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Abstract: In this paper we develop a version of the Jackknife which seems 
especially suited for Multidimensional Scaling. It deletes one stimulus at a 
time, and combines the resulting solutions by a least squares matching 
method. The results can be used for stability analysis, and for purposes of 
cross validation. 
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1. Introduction 

The results of a data analysis are not complete without some form of 
information about the stability of the solution. There are many types of sta- 
bility that can be distinguished, and consequently there are many forms of 
stability analysis (or sensitivity analysis). A full discussion of the various 
forms of stability that can be studied is contained in Girl (1981, Chapter 1). 
Most of these techniques have in common that they study the effect of a 
small perturbation of the data on the solution, or aspects of the solution. A 
method is stable, in a particular application, if small changes in the data pro- 
duce only small changes in the solution. It is clear that statistical analysis, in 
the form of computation of standard errors or confidence intervals for 
example, is a particular kind of sensitivity analysis, which studies the pertur- 
bations induced by random sampling. 

In most applications of Multidimensional Scaling (MDS) the stability of 
the solutions is not studied at all. There are exceptions, however. The 
method of Maximum Likelihood (ML) has been applied to MDS, for 
instance by Ramsay (1982). At least in some cases standard large sample 
theory for ML estimation can be applied to obtain information about statisti- 
cal stability. It is true, however, that the optimality properties of ML 
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estimation often do not apply directly to MDS situations. This problem 
results from non-standard aspects of such situations, which are riddled with 
incidence parameters, dependencies, lack of replications, and so on (c.f. the 
discussion of Ramsay [1982]). 

If there are independent replications in a MDS experiment, then statist- 
ical information can be obtained even without assuming parametric distribu- 
tional models or specific response functions. A demonstration is given by 
Stoop, Heiser, and de Leeuw (1981). One can use, in this case, the stan- 
dard delta method results (Rao 1973, section 6a.2). One could also apply 
the currently popular resampling techniques such as the Jackknife or the 
Bootstrap (Efron 1982). Heiser and Meulman (1983a, 1983b) and Wein- 
berg, Carroll, and Cohen (1984) review the use of resampling in MDS. 

If there are no replications, matters become more complicated. We 
need a parametric model to derive statistical information on stability, but 
very often the prior knowledge required to make the necessary assumptions 
with some confidence is not available. And there are other situations in 
which the whole idea of random sampling does not make much sense, and 
in which studying stability in the usual statistical way is consequently not 
interesting, in fact not even defined. Nevertheless it is still possible, in such 
cases, to perform other forms of stability analysis. The idea of a small 
change in the data can still be defined in various ways, and the effects of 
such small perturbations can still be studied. This possibility was already 
indicated, in the MDS context, by Kruskal and Wish (1978, pages 58-60). 
Our contribution makes their suggestions explicit, implements and applies 
them. 

A first suggestion, and a rather natural one, is to make a small change 
in one dissimilarity in a metric MDS problem. The implicit function 
theorem can be used to compute the effect of such a small change on the 
loss function and the configuration computed by the MDS algorithm. For 
classical metric scaling, also known as Torgerson-Gower scaling (Torgerson, 
1958; Gower (1966) or Young-Householder scaling (Young and House- 
holder 1938) some of the necessary results have already been given by Sib- 
son (1979). The familiar "discrete" version of the Jackknife, reviewed by 
Gray and Schucany (1972) and Miller (1974), corresponds with deleting one 
dissimilarity and treating it as missing. We then reanalyze the data with this 

d h  

and combine the [~! different solutions obtained by dissimilarity omitted, 

omitting each dissimilarity successively. This scheme can also be applied to 
nonmetric MDS, and may be quite useful. For a large number of objects, 
however, we would have to perform many MDS analyses, and the perturba- 
tions by leaving out one dissimilarity will be very small indeed. Observe 
that we are using the term Jackknife in a very broad sense, for a class of 
techniques that studies stability by deleting part of the data, or various parts 
of the data in systematic ways. If one wants to restrict the use of the 
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Jackknife to situations with independent observations, then one should use 
another name for our procedure. 

