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GRAPH LAYOUT TECHNIQUES AND 

MULTIDIMENSIONAL DATA ANALYSIS 

JAN DE LEEUW GEORGE MICHABLIDIS 
UNIVERSITY OF CALIFORNIA, THE UNIVERSITY OF MICHIGAN 

LOS ANGELES 

Abstract. In this paper we explore the relationship between multivariate data 

analysis and techniques for graph drawing or graph layout. Although both classes 
of techniques were created for quite different purposes, we find many common 

principles and implementations. We start with a discussion of the data analy- 
sis techniques, in particular multiple correspondence analysis, multidimensional 

scaling, parallel coordinate plotting, and senati on. We then discuss parallels in 
the graph layout literature. 

1. Data and Graphs 

The amount of data and information collected and retained by organizations and 

businesses is constantly increasing, due to advances in data collection, comput- 
erization of transactions and breakthroughs in storage technology. Typically, the 

applications involve large-scale information banks, such as data warehouses rang- 

ing in size into terabytes, that contain interrelated data from a number of sources 

(e.g. customer and product databases). In order to extract useful information from 

such large datasets, it is necessary to be able to identify patterns, trends and relation- 

ships in the data and visualize their global structure to facilitate decision making. 

Graph theoretical concepts are capable of capturing complicated structures and re- 

lationships in both numerical and categorical data. In this paper we explore the 

relationship between multivariate data analysis and techniques for graph drawing 
or graph layout, and examine how coupling ideas from these two fields can lead to 
new and improved methodology and tools for mining large databases and presen- 
tation of large datasets. 

1.1. Multivariables and Coding. The data structure we are interested in consists 
of ? observations on m categorical variables, where variable j has kj categories 
(possible values). Using categorical variables causes no real loss of generality: so- 
called continuous variables are merely categorical variables with a large number of 
numerical categories. We use ? for the total number of categories over all variables 

(* = 
SG=? **)? 
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In somewhat more abstract terminology, which generalizes to (theoretical) situ- 

ations in which we have an infinite number of objects or variables, a variable is a 

function <j)j defined on the set of objects ? and with range Vj ((?j : I ?-> Vj). 
A continuous variable, for example, has domain I = {1,2,...,n} and range 

Vj 
= R. A multivariable F = 

{<f>j}jej is a set ?f variables with the same do- 

main I but with different ranges Vj. 

In the finite case the variables are coded as m indicator matrices or dummies 

Gj, where Gj is a binary ? ? kj matrix with exactly one non-zero element in 

each row i (indicating in which category of variable j object i falls). The ? ? ? 

matrix G = (Gi\... \Gm), which codes the multivariable, is called the indicator 

supermatrix. Obviously the representation of the data by the indicator supermatrix 

implies no loss of information, since all the original classifications are still present. 

It must be emphasized that the coding is unique, given the definition of the multi- 

variable. But in defining the multivariable, many choices must be made. Suppose, 
for instance, that the ranges Vj are the same for all j, with k elements. Then we can 

define a single variable f on the new domain ? ? J with range V. This amounts 

to stacking the indicator matrices on top of each other. Or, even if the ranges are all 

different, we can define a single variable f with domain ? and range Vi <g>... ? Vm, 
which amounts to coding the m variables interactively, so that each profile (cell) 

corresponds to a category of the interactive variable. 

In the sequel we assume all these coding decisions have been made, and conse- 

quently we deal with a single indicator supermatrix G. 

