m∑
j=1

∂Lj
∂θ

(θ0) + op(1) L=⇒N (∅,H−1ΨH−1).

Obviously, consistent estimators of H and Ψ are

Ĥ =
1
m

m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂),

Ψ̂ =
1
m

m∑
j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂).

For computing a robust covariance matrix for θ̂, all factors of m drop out and
we obtain

Ĉcr =

(
m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1( m∑
j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂)

)(
m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1

. (1.30)

The theory underlying the robust covariance matrices for ML estimators in a
multilevel model is derived in detail, with appropriate regularity conditions,
in Verbeke and Lesaffre [120, 121].
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From (1.26), (1.27), (1.28), and (1.29), it follows that this theory should
work for the FIML and REML estimators of γ and ξg, and for the corre-
sponding estimators of σ2 if all residual variances are assumed to be the same.
However, if separate residual variances σ2

j are estimated, the corresponding
first-order conditions do not satisfy the central limit theorem as presented
here, because they have only one term. In that case, assuming that nj →∞,
it is still possible to derive some kind of robust variance estimators for the
variance estimators σ̂2

j , using within-groups asymptotics along the lines of
Browne [12], but this tends to require large within-group sample sizes, so this
may not work well in practice.

Note that when all the model assumptions are met, we have the well-known
result (correcting for our scaling of the loglikelihood)

1
2
H = 1

4
Ψ = lim

m→∞

1
m

I,

which leads to the standard (model-based) covariance matrix presented earlier.

Robust Versus Model-Based Covariance Matrices

With a few exceptions, the model-based covariance matrices are only correct
if the complete model is correctly specified (“true”). The robust covariance
matrices are consistent under a wider range of assumptions, including fairly
general forms of misspecification of the random part of the model, such as
intragroup dependence and heteroskedasticity. So if the main interest of the
analyses is the fixed part of the model (i.e., γ), a cluster-robust covariance
matrix may be preferred.

On the other hand, if the random part of the model is the main focus
of interest, i.e., modeling/explaining between-group variation is important,
then an estimator of the covariance matrix of the fixed part that is robust
to misspecification of the random part is only of secondary interest. If the
random part is (severely) misspecified, the primary aim of the analysis is not
met. This is even more salient for robust covariance matrices of the variance
parameters themselves. If the model is misspecified, it is generally unclear
what is estimated, and thus it is questionable whether a robust covariance
matrix is of any use [39].

There is, however, a leading example where the random part is misspec-
ified, but the estimators are still consistent estimators of meaningful param-
eters. This is the case when the model is correctly specified, except for the
distribution of the random variables. If these are nonnormally distributed,
the model-based covariance matrices for the estimators of γ are still correct,
but standard model-based covariance matrices of the variance parameters are
incorrect. But Ω and σ2 are still meaningful parameters and their estimators
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are consistent. So then using a robust covariance matrix is clearly useful
[120, 121].

The robust covariance matrices are typically far less precise if the model is
(approximately) correctly specified and the sample size is small to moderate.
Therefore, in not-too-large samples, the model-based covariance matrices will
typically be preferred if the analyst believes that the random part of the
model is reasonably well specified. Maas and Hox [78] performed a simulation
study to investigate these issues for REML estimators and concluded that
the model-based standard errors of the estimator of σ2 performed well under
nonnormality, while the robust standard errors are often too large. However,
both model-based and robust standard errors of level-2 variance parameters
did not perform very well at small sample size, although the robust ones were
clearly better than the model-based ones. They conclude that at least 100
groups are needed for reliable robust standard errors. As a general strategy,
they recommend comparing the robust standard errors with the model-based
ones to diagnose possible misspecification of the model.

An alternative way for robust statistical inference under possible misspec-
ification is to use resampling methods. Moreover, the bootstrap in particu-
lar has the additional potential advantage that it can generate asymmetric
confidence intervals, thereby reflecting nonnormal finite-sample distributions
of especially the level-2 variance parameters. However, confidence intervals
based on resampling methods tend to perform less than satisfactory as well
with small or moderate level-2 sample sizes. See Chapter 11 for a detailed
description of resampling methods for multilevel models and their empirical
properties.

1.7 Software

We will be brief about software here, if only because details about software are
likely to be quickly outdated. An overview of the history of the development
of software for multilevel analysis, and the state of affairs ca. 2000 is given in
de Leeuw and Kreft [30]. The overview is still broadly valid, except that the
details have changed and there are some additions.

As mentioned earlier in this chapter, the software packages have largely
been developed by the same authors who pioneered the development of mul-
tilevel analysis as a statistical method and who have written successful text-
books about multilevel modeling. And, for that matter, are contributors to
this Handbook.

Two software packages dominate the market for dedicated multilevel anal-
ysis software. These are HLM [102] and MLwiN [97]. These packages offer a
broad range of linear and nonlinear specifications of multilevel models and
have user-friendly graphical user interfaces. There are some differences in the
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algorithms used, but these are not particularly interesting for the average
user. There are also some differences in the more advanced options or less
frequently used model specifications, so users with specific desires may prefer
one over the other for this reason.

Originally, VARCL [75] was also one of the major packages, but devel-
opment of this package has been terminated. There are many packages that
focus on more specific multilevel models, options, or other aspects. These tend
to be research software, with fewer options and less user-friendly interfaces,
and development of these progresses faster if the authors are working on new
directions in their research that requires additions to the programs. Examples
of these are MLA [16], which focuses on resampling methods (see Chapter 11)
and PINT [10], which focuses on power calculations (see Chapter 4). The
MIXFOO suite [55, 56, 57, etc.] also belongs in this category, although taken
as a whole, it is a fairly comprehensive multilevel package.

The BUGS program and its variants, most notably WinBUGS [113], are
programs for Bayesian data analysis. They offer extensive possibilities for
Bayesian multilevel analysis and are particularly useful for estimating nonlin-
ear multilevel models. See also Chapter 2.

Many general-purpose (or almost-all-encompassing) statistical packages
now have multilevel options as well. Important examples are SAS R© [106],
which has PROC MIXED and PROC NLMIXED, SPSS R© [114], which has
MIXED and several other procedures that can be used for multilevel analyses,
Stata R© [115], which has many “survey”, “cluster”, and “panel” programs and
options, and the extensive gllamm program [95], and R [93], for which the
lme4 and nlme packages are available [7, 90].