In this paper we study another data analytical version of the Jackknife 
to investigate the effect of somewhat larger perturbations of the data. We 
emphasize, from the start, that our results are not supposed to have inferential 
applications. We do not use them to assess statistical stability in some sense 
or another. Our purposes are purely data analytical. The starting point is 
that we ask ourselves what happens to our multidimensional scaling solution 
if we delete all information on one object from the set of objects for which a 
solution is sought. "Likewise stimuli could be eliminated from the data 
matrix, and solutions determined for the remaining stimuli using the 'Jack- 
knife' idea of J.W. Tukey." (Kruskal and Wish 1978, page 59). Instead of 
analyzing the dissimilarities between n stimuli once, we analyze, in addition, 
n times the dissimilarities between n - 1 stimuli, by deleting each one in 
turn. The stability question associated with this scheme is interesting in its 
own right, and the results of the n + 1 analyses can be portrayed quite 
nicely in a single plot (see section 4.2). Thus our technique is well suited 
for data analysis. It is clear that it can be applied to both metric and non- 
metric MDS. We shall indicate further that it can also be combined with 
cross-validation types of assessment, along the lines indicated by Stone 
(1974), although a great deal of further study seems required to find out 
what its properties are in that context. We shall investigate, tentatively, if 
our leave-one-out method can be used to determine a "correct" or 
"optimal" dimensionality. Previous procedures for choosing dimensionality 
are based on large scale Monte Carlo studies, and were reviewed recently by 
Spence (1983). Monte Carlo studies of robustness of MDS and of dimen- 
sion estimation differ from our scheme, because Monte Carlo methods are 
used in situations in which the "correct" answer to the question that is stu- 
died is known beforehand. 

2. Technique 

The basic idea behind our Jackknife is simple. We perform n + 1 mul- 
tidimensional scaling analyses. The solution to the original problem is X0, 
the solutions to the n additional problems are X~ (i = 1 . . . . .  n), where Xg 
is the solution to the problem without object i. Thus X0 is a n x p 
configuration matrix, while the X~ only have information on the location of 
n -  1 points. For convenience we also locate them in n x p matrices, 
where row i of X i is always zero. Of course these zeroes are "structural" 
zeroes, which must be distinguished from other zeroes which may occur in 
the matrix. All X~ can be computed with an ordinary multidimensional scal- 
ing program, both in metric and nonmetric cases. The choice of initial 
configuration for the n subset analyses is rather important in this context. 
In our implementation we have used a separate rational starting 
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configuration for each subset problem. Of course if we intend to use this 
form of the Jackknife in a routine matter, then it will be convenient to build 
appropriate modifications into the software. 

The major problem in comparing the X~ is, of course, that information 
on the location of one point is missing from each of them. In addition com- 
parisons are complicated because of the familiar translational and rotational 
indeterminacy of scaling solutions. We propose to do the comparison by 
optimally matching the configurations X~ (i = 1 . . . . .  n) with respect to 
translation, rotation, uniform stretching or shrinking, and estimation of the 
location of the missing point. 

Define Y i  = a,. X~ K~ + e~ b'~ + e c'i, with K~ an orthogonal rotation, c~ 
a translation vector, b~ the location of the missing point, and a~ a scalar for 
uniform stretching or shrinking. Vector ej is the i-th unit vector, and vec- 
tor e has all elements equal to unity. In metric scaling it is often better to 
set a~ = 1 for all i, but in nonmetric scaling we usually want to compute the 
optimal a~. We perform matching by minimizing the least squares loss func- 
tion. 

o-(ai,bi,ci,K;,Y o) = ~ tr (Yo- Y)' (Yo- Y~) 
i=l 

(1) 

over all unknowns. The n × p comparison matrix Yo is also unknown. 
Minimizing (1) means that we are fitting 1/2 n (p2 + 5p + 2) parameters to 
np(n  - 1) known elements of the X i. This parameter count applies if the 
ai are unknown, if they are given there are only 1/2n (p2+ 5p) parameters. 
For a nontrivial solution we want the number of known elements to be 
larger than the number of free parameters. This gives 
n >  (p2 + 7p + A) / (2p), with A = 2 if the a~ are fitted, and with A = 0 
otherwise. For p = 2 it suffices that n > 5, for p = 3 we need n > 6. Thus, 
in typical multidimensional scaling situations, there is no real danger of 
overfitting as long as n is much larger than p. 

