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In this paper we present several data analysis techniques that
combine features of principal component analysis (PCA) and multi-
dimensional scaling (MDS). Because of space limitations we shall
not treat algorithms and” computational aspects. We concentrate on
the type of approximation defined by the loss function, and on
admissible optimal transformations. We use a medium-sized example
to illustrate in detail the effect of various choices on low-di-

mensional solutions.
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INTRODUCTION

The fact that principal component analysis and multidimensional scaling are close-
1y related, and can both be represented in the same distance-geometrical frame-
work, was already emphasized by Gowey (1966, 1967). We shall use his approach to
PCA as our starting point. A closely related formulation is given by Benzécri
et al. (1973, T-II-B mno 2, T-II-B no 3), and by Cailliez and Pagés (1976, es-
pecially chapters 6 and 7). Relationships between the two classes have also been
emphasized by Heiser and Meulman (1983) and Meulman and Heiser (1984). It seems
to us that an even more uniform presentation of PCA and MDS is possible, and we
shall see that this uniform presentation unavoidably suggests a new technique in

the intersection of the two classes.

CLASSICAL PCA

- m . .
Suppose z »---»2, are given elements of R . They can be n observations on m vari-

1
ables, or n time series of length m, or n discrete probability distributions on
It outcomes, or n rankings of m objects, or whatever. We start our analysis with a
quadratic metric on Rm, i.e. with a positive definite matrix A which defines a
distance by
2 -
. 6A(Zi’zk) = (zi - zk)'A(zi - Zk)' (1)
e sometimes write éik(Z) or simply Bik for 6A(Zi’zk)’ if no confusion is poss-
ible. We also use (1) in the equivalent form
2
wh §A<Zi’zk) T ey - o)Az (e - o), (2)
ere Z is the n x m matrix containing the z; (as rows), and where e, and e, are

unit v i . .
ectors (i.e. columns i and k of the identity matrix).
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In PCA we want to find points xl,...,xn in RP, with p < m, such that the ordi-

nary Euclidean distance between X and Xy is approximately equal to 6A(Zi,zk)
Thus d(xi,xk) or dik(X) is defined by
2 — - v - - _ t t - e

dik(x) = (xi xk) (xi xk) (ei ek) XX (ei ek), (3)
and ideally we want X to satisfy

dik(X) = GA(zi,zk).
Exact equality in all pairs. (i,k) in (4) will n
Thus for small p we have to specify

(4)
ot be possible in general for small

it will only be possible if p > rank (z).

p?
and how we measure quality of approxi-

what type of approximation we have in mind,

mation.
The method of approximation chosen by PCA is called quadratic approximation
explain this concept we first observe that X is certainly

from befow. In order to
If X satisfies (4), than any rotation

not determined uniquely by conditioms (4).

XT also satisfies (4). We eliminate rotational indeterminacy first by requiring

that X'BX is diagonal, where B is a known weight matrix (positive definite, of

L 1
order n). Now defime C = B?ZAZ'B?, and suppose C = KO%K' is the eigen-decomposi-

tion of C. Thus K is square orthonormal, and Q2 is diagonal. The diagonal elements

of O? are ordered by wil > w;z > > win' There are only rank(Z) eigenvalues

Tet K(p) be the first p columns of K, and Q(p)? the correspond-
-4
Define X(p) = B %K (p)Q(p). Then X(p)'BX(p) = Q(p)?, which is

-%

which are nonzero.

ing submatrix of Q2.
1
diagonal, and X(p)X(p)' = B K(p)(p)”K(p)'B

1

-4 -%
X(p)X(p)' =B *C(p)B *, where C(p) is the best rank p approximation to C. The fact

We can also write this as

3
that X(p) defines a quadratic approximation from below is now expressed by the
chain
2 (X < g% < ... < g% = 62 (7) {
@2, (X(1) € A2 K@) < oo < AR () = 5 (D), (5)
The sequence of approximations is also nested, in the sense

where p = rank(Z).
are X(s). A bit of care is required

that the first s columns of X(t), with t > s,
but the complications are not at all essential.

n - p discarded eigen-

if there are multiple eigenvalues,

An obvious measure for the badness~of-fit is the sum of the

values.
Because our approach to PCA is slightly unconvential, we mention some special
cases before we proceed. The first special case is correspondence analysis. the
These

second one is homogeneity analysis, and the third one is standardized PCA.