A relatively recent development is the incorporation of multilevel facilities
in programs for structural equation modeling, such as LISREL [35, 64], EQS
[8], and Mplus [85]. The possibilities of these programs are somewhat different
from the standard multilevel programs. They often have less extensive options
for estimating nonlinear models and models with three or more levels, but are
better equipped for estimating multivariate models and models with latent
variables and measurement errors, i.e., multilevel structural equation models
(see Chapter 12). Thus, they complement traditional multilevel packages.

Throughout this Handbook, other software packages (perhaps less well
known or more specialized) are mentioned where appropriate and useful.

1.8 Sampling Weights

Surveys are often nonrepresentative of the population of interest, in the sense
that persons (or, more generally, units) with certain characteristics are more
prevalent in the data than in the population. There are essentially two reasons
for this: deliberate oversampling of certain groups and different nonresponse
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rates. An example of the former is the oversampling of relatively small groups,
like minorities, to obtain more reliable information about these groups. An
example of the latter is the tendency to obtain an overrepresentation of women
in a study that was designed to be neutral, which may happen because women
tend to be more often at home than men.

Agencies that collect such surveys typically provide sampling weights with
the data set. The idea is that applying these sampling weights in the analysis
corrects for the nonrepresentativeness of the data by giving underrepresented
groups more weight and overrepresented groups less weight. For example,
assume that we are interested in the mean height of adults in a country of
interest. Assume further that we have a sample of 1000 adults, 600 of which are
women, whereas in the population 50% of adults is female. Height is expected
to be related to sex, so if we simply computed the sample average, we would
likely obtain an underestimate of our parameter of interest. However, if we
give women a weight of wi = 5/6 and men a weight of wi = 5/4, then the
weighted average

h̄w
∆=
∑1000
i=1 wihi∑1000
i=1 wi

(1.31)

=
600 · (5/6) · h̄f + 400 · (5/4) · h̄m

600 · (5/6) + 400 · (5/4)

= 0.5h̄f + 0.5h̄m

is clearly (the realization of) an unbiased estimator of average height in the
population, where hi is the height of the i-th observation in the sample and
h̄f and h̄m are the average heights of females and males in the sample, re-
spectively. (Note that apparently some software packages define weights as
the reciprocals of the definition we use here, so check your manuals.)

For regression models, there is some discussion in the literature about
whether weights should be applied, even if the sample is nonrepresentative and
weights are available. In fact, if the standard regression model yi = x′iβ + εi,
with εi i.i.d., holds and the nonrepresentativeness is possibly related to x
but not to ε, then OLS is still the most efficient estimator, and all statistical
inference is correct. However, in many circumstances, it is quite likely that the
error term represents the influence of a large number of variables that each
have a fairly small effect, most of which are unknown and/or unobserved, but
some of which may be somehow related to the probabilities of being included
in the sample. In such cases, OLS would be biased, whereas a weighted analysis
would still give an unbiased estimator.

An important special case where a weighted analysis gives simple con-
sistent estimators and an unweighted analysis does not is in the analysis
of so-called choice-based samples or, more generally, endogenously stratified
samples. In this case, samples are drawn from strata defined by the dependent
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variable. An example is a sample consisting of 500 bus passengers sampled on
board bus lines and 500 car drivers sampled along the road, and the dependent
variable is mode choice. Another important example is a medical study in
which a sample of people having a rare disease is drawn from hospital records
and a similar-sized sample of people not having the disease is drawn from the
general public, and the dependent variable in the study is whether or not one
has the disease.

These issues are extensively discussed in Cameron and Trivedi [17, pp. 817–
829] and Wooldridge [124, 125, 127], who also give detailed derivations and
explanations, showing why unweighted analyses are sometimes inconsistent
and under different circumstances consistent and efficient. For the remainder
of this section, we assume that a weighted analysis is desired.

For multilevel analysis, an additional complication is how to deal with units
at different levels. To continue our example, assume that we have a two-level
sample, where level-1 is individuals and level-2 is counties. Perhaps heights are
correlated within counties because of environmental factors, different socio-
economic composition, different ethnic composition or more specifically family
relations, and therefore a multilevel approach is desired, but still females are
overrepresented. Furthermore, let us assume that we know the population
percentages of males and females in each county (not necessarily 50%). Then
a straightforward adaptation of (1.31) gives an estimate of the within-county
mean height:

h̄wj
∆=
∑nj

i=1 wi|jhij∑nj

i=1 wi|j

in obvious notation. If each county had the same population size (or height
was unrelated to population size) and the sample of counties is representative
of all counties in whatever way this is defined, a simple average of the county
averages gives an unbiased estimate of the parameter of interest. More gener-
ally, however, we also have a county weight wj , and the overall weighted mean
is computed as

h̄w·
∆=

∑m
j=1 wj h̄wj∑m
j=1 wj

.

Determining the value of wj depends on the sampling scheme and the result-
ing representativeness at the county level. For example, if the counties are a
simple random sample of all counties in the country, then counties with small
population size are overrepresented given that we are interested in the mean
height of individuals. It is easy to see then that wj should be proportional to
county population size Nj . Often, however, sampling at county level is done
proportional to size, so that wj should be the same for each county.

When a survey data set is given, it typically contains an individual weight
wij and the clusters are defined by the researcher. Then the multilevel weights
can be computed as
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wj
∆=

nj∑
i=1

wij ,

wi|j
∆=wij/wj .

See, however, Potthoff et al. [92], Pfeffermann et al. [88], Grilli and Pratesi
[49], Asparouhov [6], and Rabe-Hesketh and Skrondal [94] for a discussion
of different definitions of weights and empirical studies of their properties.
Chantala et al. [20] provide software that computes appropriate multilevel
sampling weights for usage in several software packages.

Let us now assume that we have a set of weights, and we would like to
compute the weighted version of the within-groups OLS estimate bj . The
formula for the latter can be written as

bj
∆=(X ′

jXj)
−1X ′

jyj =

(
1
nj

nj∑
i=1

xijx
′
ij

)−1(
1
nj

nj∑
i=1

xijyij

)
.

