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Weber Correspondence Analysis: The 
One-Dimensional Case 

Jan de Leeuw and George Michailidis 

1. INTRODUCTION 

Correspondence analysis or CA can be interpreted as a technique for drawing weighted 

bipartite graphs (Michailidis and de Leeuw 2001). In the adjacency matrix of the bipartite 

graph we can restrict our attention to the upper diagonal block, which shows the adjacencies 

of the two sets of, say, n and m points having all the connections. Suppose W, with Wij 
> 0 

for alH = 
1,... n and j 

? 
1,..., m, is this upper diagonal submatrix. 

The general idea is to make a drawing of the graph in which a large weight Wij cor 

responds with a small Euclidean distance dij. In the usual versions of C A we actually use 

squared Euclidean distances, and we draw the graph by finding n points Xi and m points 

yj in Rp such that 

n 77i 

2=1 j=\ 

is minimized. We normalize the solution by requiring that u'X = 0, where u has all 

elements equal to +1, and X'X = I. 

In Weber correspondence analysis, or WCA, we use Euclidean distance, not its square, 

and minimize 

n m 

a(X,Y) = 
^^^^(X,Y), 

?=i j=\ 

using the same normalization conditions on X. The WCA problem was first discussed 

by Heiser (1987), and we discuss it in general in Michailidis and de Leeuw (2003). 
A more specialized version can be studied in which W is the adjacency matrix of an 

unweighted graph (i.e., W is binary). We call this the binary case. And even more specialized 
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is the case in which W is the indicator super matrix of a multiple correspondence analysis 

problem. In that case W is also binary, but it can be partitioned columnwise into a number 

of submatrices, where each submatrix is an indicator matrix. (An indicator matrix is a binary 

matrix with orthogonal columns whose rows sum to one.) Thus, each submatrix codes a 

partitioning of the n row-elements into a number of subsets (equal to its number of columns) 

rows. If there are M submatrices, then all rows of W sum to M. We call this the indicator 

case. 

2. PROBLEM 

In this article we discuss the special case p 
= 

1, in which both sets of points are mapped 

into the real line. (Proofs for all results in this article are in the JCGS on-line repository 
at http://www.amstat.org/publications/jcgs/ftp.html.) As is the case in multidimensional 

scaling (de Leeuw and Heiser 1977) the WCA problem in one dimension turns out to be 

equivalent to a combinatorial optimization problem, more specifically a nonlinear zero-one 

optimization problem. 

Let us reformulate the one-dimensional WCA problem explicitly. Suppose W is a 

nonnegative matrix, representing the data. The problem V we want to solve in this article 

is to minimize the loss function 

n m 

<*{*, y) = 
Y1Y1 Wij \Xi 

~ 
yj I 

over x G W1 and y G Mm, under the constraints that 

n 

i=\ 
n 

3. TWO-POINT RESULT 

Consider the n! strict orderings of the x?, and locate each t/j in one of n ? 
1 "interior" 

cells bordered by the ordered X{. If t/j and y? are both placed between the same adjacent 

Xfi) < #(?+i), then the ordering of yj and y? does not matter. This gives n\ (n 
? 1 )m possible 

orderings. Each such choice corresponds with annxm matrix S with elements ?1 such 

that sij 
= 

sign(xi 
? 

yj) and thus Sij (xi 
? 

yj) 
= 

\xi 
? 

yj\. Let S be the set of such matrices. 

Our original problem V is equivalent to minimizing 

n m 

a(x,y,S) = 
^>2YlWiJSij(Xi ~y^ 
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over x and y and S G S, under the constraints 

n 

i=l 
n 

?*? 
= ?. 

?=i 

and 

s?j(a;? -yj)> 0. 

Let us look at this problem, say V(S), for a fixed S. 

Lemma 1. ProblemV(S) is the minimization of a linear function of(x, y) over KUT, 

where K is a pointed convex polyhedral cone and Y is the sphere {x\x'x 
= 

1}. 
A pointed cone is the convex hull of its one-dimensional faces (extreme half-rays) 

(Goldman and Tucker 1956). These extreme half rays are of the form 

X(1) 
= . . . = 

X(i) 
< 

Z(i+1) 
= - = 

X(n), 

that is, x only has two different elements (one negative, one positive, with weighted sum 

equal to zero). The yj are equal to either the upper of the lower bound of the interval in 

which the ordering places them. In any case, vectors on the extreme half-rays have precisely 

two different x elements, and each y element is equal to one of the two x elements. 

Now combine linearity and structure of the cone to characterize optimality of the fixed 

S problem. We prove a lemma that is a little bit more general than actually needed. 

Lemma 2. Suppose K is a pointed polyhedral convex cone and r\ is a pseudo-norm. 

T is the sphere of all x such that r\(x) 
? I. Suppose ej, with j 

? 
7,..., ra are the extreme 

half-ray s of K, normalized such that r\(ef) 
? 1. Consider the problem of minimizing w'x 

over x such that x G K HT. Then the minimum is attained at one of the ej. 