1.2. Graphs. One can represent all information in the data by a single bipartite 

graph1 with n + ? vertices and nm edges. We call such an object the multivariable 

graph. Each edge connects an object and a category. Thus, all the ? vertices 

associated with the objects have degree ra, while the ? vertices associated with 

the categories have varying degrees, equal to the number of objects in the category. 
In Figure 1 the multivariable graph of a toy example corresponding to a 4 ? 3 

contingency table with 7 objects is shown. The indicator supermatrix G is related 

Objects 

Categories of 

first variable 

Categories of 

second variable 

Figure 1. The multivariable graph of a toy example 

1A bipartite graph is a 2-layered graph, where edges only go from one layer to the other layer. 
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in a very simple way to the adjacency matrix A of the graph. In fact, 

0 Gl 
(1.1) A = 

G1 0 

1.3. Example. The same representation of a multivariate data structure is also 

used informal concept analysis (FCA) [22]. This is a data analysis method which 

is quite popular in Germany. Multivariables are called a many-valued contexts. In 

this paper we shall use an example taken from the formal concept analysis litera- 

ture [50]. Table 1 describes 21 sleeping bags in terms of five variables2. 

Sleeping Bag Fabricate Temperature ? Weight W bf Price Material 

One Kilo Bag Wolfskin rc 940 g 149,- Liteloft 
Sund Kodiak 3?C 1880 g 139,- Hollow Fiber 

Kompakt Basic Ajungilak 0?C 1280 g 249,- MTILoft 
Finmark Tour Finmark 0?C 1750 g 179,- Hollow Fiber 

Interlight Lyx Caravan 0?C 1900 g 239,- Thermolite 

Kompakt Ajungilak -3?C 1490 g 299,- MTILoft 
Touch the Cloud Wolfskin -3?C 1550 g 299,- Liteloft 
Cat's Meow The North Face -7?C 1450 g 339,- Polarguard 
Igloo Super Ajungilak -7?C 2060 g 279,- Terraloft 
Donna Ajungilak -rc 1880 g 349,- MTILoft 

Tyin Ajungilak -15? C 2100 g 399,- Ultraloft 
Travellers Dream Yeti 3?C 970 g 379,- Goose-downs 
Yeti Light Yeti 3?C 800 g 349,- Goose-downs 
Climber Finmark -3?C 1690 g 329,- Duck-downs 

Viking Warmpeace -3?C 1200 g 369,- Goose-downs 

Eiger Yeti -3?C 1500g 419,- Goose-downs 
Climber light Finmark -7?C 1380 g 349,- Goose-downs 
Cobra Ajungilak -7?C 1460 g 449,- Duck-downs 
Cobra Comfort Ajungilak -10? C 1820 g 549, Duck-downs 
Foxfire The North Face -10? c 1390 g Goose-downs 

1800 g 1 549,- 1 Goose-downs Mont Blanc Yeti -15? C 

Table 1. Many-valued Context: Sleeping Bags 

From the many-valued contexts FCA derives formal contexts, which are defined 

by binary variables derived from the many-valued contexts. From the many-valued 

sleeping bag context [50] derives a context by using a terminology for logical scal- 

ing. The terminology is given in Table 23. This results in Table 3, which actually 

displays the indicator supermatrix for this example. There are indicator matrices 

Gj for Price, Fiber, and Quality. From here on, FCA goes its own (abstract alge- 
braic) way. We are merely interested in the (critical) step to derive formal contexts 

2Note that one could consider the bag's name as a sixth variable. 

3Prediger used a terminology which defined "good" in such a way that it implied "acceptable". 
Because we prefer to use mutually exclusive categories we have redefined "acceptable" as "Prediger's 
acceptable but not Prediger's good". 
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(Price < 250) 
(Price > 250 ? < 400) 
(Price > 400) 
(Material = goose - downs V duck = downs) 
(Material f goose ? downs V duck = downs) 
((0 < ? < 7) ? (W < 1000)) V 

((-7 < ? < 0) ? (W < 1400)) V 

((-15 < ? < -7) ? (W < 1700) V 

(G < -15) ? (W < 2000)) 
((0 < ? < 7) ? (1000 < W < 1400)) V 

((-7 < ? < 0) ? (1400 < W < 1700)) V 

((-15 < ? < -7) ? (1700 < W < 2000) V 

(? < -15) ? (2000 < W) 
((0 < G < 7) ? (1400 < W)) V 

((-7 < ? < 0) ? (1700 < W)) V 

((-15 < G < -7) ? (2000 < W)_ 

cheap 
not expensive 
expensive 
down fibers 

synthetic fibers 

good 

acceptable 

bad 

Table 2. Example of a Terminology 

from many-valued contexts. In FCA this is called scaling, and various forms of 

scaling (conceptual scaling, logical scaling) are discussed in the literature. 
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Sleeping Bag 