in the choice of the weighting matrices A and B,

techniques differ, essentially,
do not pay

but they use the same geometry, and the same type of approximation. We
attention in this paper to the duality properties of classical PCA, and O the
mns of the data matrix (the variables, or time poiﬂtsy

representation of the colul
ral-

This is mainly because the concepts involved in duality do not generalize natu

ly to the other data analysis techniques we discuss in this paper.
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AN APPLICATION: 50 STATES OF NORTH AMERICA

We illustrate the properties of gquadratic approximation from below by analyzing
the following example with classical PCA. The data consist of social indicator
1)

statistics taken from statistical abstracts of the U.S. (1977) They are sum-

marized in Table 1. We first concentrate on the two-dimensional configuration for

the 50 states.

As a measure to evaluate the badness-of-fit of this representation we propose

the root mean square of the residuals:

ROMRES = | —omgy B3 (6, (1) - 4, 0007 17 (6)
The configuration that is depicted in Figure 1 has ROMRES equal to 1.055. The
points for the states are 1abelled as indicated in Table 1. The fact that the con-
figuration has a definite shape, - the first dimension showing much more disper-
sion than the second - is the result of the clearly separated accompanying eigen-
values: the first one is 2.6 times as large as the second one.

Inspecting Figure 1 we find the southern states clearly separated in the lower
right corner. Investigating the original data, we found the deep south to rank
among the "unfortunate" half indicated by the variables 2 upto 6: low income,
high illiteracy rate, low life expectancy, high homicide rate, low percentage of
high school graduates. In the lower left corner we detect a mixture of states in
the midwest, north-east and mountain states. Looking at the other direction in
space shows California, New York, and to a smaller degree, Florida and Texas to
be isolates.iThese 4L states rank among the 8 states with the largest population
and among the 16 states with relatively few days in a year in which the tempera-
ture falls below freezing.

To illustrate the quality of the representation some states have been en-
circled. The continuous circles are drawn around each point % to which applies

AMORS $E LN ™
so these are states with relatively large dissimilarities. -It is clear that for
most of the points concerned these large dissimilarities are approximated by large
distances in the configuration. To support this observation we have drawn dotted
circles around each of the points for which it is true, in addition to (7), that

s 6 @) - 4, 0007 > sy 1 6@ - 4,607 )
Thus most of the encircled points have a relatively small conmtribution to the sum
of residuals. Alaska (AK), Hawaii (HI), Nevada (NV) and North Dakota (ND), on the
contrary, do nmot fit into this pattern.

The figures 6.562, 5.946, 5.308 and 1.264 have been obtained respectively, i.e.
for the left term of (8). So the deviation for AK, HI and NV is most serious:
together they account for 32% of the total sum of squared residuals.

Approximation from below can be illustrated most clearly in the scatter plot of

dissimilarities versus distances (Fig. 2). Althought the majority of dots, repre-
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Figure 1. PCA solution for
50 states. Encircled peints
have dissimilarities larger
than average. Dotted circles
indicate more than average
stress in addition.

Figure 2. PCA solution for
50 states. 6(Z) (horizontal
axis) versus d(X) (vertical
axis). Approximation from
below. Ellipses refer to
all pairs including AK, HI
and NV.
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senting the pairs (6ik’dik)’ is to be found quite close to the diagonal, which
symbolizes perfect fit, we detect numerous dots displaying a large approximation
error. These are exactly dots portraying the approximation for AK, HI and NV. The
latter are indicated by ellipses. It will be clear that we need a higher dimen-
sional solution to approximate the dissimilarities for these three states closely.
We will, however, not pursue this strategy and shall concentrate in the next sec-

tion on a different approach to the scaling problem.

APPROXIMATION FROM BOTH SIDES

»

Since approximation from below has certain peculiarities, it is natural to look
for other types of approximation'of the 5ik(z) by the dik(X). There are many poss-—
ibilities, but we will be focussed on the explicit minimization of the loss func-
tion

o(X) = I 306, (%) - d;, () (9)
over all XeR™. This loss function belongs to a very specific class; compare
De Leeuw and Heiser (1982) for a review of the properties of these loss functions,
and for algorithms that can be used to minimize them. In this paper (9), which is
called STRESS and was introduced by Kruskal (1964), will be minimized by the algo-
rithm described by De Leeuw (1977).