Clearly, each of the two factors contains some kind of average, so that the
analogy with average height mentioned above gives the following weighted
estimate:

bwj
∆=

(∑nj

i=1 wi|jxijx
′
ij∑nj

i=1 wi|j

)−1(∑nj

i=1 wi|jxijyij∑nj

i=1 wi|j

)

=

(
nj∑
i=1

wi|jxijx
′
ij

)−1( nj∑
i=1

wi|jxijyij

)
= (X ′

jWjXj)
−1X ′

jWjyj ,

where Wj (not to be confused with Wj) is the diagonal matrix with elements
wi|j on its diagonal. A corresponding suitable estimator of σ2

j is obtained by
a properly scaled version of the weighted sum of squared residuals. For the
unbiased estimator, the denominator in this is a bit more complicated than
in the unweighted case. The resulting formula is

s2wj
∆=(yj −Xjbwj)

′Wj(yj −Xjbwj)/(n
∗
j − p∗),

where

n∗j
∆=

nj∑
i=1

wi|j = tr Wj ,

p∗
∆=tr

[
(X ′

jWjXj)
−1(X ′

jW
2
jXj)

]
.

Then, paraphrasing our earlier discussion and simplifying somewhat, for esti-
mating γ, least squares loss functions incorporating sampling weights can be
defined as
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ρw(γ) ∆=
m∑
j=1

wj(bwj −Zjγ)′B−1
j (bwj −Zjγ),

leading to the estimators

γ̂w,B
∆=

(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1 m∑
j=1

wjZ
′
jB

−1
j bwj .

Because

Wwj
∆=Cov(bwj) = Ω + σ2

j (X
′
jWjXj)

−1(X ′
jW

2
jXj)(X

′
jWjXj)

−1,

the covariance matrices of these least squares estimators are(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1( m∑
j=1

w2
jZ

′
jB

−1
j WwjB

−1
j Zj

)(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1

.

The estimators corresponding to the 1-step and 2-step OLS estimators are
obtained by choosingBj = (X ′

jWjXj)
−1 andBj = I, respectively. The most

logical analog of the WLS estimator seems to be the one based on Bj = Wwj ,
but the optimality properties of the unweighted version do not hold and the
covariance matrix does not simplify considerably. A different WLS estimator
for data with sampling weights,

γ̂w,KR
∆=

(
m∑
j=1

wjU
′
jV

−1
j Uj

)−1 m∑
j=1

wjU
′
jV

−1
j y

j

=

(
m∑
j=1

wjZ
′
jW

−1
j Zj

)−1 m∑
j=1

wjZ
′
jW

−1
j bj ,

using the unweighted within-groups estimates bj and Wj , was proposed by
Kovačević and Rai [66]. This also does not have the optimality properties of
the WLS estimator without sampling weights.

Generally, we need an estimate of Ω as well. The estimators discussed
earlier can be adapted relatively straightforwardly, but we omit this here,
with the exception of a general treatment of ML with sampling weights.

The loglikelihood function for a two-level model that is not necessarily
linear can be written as

L =
m∑
j=1

log
∫

exp(Lj|δj
) fδ(δj) dδj ,

where we have suppressed the dependence on the parameter vector θ. The
function fδ(·) is the density function of δj and Lj|δj

is the loglikelihood of
the j-th group conditional on δj . Thus,
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Lj|δj
=

nj∑
i=1

log fy | δ(yij | δj)

in obvious notation. From this form, the adaptation for sampling weights is
straightforward, leading to

Lw,j|δj

∆=
nj∑
i=1

wi|j log fy | δ(yij | δj),

Lw
∆=

m∑
j=1

wj log
∫

exp(Lw,j|δj
) fδ(δj) dδj =

m∑
j=1

wjLwj ,

with Lwj implicitly defined. Thus, the first-order condition for the ML esti-
mator with sampling weights is

m∑
j=1

wj
∂Lwj
∂θ

= ∅, (1.32)

so that, adapting (1.30), the covariance estimate for the resulting estimator θ̂
becomes(

m∑
j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1( m∑
j=1

w2
j

∂Lwj
∂θ

(θ̂)
∂Lwj
∂θ′

(θ̂)

)(
m∑
j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1

.

Unlike the covariance matrix without sampling weights, this formula does
not simplify considerably even if all model assumptions are met. Thus, this
illustrates that the resulting estimators are not proper ML estimators and the
weighted loglikelihood function is not a proper loglikelihood. The estimators
can, however, be viewed as generalized estimating equation (GEE) estimators
based on the estimating equations (1.32) and, under weak regularity condi-
tions, have desirable statistical properties (consistency, asymptotic normality).
From this theory, it also follows that it is immaterial whether the weights are
predetermined (by the sampling scheme) or estimated afterward (because of
differential nonresponse), in which case they would be random variables. The
estimating equations are still valid, unless the nonresponse is related to the
dependent variable of interest (“nonignorable”), in which case analyzing the
data becomes much more complicated and perhaps consistent estimators do
not exist.

Of course, the formulas for the ML estimators with sampling weights sim-
plify considerably for the linear multilevel model. This is straightforward and
we do not give the expresssions here.

More extensive discussions of how to treat sampling weights in survey data
in general and with multilevel models in particular can be found in Skinner
[108], Pfeffermann [87], Pfeffermann et al. [88], and Asparouhov [5, 6].
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1.9 A School Effects Example

In this section, we apply some of the techniques discussed in this chapter by
analyzing the well-known NELS-88 data. These have been used to illustrate
multilevel techniques by several authors and, of course, they have been used
in substantive research as well.

The part of the NELS data that we use contains information about the
score on a mathematics test, which will be our dependent variable, and the
amount of time spent on homework, which will be our level-1 explanatory
variable, and the student-teacher ratio of the school, which will be our level-2
explanatory variable. The math test score is a continuous variable having a
sample average of 51, with a range of 27–71. Homework is coded from 0 =
“None” to 7 = “10 or more hours per week”. This is a slightly nonlinear
transformation of the hours, reflecting expected diminishing returns from ad-
ditional hours of homework. Both the average and the median of this variable
are 2. The student-teacher ratio varies from 10 to 30, with mean and median
approximately equal to 17. The data set consists of 21,580 students in 1003
schools, so the average number of observations per school is about 22. The
number of observations per school varies from 1 to 67.