We discuss some normalization conventions. In the first place the data 
matrices Xj are supposed to be centered columnwise. If we solve for the a~ 
we suppose in addition that tr X'i Xi = 1. This condition merely implies a 
particular scaling of the data, it has no influence on the solution. For 
identification purposes we also require that the columns of Yo sum to zero. 
Again this constraint causes no loss of generality. If we solve for the 
optimal a~ we need an additional constraint to prevent degeneracy. We use 
~E a9 = 1. We minimize (1) in three steps. 

In the first step we minimize over bi and c~, for fixed a~, K~, and Y0. 
The optimal c; and b~ are 
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Here yO is row i of Yo. 
minimum" 

e - i = - Y ° /  ( n -  1) , (2a) 

~o i =  ny ° /  ( n -  1) (2b) 

If we substitute (2) in (1) we find the "partial 

o - ( a i ,  *, *,Ki,Yo) = ~ tr(Yo - aiXiKi)' (Yo - aiXiKi) 
i=1 

n 
n ~  tr Y'oY o (3) 

Arguments over which we have minimized are replaced by an asterisk. In 
the second step we minimize (3) over Y0, for fixed a~ and K~. The solution 
is 

¢'io = n -  1 ~_, ai Xi Ki • (4) 

The new partial minimum is 

o- (ai, *, *,Ki, *) = £ ai 2 tr (X'iX/) 
i=1 

n - 1 aJaj tr(K'jX'iXjKj) 
/ ' / ~  - -  2)  i = l  

(5) 

If the ai are fixed, as in metric scaling, then all that remains to be done is 
maximization of Z Z tr(K';X';X/K) over the K~. If the a~ are free, then 
we must maximize Z Z aiaj tr(K'~X'iXjK) over the K~ and over the a~. 
This is exactly the problem considered by Gower (1975) and Ten Berge 
(1977a, 1977b), who discuss simple alternating least squares algorithms to 
solve this problem and find the optimal Ki (and a~). Together with (2) and 
(4) this procedure defines Yi, the optimally matched and completed 
configuration. Finally we rotate )Co in such a way that X0 and Y0 are 
matched optimally, which again facilitates comparisons between our different 
solutions. 
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3. How to Use the Results 

After matching we have n + 2 solutions that can be compared: we have 
our original X0, we have the n matched solutions ¥i  (i = 1 . . . . .  n), and 
their average Y0. Our first assessment of stability is obtained by comparing 
the Yi. This step can be done graphically, by plotting all Y; as the end- 
points of stars with centers given by Y0. This approach will be illustrated in 
section 4. In addition to the graphical comparisons, we can compute disper- 
sions of the rows of Y~ around their centroids Y0, or around the original 
solution X 0. In the illustrations in section 4 we will use the following meas- 
ure: 

t/ 

E II Y , -  Yo 112 
STAB" 1 - i=1 

n 

E II Y, 112 
i=1 

This stability measure can be interpreted as the ratio of Between to Total 
variance (cf. Heiser and Meulman 1983b). 

For cross validation purposes we can investigate if the "predicted" 
position of object i, which is row i of Yi, corresponds with the "actual" 
position of object i, which is row i of X0, It follows from (2a) and (2b) that 
row i of Y; is equal to row i of Y0. Thus each row o f Y 0 c o m e s  f r o m a  
different Multidimensional Scaling analysis, although all rows are only 
known after completing the matching analysis. Similarity between Y0 and 
X0, established either numerically or graphically, can consequently also be 
used for cross-validation. It is possible that, in some sense, the difference 
between these two configurations can be used to correct for bias (as in the 
ordinary Jackknife). We do not have any theory yet which would indicate 
how such a combination can be made. To measure cross-validity we will use 

CROSS" 1 - 
n IIx0-Y011 = 

Z 11 Y, I12 
i=1 

By normalizing STAB and CROSS in this manner, solutions are comparable 
across methods, and the dispersion around the original solution X0 (DISP) 
can easily be derived. Since 
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L II Y J -  X0 II 2= L II Y , -  Y0211 + tl X o -  Y0 [[2 , 
n i=1 n i=I 

it follows that DISP = 2 - (STAB + CROSS). 