One Kilo Bag 
Sund 

Kompakt Basic 
Finmark Tour 

Interlight Lyx 

Kompakt 
Touch the Cloud 
Cat's Meow 

Igloo Super 
Donna 

Tyin 
Travellers Dream 
Yeti Light 
Climber 

& 

Price 

Viking 
Eiger 
Climber light 
Cobra 
Cobra Comfort 

Foxfire 
Mont Blanc 

0 0 

0 

Ji 

Fiber 

0 1 

m 

? 

? a. a> 

Quality 

1 0 0 

o o 
o o 
1 

Table 3. Derived Context: Sleeping Bags 

1.4. Graph Layout. 

1.4.1. Pictures of Graphs. We can make a drawing or layout of the multivariable 

graph, by placing the vertices at ? + ? locations in the plane, or, more generally, 
in W. We then connect each object with the categories it is in. Thus m lines are 

leaving from each object-point, and the number of lines arriving at a category-point 
is equal to the number of objects in the category. 

The map of the ? + ? points and the nm lines is called the graph plot. It is often 

useful to think of the graph plot as the overlay of ra plots, one for each variable, 
which are called star plots. In the star plot for variable j there are n+kj points, and 
? lines, each line connecting an object with the category it is in for variable j. The 

star plot consists of kj disjoint stars, one for each category, where the star consists 
of the lines connecting the category-point with the object-points of the objects in 

that category. 
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Again, the graph plot does not lead to any loss of information. All the rela- 

tionships in the original data are still present in the plot. Nevertheless, it may be 

difficult to reconstruct the data from the drawing, because the graph plot has many 

overlapping lines and sometimes looks like one large black blob. It helps to look at 

the individual star plots, but even these can easily get too crowded and messy when 

? is large. Thus, we can now use the fact that our map of the objects and categories 
into the plane was completely arbitrary. Suppose we choose a map that makes the 

graph plot look as clear or clean or nice as possible. This is typically done with a 

graph layout algorithm, and of course there are many of these, because the words 

"clean" and "clear" and "nice" can be defined in many different ways. 

1.4.2. Overview of the Literature. Since this paper is primarily written for statisti- 

cians, and not for computer scientists, we provide a brief overview of the literature 

in computer science and computational geometry about methods and criteria to 

draw graphs. A good overview of modern graph drawing is given in the chapters 

by [23] and [55]. There is also a very extensive annotated bibliography [16] and a 

comprehensive book has just appeared [3]. Since 1992 there also has been a yearly 
conference on graph drawing. There are many software packages available to draw 

graphs. See 

http ://www.cs.brown.edu/people/rt/gd.html 

for references both to the symposia and the software packages. We single out one 

of these packages as an example, because it is so easily available. The Java Devel- 

opment Kit of Sun Microsystems comes with a GraphLayout applet demo. If you 
have a Java enabled browser, go to 

http://www.Javasoft.com/applets/jdk 

and go to the demo section from there. 

It must be emphasized from the start that in many cases the graph drawing algo- 
rithms discussed in the computational geometry literature are not intended as data 

analysis techniques. They have a different "aesthetic" purpose. If we limit our- 

selves to straight-line drawings4 then the aesthetic criteria that are mentioned in [3, 

page 14-16] are 

? display symmetry, 
? avoid edge crossings, 
? keep edge lengths uniform, 
? distribute vertices uniformly, 
? minimize aspect ratio, 

and 

4 and consequently ignore polyline drawings, orthogonal drawings and bended edges 
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? minimize area, 
? minimize total edge length, 
? minimize maximum edge length. 