Kreft and de Leeuw [67] have previously analyzed this data set with mul-
tilevel analysis. We base our analyses on the model they describe in their
Chapter 4. However, whereas their goal is to discuss different model specifi-
cations and the choice between them, we focus on comparing results for the
same model obtained with different estimators.

In line with the description in this chapter, we start by computing the
within-school regressions. This immediately illustrates a drawback of our focus
on two-step estimators: In 10 schools, the within-groups regression coefficients
bj and/or the within groups residual variance s2j cannot be computed because
the sample size is too small (nj ≤ p = 2) or because Xj is not of full column
rank, which is presumably also due to small sample size. Thus, we drop these
10 schools and proceed with the 993 remaining schools, leaving us with 21,558
observations. We do not expect that this seriously affects the results, and this
is confirmed by the closeness of our results with the corresponding ones in
Kreft and de Leeuw [67]. However, this also indicates that models that use
different within-groups residual variances (σ2

j ) will not reliably estimate these
parameters for schools with small numbers of observations.

After these disclaimers, we report the within-schools results for the first
30 successfully analyzed schools in Table 1.1. It shows considerable variation
both in the regression coefficients and in the residual variances. This is cor-
roborated by summary statistics for the whole sample: The within-groups
intercept varies from 34 to 72, with mean and median approximately equal to
48, and the regression coefficient for homework varies from −12 to +15, with
mean and median equal to 1.3, but more than 75% are positive. Finally, the
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Table 1.1 Within-school statistics for the first 30 successfully analyzed schools:

school identifier, number of pupils, student-teacher ratio, regression coefficients, and

residual variance.

Regression coefficient Residual
School ID Observations S-t ratio Constant Homework variance

1249 24 21 54.0969 −0.5760 66.6295

1755 14 16 45.9339 0.3330 60.6991

1806 15 25 45.8242 3.0579 70.4722

1846 36 28 45.3300 1.5674 62.4661

2114 19 13 57.5974 −0.6658 83.7773

2335 19 11 60.0461 0.5249 16.1703

2666 20 14 43.0026 3.1134 69.1364

2759 17 10 57.3730 −2.8981 86.0793

2861 21 17 52.5275 2.6298 73.8099

2888 20 30 53.5131 0.4496 71.1451

2988 23 22 51.0928 0.5839 99.0531

6043 10 23 57.0538 0.5509 54.7340

6044 24 23 55.4732 0.1090 65.2169

6053 44 18 51.6696 2.0880 75.1713

6091 8 22 47.7969 −0.3928 108.5720

6185 3 19 47.9300 0.7850 41.3438

6327 8 23 63.8000 −8.6350 25.8185

6358 10 28 60.6133 0.5409 16.9813

6375 4 20 57.5608 0.4358 21.8832

6420 7 25 53.0421 0.2061 70.3876

6442 11 12 48.8171 0.1168 101.7292

6467 5 19 41.0639 6.9128 11.8384

6518 21 29 60.2006 0.9153 64.9436

6631 5 20 68.5750 −7.4025 40.5725

6641 29 15 50.2446 1.5950 70.2012

6656 4 16 37.7940 3.9710 10.9923

6738 3 26 54.9100 −6.0000 10.7648

6868 18 13 52.3958 0.9523 63.7598

7000 24 13 41.6905 1.2020 72.8585

7011 20 24 45.9697 1.6501 62.8256

residual variance varies from 5 to 180, with mean and median approximately
equal to 71. It is the goal of the second step of the analysis to model at least
some of the variation in the regression coefficients.

Of course, a negative coefficient for time spent on homework does not make
sense substantively. Rather, in addition to the possibility of sheer random
fluctuation, this points to a possible endogeneity problem, caused by students
who have more problems with mathematics spending more time on their
homework. That is, it may be the result of a partial reversal of causality. For
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the analysis here, we will ignore this possibility, given that we are primarily
interested in differences between estimators.

We proceed by computing the one-step and two-step OLS estimates of
the regression coefficients γ. These are reported in the first two columns of
Table 1.2. The estimates are in the first panel, model-based standard errors
(computed using the de Leeuw and Kreft [28] estimate of Ω) in the second
panel, and robust standard errors in the third panel. Unlike a similar com-
parison for different data in de Leeuw and Kreft [28], we see some important
differences between these estimates. The estimated main effect of the student-
teacher ratio is twice as large for the two-step estimator, whereas the main
effect of homework is less than half as large and the interaction term is also
considerably less important, even statistically insignificant.

By using the within-groups and two-step OLS estimates, we can estimate
Ω by the method of de Leeuw and Kreft [28] discussed above. The estimate is
denoted by DLK in Table 1.3. Fortunately, this is positive definite, so we do
not encounter the problems faced by de Leeuw and Kreft for their example.
Thus, we can use this estimate to compute the WLS estimates of γ. They are
given in the third column of Table 1.2. They are very similar to the two-step
estimates. As mentioned above, the estimate ofΩ is also be used in computing
the model-based standard errors of the one-step and two-step OLS and WLS
estimates, which are given in the second panel of Table 1.2. The third panel
contains standard errors obtained from the cluster-robust covariance matrices.

Table 1.2 Estimates of fixed regression coefficients for the NELS-88 data and their

standard errors.

OLS OLS WLS FIML REML FIML REML

(1-step) (2-step) (DLK) (1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

Constant 49.1477 52.1147 52.1062 51.4428 51.4434 51.9983 51.9988

S-t ratio −0.1113 −0.2217 −0.2290 −0.2006 −0.2006 −0.2242 −0.2242

Homework 2.8520 1.2834 1.2785 1.5272 1.5272 1.3557 1.3561

hw × ratio −0.0522 −0.0003 0.0058 −0.0030 −0.0030 0.0028 0.0028

Model-based standard errors

Constant 0.7857 0.7303 0.6913 0.7003 0.7011 0.7307 0.7314

S-t ratio 0.0428 0.0398 0.0378 0.0382 0.0382 0.0399 0.0400

Homework 0.2642 0.2362 0.1875 0.1823 0.1825 0.1781 0.1783

hw × ratio 0.0142 0.0127 0.0103 0.0100 0.0100 0.0098 0.0099

Robust standard errors

Constant 0.8176 0.8287 0.8862 0.8077 0.8049 0.8751 0.8639

S-t ratio 0.0433 0.0437 0.0469 0.0428 0.0427 0.0462 0.0457

Homework 0.2166 0.2225 0.1922 0.1828 0.1782 0.1961 0.1767

hw × ratio 0.0117 0.0118 0.0105 0.0098 0.0097 0.0105 0.0097
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Next, we compute ML estimates. There are four of them: FIML and
REML, each with a common variance parameter σ2 or with separate variances
σ2
j . The results for the fixed coefficients are listed in the last four columns of