4. Illustrations 

In the following sections our version of the Jackknife will be illustrated 
by various analyses of two different sets of data. For the first set of data the 
technique is used to determine the dimensionality. Analyses of the second 
set of data address three separate issues: the additive constant problem, the 
choice of dimensionality, and the comparison of three major MDS loss func- 
tions. Throughout both sections 6 different approaches to MDS have been 
applied, which are summarized in Table 1. To avoid ambiguous terminology 
we will denote them with acronyms in terms of the loss function that is 
minimized by them. 

Table 1 uses the following notation: 

r~j 

X 

d 6 

B 

(x 

,1 

dissimilarity between object i and object j 

configuration in p-dimensional space 

distance between object i and object j in configuration X 

- 1/2 double centered matrix of squared dissimilarities 

additive constant 

optimally transformed dissimilarities by a monotone function 

LSSP is least squares on the scalar product~, it is a metric method and also 
known as classical, or Torgerson-Gower MDS; 
LSD is least squares on the distance~, it minimizes Kruskal's (1964) 
STRESS for the metric case; 
LSDA is like LSD, with in addition an additive constant estimated; 
LSDN is least squares on the distances, nonmetric, and also known as 
Kruskal-Shepard MDS (Shepard 1962, Kruskal 1964). 
LSDR is a special version of LSDN. It denotes that the monotone 
regression is performed across the separate rows of the data matrix. 
LSSD is least squares on the squared distances. The metric version has 
been applied (see below); 
LSLD is least squares on the logarithms of the distances (see below). 

LSD, LSDA, LSDN, and LSDR have been minimized by means of the 
SMACOF algorithm (see e.g., de Leeuw and Heiser 1980). For LSSD the 
ALSCAL program has been used (see e.g., Takane, Young and de Leeuw 
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TABLE 1. 

MDS Methods that have been applied. 

1. LSSP (y2 (X)  = tr (B-XX' )  2 

2. LSD c2(X) = EZ (Sij - dij(X)) 2 
i j  

3. L S D A  c2 (X;~ )  = ZZ ((Sij+o 0 - dij(X))2 
i j  

4. L S D N  G2(X;d) = ZZ (dij - dij(X))2 
i j  

5. L S S D  ~2(X) = Z E  (~2ij - d2ij(X)) 2 
i j  

6. L S L D  ~52(X) = ZZ (log 5ij - log dij(X)) 2 
i j  

1977), and for LSLD MULTISCALE has been applied (see e.g., Ramsay 
1977). LSSP is performed by the computation of the standard initial 
configuration in the SMACOF program. 

4.1 Illustration 1: Color Data 

The data for illustration 1 have been taken from Torgerson (1958), and 
concern dissimilarities between 9 Munsell colors all of the same red hue but 
differing from each other in brightness and saturation. The judgments were 
obtained from 38 subjects. These data have been used in two different ver- 
sions: an asymmetric data matrix, and a symmetric one with an additive con- 
stant eliminated (Torgerson 1958, Table 2 on page 285, and Table 7 on page 
287, respectively). The symmetric data have been analyzed by LSSP, LSD, 
and LSDN, while LSDR has been applied to the asymmetric table. 

The Jackknife has been performed for this example to investigate 
whether Torgerson's conclusions about the dimensionality of the data could 
be sustained. Table 2 summarizes results for STAB and CROSS for the 
different methods with varying dimensionality. Within the same dimen- 
sionality results for STAB and CROSS are almost perfectly consistent, while 
across dimensions the performances of the various methods slightly differ. 

One-dimensional scaling problems are qualitatively different from 
higher-dimensional ones, because the one-dimensional problems are basi- 
cally combinatorial optimization problems (Hubert and Arabie 1986). 
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T A B L E  2. 

Jackknife  Results for the Color  Data. 