Observe that r? is a pseudo-norm, and thus it is possible that rj(ej) 
= 0 for some of the 

extreme half-rays, which then obviously cannot be normalized. But the proof still works. 

From this lemma we get our main result. 

Theorem 1. The solution to problem V has precisely two different x elements, and 

each y element is equal to one of the two x elements. 

Some simple calculations show that if value the negative value x_ occurs n_ times 

and the negative value x+ occurs n+ times, then 

n+ 

nn_ 

7171+ 

We call such a distribution of values an n_ : n+ allocation. Observe that 
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which is largest for 1 : n ? 1 allocations and smallest for n/2 : n/2 allocations. 

The original problem becomes to determine n_ and n+ and to assign the xi and the yj 
to the two different values. We can formalize this using an n x 2 indicator matrix G and 

an m x 2 indicator matrix H, with x_ and x+ in the two-element vector x. We summarize 

what we have shown so far in a corollary. 

Corollary 1. 

cr(*, *) 
= min min o~(x,y) 

= min min cr(Gx, Hx) x y GH 

Here minimization is over normalized x. The indicator matrix G must be nondegenerate, 

in the sense that its columns sums are positive. These column sums are n_ and n+, which 

means that x is a function of G. H can be any indicator matrix. 

Suppose we know G, that is, we know which x? get the negative value and which get 

the positive value, and we know what these values are. Now find the optimal H for this 

given G. 

Theorem 2. 

cr(G,*) =mincr(G,H) 
= 

/-y^min(uj, Vj) 
j=\ 

where Uj is the sum of the wij over the i for which Xi 
= x_, while Vj is the sum of the 

remaining Wij. 

As a consequence we have the following combinatorial representation of the optimum 

value. 

Corollary 2. 

'l 
cr(*, *) 

= min A / 
?- < -wm9 

? mm > v ; 

s=iys(n-s)|2 Ge?sJ^\ 
w.j 

- 
y^jWjjgj 

4. SPECIFIC OPTIMUM ALLOCATIONS 

4.1 Optimum 1: n ? 1 Allocation 

If Xi 
? 

x_ and all other elements of x are x+9 then 

cr(G,*) 
= J- 

y^ mm(wjj, w9j 

This implies 

Tl 
cr(G,*) 

< J--wim-, w n ? 
1 
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and we have equality if Wij < 
^w9j for all j, which will be the usual case. In that case we 

select i to correspond to the smallest row sum. But if only element i in column j of W is 

positive, and the other elements in the column are zero, then min(u>? 
? 

Wij ) 
= 0 and 

Wij does not enter into the summation. For example, if W is any permutation matrix, then 

minimum loss is zero. 

In the indicator case all row sums are equal to the number of indicator matrices M, 

which means that all 1 : n ? 
1 allocations have the same value 

M 
71- 1 

4.2 Optimum 2: n ? 2 Allocation 

Clearly 

cr(G,*) = J U_ ^min[^ + Wkj.w.j 
- 

(wtj + wkj)\ 

< 
2{n 

- 
2) 

{Wi. +wkm). 

If (wij + Wkj) 
< 

\wmj, then we have equality. 
In the indicator case the upper bound is equal to 

2M 
2(n 

- 
2) 

' 

Since 

2M 
2(n 

- 
2) 

>M 
n-1' 

which means that, in the "usual" case, n : n ? 
1 allocation is better than 2 : n ? 

2 allocation 

Ifw 

example 

If we do have (wij + Wkj) > \wmj for some j then this is no longer true. In fact, the 

W 

10 10 
0 10 1 

10 0 1 

0 110 

has optimum 1 : 3 allocation equal to 2w | 
? 2.3094 and optimum 2 : 2 allocation equal 

to 2. 

It is clear that in this case the optimal split depends on properties of the data, although 
the two-point representation is not very revealing from a data analysis point of view. 
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Table 1. Guttman-Bell 

Allocation Min Q1 Median Q3 Max 

1:6 4.3205 4.3205 4.3205 5.4006 5.4006 
2:5 2.5100 6.4841 6.6933 7.5299 8.3666 
3:4 3.8188 5.3463 7.6376 8.9742 10.6927 

5. REAL EXAMPLES 

One obvious algorithm is to solve the problem for each s = 
1,..., n ? 

1 separately. 
In fact, by symmetry, we only have to consider the values less than or equal to 

j. For each 

s we evaluate the objective function for all (n) possible binary vectors g summing to s. For 
fixed s the problem, by Corollary 2, we have to solve is the maximization of 

? 

1 
:W. 

? 
Wi 

that is, the maximization of a convex piecewise linear function of g. We apply this enumer 

ative algorithm to some examples. Observe that for n objects, we must compute the loss 

function for 2^n 
? 

1) 
? 

1 subsets. 

The Guttman-Bell data describe seven types of sociological groups in term of five 
variables. This is a really small example, and enumeration gives the results in Table 1. 

Columns of the table are the Tukey fivenums for the various allocations. We see that the 

optimal allocation is 2 : 5 in this case. 