Table 1.2. As argued before, these REML results are better called “WLS based
on REML estimates of the variance parameters”, but for convenience we call
them REML here, and similarly WLS based on the DLK variance parameter
estimates will be simply called WLS. The model-based standard errors for
the ML estimators are obtained from the information matrix, whereas the ro-
bust standard errors are obtained from the cluster-robust covariance matrices
described above. An exception is formed by the robust standard errors accom-
panying FIML with separate residual variances. These have been computed by
formulas based on a combination of within-groups and between-groups asymp-
totics, as briefly mentioned but not worked out above (details are available
upon request). This is intended to avoid the problems with the cluster-based
estimator of the variance of the first derivatives of the loglikelihood, because its
σ part is based on only 1 independent observation. However, the within-groups
asymptotics involve sample fourth-order moments, which are highly inaccurate
for the many small within-groups sample sizes. Nevertheless, the numerical
results are similar to the ones for the other ML estimators, and also very
similar to the two-step OLS and WLS results.

Note that the robust s.e.’s of the REML estimator are simply the WLS
formulas, and thus are not affected by this problem. Given that the FIML
estimators of γ are also WLS estimators, based on the FIML estimates of the
variance parameters, we could have done the same for FIML. On the other
hand, these WLS-based variance estimates essentially ignore any variability in
the estimators of the variance parameters, which is also only asymptotically
warranted.

The DLK and ML estimates of the elements of the level-2 covariance ma-
trixΩ are given in Table 1.3. The ML estimates using a single residual variance
parameter are very similar to the DLK estimates (which are, incidentally,
based on separate residual variances). The standard errors are a bit smaller,
reflecting the higher precision of ML. When separate residual variances are
estimated with ML, the estimates of Ω are noticeably larger.

For both ML estimators with a single residual variance parameter, the
estimate of σ2 is 71.74 with a model-based standard error of 0.72 and a robust
standard error of 0.85. The value of 71 corresponds closely with the average
of the within-groups residual variance estimates.

For FIML with separate variances, the estimates of the residual variances
vary from 8 to 161, with mean and median again approximately equal to
71. Similarly, for REML with separate variances, the estimates of the residual
variances vary from 8 to 157, with mean and median also approximately equal
to 71. This range is slightly narrower than the range of the within-groups
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Table 1.3 Estimates of level-2 variance parameters for the NELS-88 data and their

standard errors.

DLK FIML REML FIML REML

(1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

Constant, constant 23.9283 23.2633 23.3326 27.8982 27.9745

Homework, constant −0.9319 −0.9105 −0.9197 −1.6088 −1.6197

Homework, homework 0.8678 0.5190 0.5243 0.6828 0.6878

Model-based standard errors

Constant, constant 1.8298 1.5125 1.5172 1.6826 1.6826

Homework, constant 0.6159 0.3138 0.3149 0.3296 0.3296

Homework, homework 0.3691 0.0993 0.0998 0.0971 0.0971

Robust standard errors

Constant, constant — 1.5646 1.5591 1.7509 1.7509

Homework, constant — 0.2983 0.2931 0.3197 0.3197

Homework, homework — 0.1048 0.1047 0.1262 0.1262

Note: Robust standard errors are not available for the DLK [28] estimator.

estimates of the residual variances, but otherwise seems to confirm that the
residual variances are not equal.

We can compute a likelihood ratio test statistic comparing the model
with a common residual variance with the model with separate variances. For
both FIML and REML, its value is approximately 1500, with 992 degrees of
freedom, which gives a hugely significant p-value of approximately 2.2×10−23.
Even though the chi-square approximation is possibly inaccurate with such
a large number of degrees of freedom and such small within-groups sample
sizes, it clearly points in the direction of heterogeneous variances.

This leaves us with the conclusion that a model with a common variance is
likely misspecified and a model with separate variances cannot be estimated
reliably. Thus, this is a case in point for a more genuine multilevel approach in
which the residual variance is modeled with a systematic part and a random
residual, as suggested earlier.

Fortunately, however, the estimates and standard errors of the fixed coeffi-
cients, and to a lesser degree also the results for the level-2 covariance matrix,
appear fairly insensitive to the specification of the level-1 random part. Thus,
substantive conclusions would also be largely unaffected by this issue.

Clearly, this single empirical example is only an illustration and cannot be
viewed as representative of all multilevel analyses. Many more examples, show-
ing various issues in model specification and estimation, are discussed in detail
in the textbooks [46, 59, 67, 76, 89, 101, 110, 111], the program manuals, and
many empirical articles cited here and in the mentioned textbooks. Finally,
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the remaining chapters of this Handbook contain many empirical applications
as well, although for more complicated models.

1.10 Final Remarks

In this final section, we would like to briefly mention a few topics that have not
been addressed in the previous sections. The first is hypothesis tests. Of course,
this is one of the main topics of statistics (and typically the one that gives
statistics its bad reputation among students in the social sciences). However,
there is almost nothing that is specific to multilevel analysis. Thus, the general
theory of hypothesis testing as presented in, e.g., Cameron and Trivedi [17,
Chapter 7], and in particular, the well-known Wald, likelihood ratio, and
Lagrange multiplier tests, can be directly applied. The only thing worth
mentioning is that the REML loglikelihood cannot be used to test hypotheses
concerning γ, i.e., exclusion of certain variables from the fixed part of the
model, because when viewed as a proper loglikelihood, it does not contain γ.

More generally, model fit is an important subject. In addition to formal
hypothesis tests, this typically involves certain more descriptive indexes of
model fit, like R2 in linear regression. Several such indexes have been proposed
for multilevel analysis, but these tend to have serious drawbacks. Sometimes it
is not guaranteed that the fit index improves as variables (or, more generally,
parameters) are added to the model, whereas other fit indexes do not have
a clear intuitive interpretation. Thus, the literature does not seem to have
converged on this topic. See, e.g., Snijders and Bosker [111, Chapter 7], Hox
[59, Section 4.4], Spiegelhalter et al. [112], Xu [128], and Gelman and Pardoe
[41] for some proposed indexes and their properties. A systematic approach
to diagnosing model (mis)specification, directed at various directions of mis-
specification, is given in Chapter 3 of this volume.