M E T H O D  STAB CROSS 

1-dim 2-dim 3-dim 1-dim 2-dim 3-dim 

L S S P  .8596 .9994 .9951 .9801 1.000 .9994 

LSD .8423 .9994 .9974 .9678 1.000 .9999 

L S D N  .8600 .9988 .9979 .9829 .9998 .9997 

LSDR .7721 .9991 .9960 .9400 .9999 .9992 

Accordingly it does not come as a surprise to us that the one-dimensional 
solutions are clearly discredited by STAB and CROSS results. The values 
for STAB and CROSS in two and three dimensions look very much alike, 
both being very high. If we had normalized STAB and CROSS differently, 
however, the discrepancies would turn out larger. Since in addition the 
results are consistent across MDS-approaches, we conclude on the basis of 
the third digit of STAB and CROSS values that, apart from the global argu- 
ment of parsimony, the two-dimensional solutions are preferred. STAB and 
CROSS confirm Torgerson's conclusion, which he had drawn using a com- 
pletely different criterion while performing LSSP. One could have suspected 
that values of STAB are related to the values of STRESS for the various 
approaches. Since the metric methods LSSP and LSD are more restricted, 
and accordingly have higher stress, than the nonmetric methods LSDN and 
LSDR, the former could be expected to be more stable. For none of the 
dimensionalities this speculation is sustained. 

4.2 Illustration 2: Nations Data 

The second illustration concerns data from Kruskal and Wish (1978, 
page 31). The degree of overall similarity between 12 nations was rated by 
18 students on a scale from 1 (very different) to 9 (very similar) and was 
averaged to obtain a mean similarity matrix. Since MDS methods approxi- 
mate dissimilarities rather than similarities, the data were transformed by 
subtracting the mean rating from 9, the largest value of the scale. This 
transformation resulted in a dissimilarity matrix labeled D +. This procedure 
immediately suggests the first application of the Jackknife, which is to inves- 
tigate whether we are dealing with an additive constant problem contained in 
the transformed data. Various metric analyses of D + have been performed. 
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TABLE 3. 

Jackknife Results for the Nations Data: 
Additive Constant Problem. 

METHOD STAB CROSS 

2-dim 2-dim 

LSSP (D ÷) .9814 .9993 

LSSP (D-) .9812 .9993 

LSD (D ÷) .9633 .9926 

LSD (D-) .9721 .9959 

L S D A ( D  ÷) .9728 .9933 

In addition they have been applied to D-, a dissimilarity matrix with an 
additive constant eliminated. This estimation was done by applying the 
Messick and Abetson (1956) procedure, as described in Torgerson (1958, 
pages 273-276). To complete the results D + has been analyzed by minimiz- 
ing LSDA, i.e., by iterative estimation of the additive constant. 

Bearing in mind the remarks about noticeable differences stated above, 
it is clear from Table 3 that LSD suffers most from the additive constant 
problem. Both STAB and CROSS increase when the additive constant is 
eliminated, either by analyzing D- or by analyzing D + and estimating the 
additive constant iteratively. LSSP, which involves the double-centering of 
the squared dissimilarity matrix, is not much affected by the additive con- 
stant. 

The second application of the Jackknife for the nations data again con- 
cerns the dimensionality. Kruskal and Wish remark that the data might be 
four or even five dimensional (Kruskal and Wish 1978, page 56). To see if 
this speculation is correct, LSSP and LSD have been applied to D-, and 
LSDA and LSDN to D +, with varying dimensionality. Results are given in 
Table 4. 

The most important conclusion that can be drawn from Table 4 is that 
the three-dimensional solution has to be preferred, according to both STAB 
and CROSS for all methods. Furthermore, LSSP is most stable in three 
dimensions, compared with the other methods, but this statement is not 
true for the four-dimensional solution, where LSD performs best. These 
findings are consistent with the results in Table 2 for the color data in two 
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TABLE 4. 

Jackknife Results for the Nations Data: 
Dimensionality Problem. 

METHOD STAB CROSS 

2-dim 3dim 4dim 2-dim 3dim 4-dim 
LSSP(D-)  .9812 .9891 .9630 .9993 .9997 .9974 
LSD (D-) .9721 .9880 .9809 .9959 .9996 .9995 
L S D A ( D  +) .9728 .9808 .9640 .9933 .9980 .9970 
L S D N ( D  +) .9564 .9585 .9533 .9892 .9905 .9870 

TABLE 5. 

Jackknife Results for the Nations Data: 
three major loss functions. 

METHOD STAB CROSS 

3-dim 3-dim 

LSSD .9887 .9998 

LSD .9880 .9996 

LSLD .9697 .9956 

and three dimensions, and might very well be explained by the way in which 
the dissimilarities are approximated. By LSSP they are approximated from 
below, while in the other methods the approximation is simultaneously from 
below and from above. 