THE UNITED STATES REVISITED (PART 1)

We have reanalyzed the data from our example minimizing STRESS. Figure 3 shows the
two~dimensional configuration; the accompanying value for ROMRES is .636, which is
an improvement of almost 40 percent compared to the PCA solution. A major differ-
ence hits you in the eye: the location of AK, HI and NV. The position of the other
points shows a striking correspondence with figure 1. If we compare the two sol-
utions with respect to the sum of squared residuals for each state, there are only
4 states for which it is true that the MDS solution is worse than the PCA sol-
ution. These states are CA, LA, SC, MS and in figure 3 they are indicated in turn
with dotted circles. Inspection of the residuals showed that the increase in
stress is caused by the position of AK, HI and NV. Remember that in a PCA sol-
ution two points can only be too close. In both the PCA and the MDS solution CA
is located too close to the latter mentioned points. In order to minimize the
overall stress, MDS is allowed to move points such that two points may become too
distant. In the configuration LA, MS and SC are too remote from AK, HI and NV.
Although the location of the problem states shows individual improvements of
80%, 71% and 699 respectively, comparing the MDS residuals with the ones from PCA,
these are still the points causing most of the stress, accounting for 23%. This
fact will be shown again in a scatter plot, now for approximaticn from both sides

Fi s p
(Figure 4). Splitting up the residuals in approximation error from above and from




HA

NJ

RI

M1
oH TR

Mg

oK

VA

WY

J. de Leeuw and J. Meulman

Figure 3. MDS solution for
50 states. Encircled points
have dissimilarities larger
than average. Dotted circles
indicate more stress than
PCA solution.

Figure 4. MDS solution for
50 states. 6(Z) horizontal
axis) versus d(X) (vertical
axis). Approximation from
both sides. Ellipses refer
to all pairs including AK,
HI and NV.
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below, the ratio of below sum squares to total sum of squares is obtained as .794.
The ellipses are again associated with AK, HI and NV. Contrary to the scatter plot
for PCA, we now detect numerous ellipses close to the diagonal, which indicates
that in the MDS solution these states have obtained an appropriate distance to at

least a number of other states.

TRANSFORMING THE DATA

There is another way in which we can improve the fit of a PCA. We still insist on

approximation from below, as”in PCA, but we allow for optimal transformation of

the columns of the data matrix Z. This means that we transform Z to Z, column-
wise, and we approximate the dissimilarities éik(g) from below. We have seen that
the obvious badness-of-fit measure in case of approximation from below is the sum
of the n - p discarded eigenvalues. The basic new idea in this section is to
choose transformation of the columns of Z in such a way that this loss function is
minimized. Of course we have to restrict the class of transformations from which

we can select admissible transformations in some way or another. Complete freedom

in the choice of transformation will lead to degenerate and not very interesting
solutions. Thus it is often specified that the transformations of each of the col-
umns must be monotonic, and the resulting columns of Z must have mean zero and
variance unity. Different classes of transformations have also been used, but we
do not go into those aspects of the problem. For algorithmic and computational de-

tails we refer to Gifi (1981, 1982).

THE UNITED STATES REVISITED (PART II)

Because we are aware of certain peculiarities in the data, we limited the admiss-
ible transformations to third degree polynomials instead of selecting the often
chosen class of monotonic transformations, which are less restrictive. The scope
of this paper narrows our interest to the performance of nonlinear PCA with re-
spect to the anomalies detected in the previous analyses. The nonlinear PCA sol-
ution, by minimizing the sum of the n-p discarded eigenvalues, should give a bet-
ter two-dimensional representation of the data. This is reflected in the figure
for ROMRES, which is .724.

The two-dimensional solution is depicted in Figure 5. The configuration shows
a convenient amount of similarity with Figure 1, while'at the same time some major
differences are apparent. By choosing optimal admissible transformations the tech-
nique has been able to replace HI, NV and most notably AK. Again circles are drawn
around the points that have obtained relatively large values for % Gik(g). NV and
AK still belong to this partition, and this time seem properly located at the out-
skirts of the configuration. Moreover, AK does not belong any longer to the subset

of st : . .
States with a more than average contribution to the total sum of residuals. On
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Figure 5. Nonlinear PCA
solution for 50 states. En-
circled points have dis-
similarities larger than
average.
Figure 6. Nonlinear PCA
solution for 50 states.
6(Z) (borizontal axis) ver-
sus d(X) (vertical axis).