An important issue in multilevel model specification is centering. In social
science data, variables typically do not have a natural zero point, and even
if there is a natural zero, it may still not be an important baseline value.
Therefore, in regression analysis and other multivariate statistical analysis
methods, variables are often centered, so that the zero point is the sample
average, which is an important baseline value. This tends to ease the in-
terpretation of the parameters, especially the intercept, and it sometimes has
some computational advantages as well. This practice has also been advocated
for multilevel analysis, but the consequences for multilevel analysis are not as
innocuous as for ordinary linear regression analysis. Moreover, in multilevel
analysis, there are two possibilities for centering the data. The first is grand
mean centering, i.e., the sample average of all observations is subtracted,
and the second is within-groups centering, where the sample average of only
the observations within the same group is subtracted. Generally, grand mean
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centering does not change the model and is thus innocuous, but within-groups
centering implicitly changes the model that is estimated, unless the sample
averages of all level-1 predictor variables are included as level-2 predictors.
For an extensive analysis, see Kreft et al. [68], Van Landeghem et al. [119], de
Leeuw [27], and the references therein.

We close by noting that the quality of every data analysis crucially depends
on the quality of the data. Most issues in data quality are not specific to
multilevel analysis and are thus not discussed here. One important aspect,
however, is the sampling design. Because a multilevel data set has observa-
tions at different levels, deciding on issues like sample size and randomization
becomes more complicated than with single-level data. This subject is treated
in detail in Chapter 4 in this volume.

Appendix

1.A Notational Conventions

This appendix describes the notation used in this chapter. The notation
throughout this Handbook has been made as consistent as possible, so that
this appendix also serves as a reference for the other chapters. However, the
reader may occasionally discern slight differences in notation between the
chapters.

1.A.1 Existing Notation

We used the most common books on mixed, random coefficient, and multilevel
models to find a compromise notation [24, 46, 67, 76, 89, 101, 111]. There is a
substantial agreement on notation in these books, although there are of course
many differences of detail.

1.A.2 Matrices and Vectors

Matrices are boldface capitals; vectors are lowercase bold. In general, we use
Greek symbols for unknowns and unobservables, such as parameters or latent
variables (disturbances, variance components).

As another convention, we write X[n, r] for “X is an n × r matrix” and
y[n] for “y is an n-element vector”. Also, X = (xij) is used to define a matrix
in terms of its elements.

Two special matrix symbols we use are � for the direct sum and � for the
direct (or Kronecker) product. If A1, . . . ,Ap are matrices, with As[ns,ms],
then the direct sum is the

∑p
s=1 ns ×

∑p
s=1ms matrix
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p⊕
s=1

As = A1 � · · ·�Ap =


A1 ∅ ∅ . . . ∅
∅ A2 ∅ · · · ∅
∅ ∅ A3 · · · ∅
...

...
...

. . .
...

∅ ∅ ∅ · · · Ap

 ,

where ∅ denotes a (sub-)matrix with all elements equal to zero. The direct
product is a

∏p
s=1 ns×

∏p
s=1ms matrix, which we can best define recursively

starting with two matrices A and B. If A is n×m, then

A�B =


a11B a12B a13B · · · a1mB

a21B a22B a23B · · · a2mB

a31B a32B a33B · · · a3mB
...

...
...

. . .
...

an1B an2B an3B · · · anmB


and, by recursion,

p⊗
s=1

As = A1 � (A2 � · · ·�Ap).

Superscripted delta is the Kronecker delta, i.e.,

δst =

{
1 if i = j

0 if i 6= j.

The identity matrix is I, a vector with all elements equal to 1 is 1. The matrix
E has all elements equal to 1. The size of these matrices and vectors will often
be clear from the context. If we need to be explicit, we can always write, for
instance, E[n,m], but we also use the forms In and 1n. Unit vectors ei have
all elements equal to zero, except for element i, which is equal to 1. Thus, 1
is the sum of the ei.

1.A.3 Special Symbols

We use the following special symbols:
∆= is defined as
∼ is distributed as
N normal distribution
L=⇒ convergence in law (distribution)
a.d.= has the same asymptotic distribution
P=⇒ convergence in probability
iid∼ i.i.d. with given distribution
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1.A.4 Underlining Random Variables

A non-standard part of our notation is that we underline random vari-
ables [28]. Thus, vector or matrix random variables are both underlined and
bold.

The advantage of distinguishing between random variables and fixed
known or unknown constants in the context of mixed models is clear. We use
constants (the design matrix, unknown parameters) and random variables (the
outcome variables, of which we observe a realization, and the random effects,
which we do not observe at all). We also estimate parameters. Estimates are
fixed values, realization of estimators, which are random variables. Underlining
gives us an extra alphabet, it also gives us a method to indicate how constants
and random variables are related, because we can use y for a realization of
y. The advantages of underlining, known as the Dutch Convention or Van
Dantzig Convention, are discussed in more detail in Hemelrijk [58].

As a simple example, the classical linear model is

y = Xβ + ε,

with
ε ∼ N (∅, σ2I).

Thus,
y ∼ N (Xβ, σ2I).

We observe y and X, and we compute

β̂ = (X ′X)−1X ′y, (1.33)

which is a realization of a random variable β̂, satisfying

β̂ ∼ N (β, σ2(X ′X)−1).

It obviously makes sense to write E (β̂) = β, and it does not make sense to
write E (β̂) = β.

Equation (1.33) also illustrates the convention of writing the estimate of
a parameter by putting a hat on the parameter symbol. We also use this
convention for “estimating” a random component, for instance,

ε̂ = y −Xβ̂.

For conditional expectations, we can both have E (x | y) and E (x | y), because
we can condition on both a random variable and its realization. The first
expression defines a deterministic function of y, the second a function of y,
i.e., a random variable.
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It is important to emphasize some basic consequences of our conventions.
Anything we actually compute cannot be underlined, because we only compute
with realizations, not with random variables. Anything that is underlined
is by definition part of a statistical model, because it implies a framework
of replication or a degree of belief. In Bayesian models, there will be more
underlining than in empirical Bayes models, and empirical Bayes models have
more underlining than classical frequentist models. Ultimately, of course, even
fully Bayesian models will have fixed hyperparameters, because otherwise the
specification of the model will never stop.