Our next example, the sleeping bags data, was analyzed previously by ordinary MCA 
and other graph drawing techniques in Michailidis and de Leeuw (2001). Four variables are 

used to describe 21 sleeping bags. Table 2 shows that the 1 : 20 allocation is optimal, and 
that all 1 : 20 allocations have precisely the same value. 

In the final example, 24 cars are described in terms of four safety features. After looking 
at more than 8 million subsets we find Table 3, in which again the 1 : 23 allocation is the 

easy winner, and all 1 : 23 allocations have the same value. It seems reasonable to assume 

that for examples that are large enough, this will always be what happens, unless something 
very special is going on (for instance, if the indicator matrices are permutation matrices). 

Table 2. Sleeping Bags 

Allocation Min Q1 Median Q3 Max 

1:20 

2:19 

3:18 

4:17 

5:16 

6:15 

7:14 

8:13 

9:12 

10:11 

3.0741 

4.4604 

3.7417 

3.8900 

4.0988 
4.3474 

5.0920 

5.3923 

5.7325 

5.6801 

3.0741 

4.4604 

5.6125 

6.6686 

7.6852 
8.2118 

9.2582 

9.4365 

9.7011 

10.0494 

3.0741 

4.4604 

5.6125 

6.6686 

7.6852 

8.6948 

9.7211 

10.3352 

10.5830 

10.923 

3.0741 

4.4604 

5.6125 

6.6686 

7.6852 

8.6948 

9.7211 

10.7846 

11.4649 

11.7971 

3.0741 

4.4604 

5.6125 

6.6686 

7.6852 

8.6948 

9.7211 

10.7846 

11.9059 

13.1079 
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Table 3. Cars 

_Min_Q1 
Median 

Q3_Max 

1:23 4.0860 4.0860 4.0860 4.0860 4.0860 

2:22 5.1698 5.9084 5.9084 5.9084 5.9084 

3:21 5.5549 7.4066 7.4066 7.4066 7.4066 

4:20 6.5727 8.2158 8.7636 8.7636 8.7636 

5:19 7.0367 9.5499 10.0525 10.0525 10.0525 

6:18 7.0711 10.3709 10.8423 11.3137 11.3137 

7:17 7.1854 11.6763 12.1254 12.1254 12.5745 

8:16 7.3612 12.1244 12.9904 13.4234 13.8564 

9:15 7.1678 13.0707 13.4924 14.3357 15.1789 

10:14 7.0387 13.6633 14.4914 14.9054 16.5616 

11:13 6.9644 13.9289 14.7482 15.5676 17.6159 

12:12 7.3485 13.8804 14.6969 15.5134 17.5547 

This implies that WCA is almost always useless as a data analysis technique, because the 

solution will almost always be independent of the data (unless we have small or special 

examples). 

6. ADDITIONAL ORTHOGONAL DIMENSIONS 

Michailidis and de Leeuw (2003) discussed WCA for p > 1. The reduction to a zero 

one programming problem, and the possibility to find the optimum solution by enumeration, 
no longer applies there. In fact, we cannot prove the (p + l)-point property, which is the 

obvious generalization of the two-point property, although we have found it in all examples 

we have analyzed. In this section we will briefly discuss an alternative way to compute 

higher dimensional solutions, which does turn out to give us the (p + 1)-property. For the 

same reasons as for p 
= 

1, the solution is not really of interest as a statistical technique, 

unless it is applied to small examples. 

Suppose we have found a solution ("??, if), and we want to find another solution 

minimizing the same loss function, under the same conditions, and in addition we impose 

the condition that x x ? 0. Thus the new solution for x must be orthogonal to the previous 

one. Call this problem P\. 

Theorem 3. Suppose (/_, 7+) is the optimal assignment found in problem P. Then 

we solve problem P\ by computing the optimal assignment for the subsets I_ and i+, and 

keep the best of these two. 

Clearly we can continue the procedure in the theorem by using the optimal split in 

P\ and continuing to split these subsets, thus finding an orthogonal third dimension. By 

continuing this procedure we build up a binary tree, and this binary tree can be used as a 

WCA representation of the data. Figure 1 illustrates this for the Guttman-Bell data, which 

is small enough to show some structure. 

Of course, if P has a 1 : n ? 
1 optimum assignment, then there is no need to split 

the first set, and we have seen that this will often happen. Thus, we will often split off one 

element at each stage, until the set becomes small enough. But, more seriously, we have 

also seen that usually all 1 : n ? 
1 splits will have the same value, so the optimum is not 
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Mob, Primary Group, Crowd, Secondary group, Audience, Modern Community, Public 

Mob, Primary Group Crowd, Secondary group, Audience, Modern Community, Public 

Mob Primary Group Crowd, Secondary Group 

Crowd Secondary Group 

Audience, Modern Community, Public 

Audience, Modern 

Community 

Audience 
Modern 

Community 

Public 

Figure 1. Guttman-Bell Tree 

defined uniquely, and we must continue by building n trees, and so on. This will make tree 

building basically impossible, and again we find a very limited practical usefulness. 
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