Approximation from below.
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the other hand, HI and, excessively, NV still contribute most. To be somewhat more
specific: these states have in common that they have too small a distance to RI,
ME, OK, UT, OR, WI, DW and KY, and most of all they are too close to each other.

Figure 6 shows the scatter plot of the Gik(z) versus the dik(X)‘ In contrast with
Figure 2 all large dissimilarities are quite well approximated by large distances.
The major part of the composite stress is constituted by approximation errors for
medium size dissimilarities. These are linked with HI and NV. When we discard the
ellipses in Figure 2, we see a striking resemblance between the remaining cloud of
points and Figure 6. Nonlinear PCA appears to have flattened the clearly high di-

mensional cloud of points 7 into & low dimensional cloud Z.

FURTHER TMPROVEMENT OF FIT

We have discussed two methods of improving the fit compared to a simple PCA. The
first one was replacing quadratic approximation from below by approximation from
poth sides, the second one was cransformation of the variables. The two methods
can be applied independently, and it will consequently not come as a surprise that
they also can be combined. In this combined techmique we must minimize the loss
function
6(x,2) = I (8, () - a,, 0007 (10)
Combining the two ideas is, of course, a very natural step, at least in our frame-
work in which PCA and MDS are treated as two instances of the same basic tech-
nique. The combined result is new, however.
For the algorithm we combine the unrestricted scaling algorithm of De Leeuw
(1977) with the restricted scaling method of De Leeuw and Heiser (1980). The im-
plementation is straightforward, given the general principles of algorithm con-

struction outlined in the last mentioned paper.

THE UNITED STATES REVISITED (PART I1D)

The results of the techmique that combines transformation of variables with ap-
proximation from both sides will be labelled nonlinear MDS, since it has to be
definitely distinguished from nonmetric MDS, the notable contribution of Shepard
(1962) and Kruskal (1964) to the scaling problem. Its results are quite satisfying
regarding the root mean square of residuals, which shows an improvement of 61%
compared to mo transformation and quadratic approximation from below. Combining

the results of the various analyses gives Table 2.

Table 2. Root mean square of residuals

Transformation
No Yes
from below 1.055 L1724

Approximation
from both sides .636 416

- o R
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Figure 7. Nonlinear MDS
solution for 50 states. En-
circled points have dis-
similarities larger than
average.

Figure 8. Nonlinear MDS
solution for 50 states.

5(Z) (horizontal axis) ver-
sus d(X) (vertical axis).
Approximation from both
sides.
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We conclude that the effect of approximation is slightly larger than the effect of
transformation.

The configuration obtained by nonlinear MDS (Figure 7) shows that the technique
has attacked the problem of AK quite drastically. The second dimension is com-
pletely dominated by the contrast large population (CA) versus small population
(AK)l Together with the other encircled states, having relatively large dissimi-
larities, they form a set almost jdentical to the partition in the nonlinear PCA
solution.

Results for the states 1éft from the center of the configuration look rather
disappointing: a lot of states are joined in a rather tight cluster. Since ROMRES
is small, we may conclude that these states have become very similar after trans-
formation of the data.

AK and CA are the states with the largest contribution to the stress. It seems
hard to improve upon their position in the configuration since CA is too remote
from NV, SC, and NM, while AK is too close to these states. In addition CA is too
close to TX, WA, OR and AL, while AK is too remote from those very same states.
Moreover, CA and AK should be more close together.

The latter mentioned fact is most clearly illustrated in the scatter plot of
dissimilarities versus distances (Figure 8). The complete isolated dot at the top
of the figure represents the pair {6(AK,CA), d(AK,CA)}. Following the diagonal
downwards we encounter a number of dots with a considerable amount of approxima-
tion error: these are all pairs linked with either CA or AK. The only exception is
the dissimilarity between CA and NY, which is not large and is matched guite well.

Overlooking the overall results of nonlinear MDS, we might conclude that, by
means of its rich resources, the technique has modelled characteristics of certain
states that seemed incompatible in two-dimensional space. Compared to nonlinear
PCA, nonlinear MDS seems to have‘failed to retain the mutual differences between
the group of states that form the cluster.