1.B Generic Numerical Optimization

The most common starting point for numerical optimization of a generic well-
behaved function is a second-order Taylor series expansion around a point
θ1:

f(θ) = f1 + g′1(θ − θ1) + 1
2
(θ − θ1)′H1(θ − θ1) + o‖θ − θ1‖2,

where f1, g1, and H1 are the function f(·), its gradient g(·) (vector of first
partial derivatives with respect to θ), and its Hessian H(·) (matrix of second
partial derivatives with respect to θ), respectively, all evaluated in θ1.

Thus, if we ignore the approximation error reflected by the last term, we
find that the function is minimized for

θ̂ = θ1 −H−1
1 g1,

provided thatH1 is positive definite. Of course, in practice the approximation
error is not zero, so that this does not minimize the loss function immediately.
But we can assert that we have come closer and repeat the process, leading
to the algorithm

θi+1 = θi −H−1
i gi,

where i denotes the iteration number. This algorithm defines the well-known
Newton-Raphson method, also known simply as Newton’s method. In practice,
two modifications are often necessary to ensure that this algorithm works well.
The first is that the search direction −H−1

i gi is only guaranteed to point in
the direction of smaller function values if Hi is positive definite. Hence, if
the loss function is not globally convex, Hi may have to be modified in some
iterations to ensure that it is positive definite. This is typically done by adding
a positive multiple of the identity matrix until all eigenvalues are positive. The
second modification that is often used is to insert a step size αi, with which
the search direction is multiplied, so that the algorithm becomes

θi+1 = θi − αiH−1
i gi, (1.34)
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where it is understood that Hi may be the modified version to make it pos-
itive definite. Even though it is guaranteed that the search direction points
toward smaller function values, the unmodified update may “overshoot” if the
function decreases slowly in the neighborhood of the current point, but then
increases sharply. Therefore, the factor αi is chosen such that the function
value in the next point is smaller than in the current point. A value of αi
that ensures this always exists if Hi is positive definite and gi is nonzero.
Typically, one would start with αi = 1, halving step size until such a point
is reached. The (modified) Newton-Raphson method is implemented in most
general-purpose optimization functions.

There exist many alternative generic numerical optimization methods,
most of which use the same form (1.34) of an iteration, but with H−1

i re-
placed by another positive (semi)definite matrix. The reason for this is that
it is often computationally demanding to compute H−1

i , and places a larger
burden on the researcher and/or programmer, because the second derivatives
have to be computed and programmed. In principle, these methods converge
more slowly, because in the neighborhood of the minimum, the loss function
is closely approximated by a quadratic function, so that Newton-Raphson
converges very fast. In contrast, the steepest descent method, which simply
replaces H−1

i by the identity matrix, tends to converge extremely slowly. In
many cases, however, the better alternative methods are not noticeably worse
(in terms of speed and accuracy) than Newton-Raphson. A good and popular
method is the BFGS method, which replaces H−1

i by the matrix Gi. The
latter matrix is computed using the update formula

Gi+1 = (I − ρi4θi4g′i)Gi(I − ρi4gi4θ′i) + ρi4θi4θ′i,

where 4θi = θi+1−θi, 4gi = gi+1−gi, and ρi = 1/4g′i4θi. Clearly, if Gi is
positive semidefinite, then Gi+1 is also positive semidefinite. Moreover, it can
be proved that if Gi is positive definite, then Gi+1 is also positive definite.
Typically, the starting valueG0 is the identity matrix, which is clearly positive
definite, or an informed guess of H−1. When BFGS is applied to a (convex)
quadratic function of an n-element vector θ, and the step size is chosen to
minimize the function along the line defined by the update formula, the global
minimum is attained in n iterations and Gn+1 = H−1 (which is a constant
matrix). Therefore, unless the number of parameters is large, BFGS tends to
converge quickly in the neighborhood of the minimum, where the loss function
is approximately quadratic. The BFGS method is also implemented in most
general-purpose optimization functions.

An extensive treatment of many generic numerical optimization proce-
dures, including Newton-Raphson and BFGS, with derivations of their prop-
erties, can be found in Nocedal and Wright [86].
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1.C Some Matrix Expressions

Here we collect some convenient results to deal with two-level linear models.
The first two results have been known for a long time [26, 36, 117]. Proofs of
the first three results are given, for example, in de Leeuw and Liu [31]. Many
additional useful matrix results are provided by Wansbeek and Meijer [123,
appendix A] and Harville [53].

Theorem 1.1 If A = B + TCT ′ with A and B positive definite, then

log |A| = log |B|+ log |C|+ log |C−1 + T ′B−1T |.

If, in addition, T is of full column rank, then

log |A| = log |B|+ log |T ′B−1T |+ log |C + (T ′B−1T )−1|.

Theorem 1.2 If A = B + TCT ′ with A and B positive definite, then

A−1 = B−1 −B−1T (C−1 + T ′C−1T )−1T ′B−1.

If, in addition, T is of full column rank, then

A−1 = T (T ′T )−1(C + (T ′B−1T )−1)−1(T ′T )−1T ′

+ {B−1 −B−1T (T ′B−1T )−1T ′B−1}.

Theorem 1.3 If A = B + TCT ′ with A and B positive definite,then

y′A−1y = min
x
{(y − Tx)′B−1(y − Tx) + x′C−1x}.

The fourth result was proved by de Hoog et al. [26] by letting C−1 → ∅ on
both sides of Theorem 1.2.

Theorem 1.4 If B is positive definite and T is of full column-rank, then

B−1 −B−1T (T ′B−1T )−1T ′B−1 = (QBQ)+,

where Q = I − T (T ′T )−1T ′ and superscript + denotes the Moore-Penrose
inverse.