The last group of three criteria is special, because they are "meaningful only if the 

drawing convention adopted prevents drawings from being arbitrarily scaled down" 

[3, page 14]. Not all of these criteria seem relevant for data analysis. Some of them 

were inspired by circuit board design, in which minimizing crossings is obviously 
relevant. But in data analysis we do not only want aesthetically pleasing drawings, 
we also want drawings that show us important and invariant aspects of the data. 

1.4.3. Classes of Algorithms. Basically, there are two classes of graph layout or 

graph drawing algorithms. One class is based on logical or binary criteria in which 

properties of the graph, such as edge crossings, are counted and optimized. A 

problem with these algorithms is that many of the criteria lead to NP-hard problems, 
i.e. they are computationally infeasible even for fairly small problems. The other 

class is more interesting from the data analysis point of view. It thinks of the graph 
as a set of pegs connected by mechanical and/or electric forces. The vertices attract 
and repel each other. The total forces on the system can be summarized in a loss 

function, and that loss function can be minimized. This approach was introduced 

by [17], although there are earlier versions of similar algorithms in circuit board 

design. We shall discuss these spring algorithms in more detail below. 

2. MULTIDIMENSIONAL DATA ANALYSIS 

2.1. Multiple Correspondence Analysis. Multiple Correspondence Analysis, or 
MC A, can be introduced in many different ways [4,24,25]. Usually, it is motivated 
in graphical language. Complicated multivariate data are made more accessible by 
displaying the main regularities of the data in scatterplots. Our discussion of MC A 

emphasizes the two types of plots we discussed earlier, the graph plot and the star 

plots. This emphasis was first used, briefly, in the review articles by de Leeuw et al. 

[14], Hoffman and de Leeuw [32], Michailidis and de Leeuw [47]. We think that it 

nicely captures the essential geometric characteristics of the technique. 

2.1.1. Loss Function. The basic idea is that if we draw the nm edges, then the re- 

sulting graph plot will generally be more informative and more aesthetically pleas- 
ing if the edges are short. In other words, if objects are close to the categories they 
fall in, and categories are close to the objects falling in them. Thus we want to 
make a graph plot that "minimizes the amount of ink", i.e. the total length of all 

edges. 

Actually, for computational reasons, we will minimize the total squared length of 
the edges. To formalize this "minimum squared ink" criterion in a convenient way, 
we use the indicator matrices Gj. If the ? ? ? matrix X has the locations of the 
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object vertices in W, and Yj has the location of the kj category vertices of variable 

j, then the squared length of the ? edges for variable j is 

(2.1) s?(?,??) 
= SSQ(X 

- 
GjYj), 

where SSQ() is short for the sum of squares. The quantity (2.1) measures the 

amount of ink in the star plot of variable j. 

The squared edge length over all variables is 

m 

(2.2) s(?, ?) = 
S SSQ(* 

- 
GiYJ)> 

and this is the function we want to minimize. The book by Gifi [24] is mainly about 

many different versions of this minimization problem, where the differences are a 

consequence of various restrictions imposed on the quantifications Yj. 

Minimizing (2.2) without any restrictions on the vertex locations is not possible. 

Or, more precisely, it is too easy. We just collapse all vertices into a single point, 

and we use no ink at all. Remember the quotation in Section 1.4.2 about graph 

layout techniques that only make sense if the drawing cannot be arbitrarily scaled 

down. It means that in order to get a nontrivial solution, we have to impose some 

form of normalization. In MCA we require that the columns of X add up to zero, 

and are orthonormal, i.e. satisfy mX'X = J5. 

2.1.2. Equations. One of the reasons why squared edge lengths are so appealing 

is that the MCA problem we are trying to solve is basically an eigenvalue problem. 

We discuss this in some detail, again following [24]. 