Our final application concerns the comparison of LSD with its most 
important rivals, which are LSSD and LSLD. Our hypothesis is that LSSD, 
because of its relation with LSSP (cf. de Leeuw and Heiser 1982), will give 
similar results, thus LSSD will be more stable than LSD. This hypothesis is 
confirmed by both STAB and CROSS. According to both criteria LSLD 
gives less stable results compared with the other methods. 

To complete our second illustration we present parts of the Jackknife 
results graphically. We have chosen the solutions for LSSP, LSSD, LSD 
and LSLD (Figures 1 through 4, respectively), which can be thus compared. 
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Figure 1. Stability results for LSSP: first 2 dimensions of  the three-dimensional solution for the 
nations data. 
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Figure 2. Stability results for LSSD: first 2 dimensions of  the three-dimensional solution for 
the nations data. 
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Figure 3. Stability results for LSD: first 2 dimensions of the three-dimensional solution for the 
nations data. 
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Figure 4. Stability results for LSLD: first 2 dimensions of the three-dimensional solution for 
the nations data. 
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By looking at the separate stars in a configuration, specific stability informa- 
tion can be deduced for each object. Because of the large overall stability, 
the endpoints of the stars have not all been labeled, since this would yield 
very smudgy plots. When performing an actual data analysis, however, it 
might be very worthwhile to enlarge the scale of the figure and look for spe- 
cial patterns. To give some idea, we have labeled the endpoint of each star 
indicating the position of the object when object 1 (Brazil) was left out of 
the analysis. We see, e.g., that Egypt and Cuba move away from each 
other; the same is true for the USA and Israel, while Russia, Yugoslavia and 
Cuba retain their interrelations. This pattern is consistent across the four 
methods. 

It is beyond the scope of this paper to scrutinize all aspects of the vari- 
ous solutions. We want to draw attention, however, to the close resem- 
blance between the solutions for LSSP and LSSD. It seems that apart from 
details, like the position of Russia and Yugoslavia, the ALSCAL solutions 
hardly move away from their initial configuration, which is obtained by the 
Torgerson scaling method. Apart from the fact that LSD is more stable 
than LSLD, the SMACOF and MULTISCALE configurations don't show 
major differences. They are more similar to each other than to the ALS- 
CAL solution. 

We do not present graphical results concerning the cross validation 
aspects of our Jackknife. As can be deduced from Tables 3-5 the "actual" 
position and the "predicted" position in the three dimensional solutions are 
almost identical. This state of affairs, of course, credits the analyses we 
have performed. Multidimensional Scaling again proves to be a very robust 
technique, even when large perturbations of the data, by deleting all infor- 
mation about one object, are applied. 

4.3 Some Technical Remarks 

To conclude this section, we want to report a general experience in our 
stability study, that has implications for other studies as well, i.e., the impor- 
tant role of the starting configuration for each subset problem. When the 
(stable) LSSP solution is used, as is done in our study and is common prac- 
tice in most MDS programs, incomplete convergence, either due to a too 
lenient convergence criterion or to imprecision, may lead to overoptimistic 
stability results. By imprecision we mean that a FORTRAN program may 
stop according to the convergence criterion, while the critical difference 
between the two values of stress involved is relatively too large compared to 
preceding differences. This suspicion has been checked by using analogous 
programs written in APL. If random initial configurations are used, we 
expect that incomplete convergence will lead to less stable solutions. 
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5. Discussion 

In this paper a special Jackknife is presented that gives information 
about stability and cross-validation aspects of MDS solutions. This data 
analytical Jackknife is especially suitable when there are no replications. 

In the applications presented, the evaluative measures for stability and 
cross-validation were highly consistent and accordingly specific decisions 
were easily made. If they had been contradictory, we would have given pre- 
valence to the cross-validation index. This is justified by previous experi- 
ence with resampling (e.g., Meulman 1982), where very stable solutions 
could be due to degeneracies and accordingly were hardly informative from 
a data analytic point of view. 

Our procedure gives very useful results, that are however obtained at 
the cost of much additional computation. Each analysis has to be performed 
n + 1 times, where n is the number of objects in the data matrix. This 
might be prohibitive when the available CPU-time is limited. Moreover, a 
lot of separate manipulations are needed as long as the procedures like the 
Jackknife are not built into standard MDS programs. Nevertheless these 
efforts are warranted, since we obtain stability results in cases where a short 
cut to inference is just not feasible. 
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