1.D The EM Algorithm

The EM algorithm of Dempster et al. [33] is a general method to optimize
functions of the form f(θ) = log

∫
g(θ,z) dz over θ, where g(θ,z) > 0 for all

θ and z in the domain. It is usually presented in probabilistic terminology, but
the reason why it works is the concavity of the logarithm, which is obviously
not a probabilistic result.
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Define h(θ) ∆=
∫
g(θ,z) dz and k(z | θ) ∆= g(θ,z)/h(θ). Then, by the con-

cavity of the logarithm, it follows from Jensen’s inequality [96, p. 58] that for
all θ and θ̃,

f(θ) ≥ f(θ̃) +
∫

log g(θ,z) k(z | θ̃) dz −
∫

log g(θ̃,z) k(z | θ̃) dz, (1.35)

with equality if and only if g(θ,z) = g(θ̃,z) almost everywhere.
In each iteration of the EM algorithm we take θ̃ to be our current best

approximation to the optimum and improve it by maximizing the right-hand
side of (1.35) over θ for this given θ̃. In other words, we find θ(i+1) by
maximizing

Q(θ | θ(i)) ∆=
∫

log g(θ,z) k(z | θ(i)) dz

over θ. The algorithm is monotone, in the sense that f(θ(i+1)) > f(θ(i))
and in many cases this is enough to guarantee (linear) convergence to a local
maximum of f(·).

In the probabilistic interpretation, f(θ) is a loglikelihood function and
EM stands for expectation-maximization. The E-step computes Q(θ | θ(i)),
which is the conditional expectation of the complete-data loglikelihood g(θ,z),
given the observed data and the current parameter value θ(i), and the M-step
maximizes the resulting function.

We can now apply the EM algorithm to the multilevel FIML loglikelihood.
Here, z consists of all the random effects δj , and θ is the usual parameter
vector. The complete-data loglikelihood has the form

g(θ, δ) =
m∏
j=1

gj(θ, δj),

where gj(θ, δj) is the joint density of y
j

and δj . Using standard probability
theory, we can write

gj(θ, δj) = fδ |y(δj | yj)fy(yj),

hj(θ)
∆=
∫
gj(θ, δj) dδj = fy(yj),

kj(δj | θ)
∆= gj(θ, δj)/hj(θ) = fδ |y(δj | yj),

Qj(θ | θ(i)) ∆=
∫

log gj(θ, δj) kj(δj | θ(i)) dδj ,

Q(θ | θ(i)) =
m∑
j=1

Qj(θ | θ(i)).

The joint distribution of y
j

and δj is normal:
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y
j

δj

)
∼ N

((
Ujγ

∅

)
,

(
Vj XjΩ

ΩX ′
j Ω

))
,

from which we obtain the conditional distribution of δj given yj as

δj | yj ∼ N (µj ,Σj),

with

µj = ΩX ′
jV

−1
j (yj −Ujγ) = ΩW−1

j (bj −Zjγ),

Σj = Ω −ΩX ′
jV

−1
j XjΩ = σ2

jΩW
−1
j (X ′

jXj)
−1.

By writing gj(θ, δj) = fy | δ(yj | δj)fδ(δj), and observing that the marginal
distribution of δj is normal with mean zero and covariance matrix Ω, and the
conditional distribution of y

j
given δj is normal with mean Ujγ +Xjδj and

covariance matrix σ2
j Inj

, we obtain, after some simplification,

log gj(θ, δj) = −nj + p

2
log(2π)− nj

2
log σ2

j −
1

2σ2
j

(nj − p)s2j

− 1
2σ2

j

(bj −Zjγ)′X ′
jXj(bj −Zjγ) +

1
σ2
j

(bj −Zjγ)′X ′
jXjδj

− 1
2

log |Ω| − 1
2

tr
[
(σ−2
j X ′

jXj +Ω−1)δjδ
′
j

]
.

The function Qj(θ | θ(i)) is obtained by integrating the product of this with
kj(δj | θ(i)). That is, it is obtained as the expectation of log gj(θ, δj) when
viewed as a function of the random variable δj that is normally distributed
with mean µ(i)

j and covariance matrix Σ(i)
j , which are µj and Σj evaluated

in θ(i). For this distribution, we evidently have E (δj) = µ
(i)
j and E (δjδ

′
j) =

Σ
(i)
j + µ(i)

j µ
(i)
j
′, so that, after some simplification, we obtain

Qj(θ | θ(i)) =
(
−nj + p

2
log(2π)

)
− 1

2

(
log |Ω|+ tr

[
Ω−1(Σ(i)

j + µ(i)
j µ

(i)
j
′)
])

− nj
2

log σ2
j −

1
2σ2

j

(nj − p)s2j −
1

2σ2
j

tr(X ′
jXjΣ

(i)
j )

− 1
2σ2

j

(bj − µ(i)
j −Zjγ)′X ′

jXj(bj − µ
(i)
j −Zjγ).

Consequently, the parameter values that optimize Q(θ | θ(i)) are

Ω(i+1) =
1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′),

γ(i+1) =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jXj(bj − µ

(i)
j ),

(σ2
j )

(i+1) =
1
nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,
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or, instead of the latter,

(σ2)(i+1) =
1
n

m∑
j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆=Σ(i)
j + (bj − µ

(i)
j −Zjγ

(i+1))(bj − µ
(i)
j −Zjγ

(i+1))′.

Note that when Ω is not completely free (apart from the requirements of
symmetry and positive definiteness, of course), then the M-step with respect
to the parameters {ξg} is nontrivial. We then need to minimize the function

F (ξ) ∆= log |Ω|+ tr
(
Ω−1S(i)

)
with respect to ξ ∆= (ξ1, . . . , ξG)′, where

S(i) ∆=
1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′).

Assuming (1.3), the first-order conditions are

tr[Ω−1(S(i) −Ω)Ω−1Cg] = 0.

Letting C∗ be the matrix with g-th column equal to vec(Cg), these can be
jointly written as

C∗′(Ω−1 �Ω−1)(vecS(i) −C∗ξ) = ∅,

which is a nonlinear equation that does not generally have a closed-form
solution. However, it strongly suggests that one or more IGLS iterations of
the form

ξ(i+1,k+1) =
[
C∗′(Ω−1 �Ω−1)C∗]−1

C∗′(Ω−1 �Ω−1) vecS(i),

where in the right-hand side vecS(i) is held fixed throughout these subit-
erations, but Ω is the value from the previous (k-th) subiteration, should
also increase the loglikelihood, so that full optimization in this step is not
necessary.
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