But failure, sufficiently dramatized, has its delightsz). These are shown in
the transformation plots for each variable (Figure 9). Here the n elements of zj
are plotted against the elements of gj. For each variable the function fitted by
PCA is given next to the one for MDS. For variable 1 both techniques clearly model
the special cases CA and NY (largest population), but MDS hardly does account for
the variance concerning the rest of the states. The latter remark also applies to
the MDS plot for variable 2 (Income), except for AK (rich) and, to a smaller ex-
tent, MS and AR (poor). PCA, on the other hand, transforms all income values
smoothly, except for a serious anomaly: AK obtains almost the same -very low-
value as AR. To cope with the apparent nonlinearity in the data, the relation
between population and income, MDS retains for both variables the extreme high

values, more or less at the expense of the rest, while PCA comes up with a non-
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/5 Figure 9. Transformation. MDS on the left,

PCA on the right.

Variable 1: Population

Variable 2: Income

Variable 3: Illiteracy

Variable 4: Life expectancy

Variable 5: Homicide

Variable 6: High school

Variable 7: Freezing
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linear transformation. Transformations for illiteracy and homicide are very con~
vincing for both MDS and PCA; the transformations for variable life expectancy
are also very similar, both slightly nonmonotonic. Freezing has obtained a
§-shaped transformation from both techniques. Variable 5, finally, presents us
with another surprise. The percentage of high school graduates is, like income,
nonlinearly related to population and PCA comes up with a similar nonlinear trans-

formation. MDS, on the other hand, produces a rather smooth concave function.

CONCLUSION

PCA is a very convenient multidimensional scaling technique. But often it gives a
very poor fit, and sometimes it emphasizes rather uninteresting local aspects of
the data. We can improve the fit by increasing the number of dimensions, but this
has obvious disadvantages from a data analysis point of view. In this paper we
have shown that simple improvement of the fit, at a rather low price, is possible
by going from approximation from below to approximation from both sides. This will
also give a somewhat more balanced representation of the data. More dramatic im~
provements are possible if we allow for transformations of the data. This can be
interpreted as allowing for additional dimensions (parameters), but located at a
place where they can be interpreted more easily (in the transformation plots). It
appears from our example, and from many other similar examples that we have ana-
lyzed, that allowing for transformations can lead to solutions which are qualita-
tively different. This is much more important than the comparatively trivial find-
ing that they are quantitatively better. Allowing for transformations, especially
from large families of admissable transformations, has the danger of partial or
complete degeneracy, and may direct even more attention on local properties of the

data matrix.

FOOTNOTES

1) We are indebted to Howard Wainer for kindly making these data available to us.
The complete data matrix can be found in De Leeuw and Meulman (1985), which
report also gives the algorithmic details of the various techniques discussed
in the present paper.

2) We thank Gore Vidal for coining this beautiful phrase.
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TABLE 1. Social indicator statistics taken from statistical abstracts of
the US (1977). U.S. Department of Commerce: Bureau of the census.

1 1975 population I & Percent of the population over age

2 Per capita income I 25 who are high scheol graduates

3 Illiteracy rate I 7 Average numbers of days of

4 Life expectancy I the vear in which temperature

5 1976 homicide and non-— I falls below freezing.
negligent manslaughter rate I

states and their abbreviations

Alabama AL Alaska AK Arizona AZ Arkansas AR

california CA Ccolorado co Connecticut CT pelaware Dy

Florida FL Georgia GA Hawaii HI Idaho Iip

Illinois IL Iindiana IN Iowa IA Kansas KS

Kentucky KY Ltouisiana La Maine ME Maryland MD

Massachus. MA Michigan MI Minnesota MN Mississippi MS

Missouri Mo ¥ Montana MT  Nebraska NE  Nevada NV

New Hampsh. NH New Jersey NJ New Mexico NM New York NY

N. Carolina NC N. Dakota ND Ohic oH Oklahoma oK

Oregon OR rennsylv. PA Rh. Island RX $. Carolina SC

S. Dakota SD Tennessee ™ Texas TX Utah uT

vermont VT Virginia VA washington WA W. Virginia wWv

Wisconsin WI Wyoming WY
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