First we define some useful matrices. Define the kj ? k? matrix Cj? 
= 

GjG?. 
Matrix Cjt is the cross table or contingency table of variables j and ?. Thus Dj 

= 

Cjjy where Dj is the diagonal matrix with the univariate marginals of variable j on 

the diagonal. The ? ? ? supermatrix C is known in the correspondence analysis 
literature as the Burt Matrix, after [9]. Write CY = mDYE for the generalized 

eigenvalue problem associated with the Burt matrix. 

We also define Pj 
? 

GjD~lGj\ then, Pj is the between-category projector, 

which transforms each vector in Rn into a vector in Rn with category means. More- 

over Qj = 7?Pj transforms each vector into a within-category vector of deviations 

from category means. Write P* for the average of the Pj's (P* = 
^ SjLi Pj)* and 

write A for the diagonal matrix containing the eigenvalues of P*. 

6 
Alternatively, we could normalize Y, i.e. require that u'DY = 0 and Y'DY = 7. Here u is a 

vector with all elements equal to +1, and D is the ? ? ? diagonal matrix with marginal frequencies 
of all m variables on the diagonal. It is shown in [24] that the two different normalizations lead to 

essentially the same solution. 
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Theorem 2.1. Suppose (X, Y) solves the MCA problem. Then 

(2.3a) P*X = XA, 

(2.3b) CY = mDYA. 

Proof. Define s(?,?) as the minimum of s(?,?) over all Y. Clearly the mini- 

mum is attained for 

(2.4) Yj^DjiqX, 

i.e. by locating a category quantification in the centroids of the objects in that 

category. We see that 

(2.5) s(?, ?) = ra tr X'(I 
- 

P*)X. 

Clearly we minimize s(?, ?) over mX'X = I by choosing X equal to the eigen- 
vectors corresponding with the ? largest eigenvalues of P*. Thus P*X = XA 

for MCA. Also, from (2.4), we see GY = mP*X = mXA and thus CY = 

mG'XA = mDYA. This proves (2.3b). D 

There are several aspects of the proof which deserve some additional attention. 

Equation (2.4) is called the centroid principle. The centroid principle shows clearly 
how the star plots get their name in MCA. Category vertices are in the centroid of 
the vertices of the objects in the category, and if we have a clear separation of the 

kj categories, we see kj stars in W. This also shows that in MCA the category 
vertices are in the convex hull of the object vertices, they form a more compact 
cloud. 

There is one last important construct in MCA we like to mention. The matrix A A A A 

YjDjYj 
= X PjX is known as the discrimination matrix. It is equal to the 

between-category dispersion matrix of variable j, i.e. to the size of the stars for 
that variable. The average discrimination matrix is equal to A, the diagonal matrix 
of eigenvalues. Since P* is the average of ra orthogonal projectors, we have ? < I. 
This can also be seen from the fact that each element of A is the average, over all 

variables, of the ratio of the between-category variance and the total variance. 

2.1.3. Algorithm. The basic algorithm for MCA is alternating least squares, also 
known in this context as reciprocal averaging. An iteration consists of two steps 

(2.6a) Y^^D^G'jXW, 

? m 

(2.6b) I^I^Vg^', 

mi=i 

i.e. we alternate between the first and second centroid principle. After some 
of these iterations we reorthonormalize X. This algorithm is identical to Bauer- 
Rutishauser simultaneous iteration [53], the natural generalization of the power 
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method to compute some of the dominant eigenvalues of a symmetric matrix with 

the corresponding eigenvectors. 

2.1.4. Example. If we apply (two-dimensional) MCA to the sleeping bag data, we 

find the solutions shown in the graph plot and the three star plots below. Notice 

that objects with similar profiles are mapped to identical points on the graph plot, 
a property following from the second centroid principle. Several things are imme- 

diately clear. There are good, expensive sleeping bags filled with down fibers and 

cheap, bad quality sleeping bags filled with synthetic fibers. There are also some 

intermediate sleeping bags in terms of quality and price filled either with down or 

synthetic fibers. Finally, there are some expensive ones of acceptable quality and 

some cheap ones of good quality. However, there are no bad expensive sleeping 

bags. 

1.5 

1 - 

0.5 

E 
b 

-0.5 

-1.5 

expensive 

_<^- cheap *.? 
y 

/ bad 

/ 

' 

/ 
/ / 

_synthetici?Dres / 
/ 

acceptable\ \ 

-1.5 -0.5 0 0.5 
Dimension 1 

1.5 

Figure 2. Graph plot of the MCA solution of the sleeping bag data 

In this case, we could have seen this much faster by looking directly at the data, 
without using a computer at all. But the sleeping bag example is far from typical. 
In real-life MCA examples we often deal with thousands of objects and hundreds 

of variables (see for example [24, Chapter 13], [47], [45]). 
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Figure 3. Star plot of variable Price 

! ? 

\ down fibres 

Figure 4. Star Plot of variable Fiber 

Figure 5. Star Plot of variable Quality 
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2.2. Multidimensional Scaling. Multidimensional scaling (MDS) is a class of 

techniques in which given distances or distance-like numbers are approximated by 
distances in low-dimensional Euclidean space. Thus, given distance-like numbers 

Sij (i.e. (Sij > 0, Sa =s 0), often called dissimilarities, between ? objects, we want 

to find ? points Xi in W such that their Euclidean distance d(x?, Xj), which we also 

write as dij(X), is approximately equal to Sij. MDS as a rigorous technique is due 

to [38, 39]. Theory and algorithms of MDS are most completely described in [7]. 

2.2.1. Loss function. We shall restrict our attention to using a least squares loss 

function, i.e. we want to create our picture in such a way that 

? ? 

(2.7) s(?) = 
S S Wij(Sij 

- 
dij(X))2 

t=l i=l 

is minimized over X. The it/*,? are weights, which can be chosen to reflect variabil- 

ity, measurement error, or missing data. 

In [41] the loss function has weights S^2. 
The loss function is interpreted as 

the amount of physical work that must be done on elastic springs to stretch or 

compress them from an initial length 5y to a final length dij. Sammon [51] suggests 

Wij 
= 

S?jl for a closely related problem. Connections with the spring algorithms 
for graph layout are already obvious, and will be examined in considerable detail 

below. 

2.2.2. Algorithm. Using the unit vectors e? of order n, we can define the matrices 

Aij 
= (ei 

? 
ej)(ei 

? 
ej)', i.e. Aij has element +1 at positions (i,i) and (j, j), 

?1 at (i, j) and (j, i) and 0 everywhere else. Moreover, for a given real symmetric 
matrix C, we define the Laplacian of C as 

(2.8) ^s) = 
??^. 
t=l j=\ 

Alternatively C(C) = R ? C, where R is the diagonal matrix with row-sums of C. 

Now set 

(2.9a) B(X) = 
C(W^-)), 

(2.9b) V = C(W), 

where in (2.9a) we take the Laplacian of the matrix with elements WijS%j/dij(X). 
Then the algorithm that updates X by 

(2.10) X(k+1) = V+B(XW)X&\ 

with V+ the Moore-Penrose inverse of V, is shown to be globally convergent 
in [11] and linearly convergent in [12]. 
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In order to compute the initial estimate of X Guttman [28] suggested to compute 
the dominant eigenvectors and eigenvalues of C(A2). This maximizes 

(2.11) A(X)-??AjdJ(X) 
t=l ?=1 

under the normalization condition X'X = I. This is easy to see, since d^AX) = 

trX'AijX, and thus X(X) = trX'C(A2)X. 

2.2.3. MDS and MCA. There is a fairly straightforward connection between multi- 

dimensional scaling and MCA, outlined for example in [30]. Suppose we define the 

loss function (2.7) only for the off-diagonal submatrix G of the adjacency matrix 

A. Thus, the loss function s(?) becomes 

(2.12) s(?) = 
SS?)*(d* 

~ 
d*W? 

with 

? 

S 
i=l k=l 

(2.13a) Sik 

and 

fl if i 

~\q 
oth 

is in correspondence with fc, 

otherwise, 

?1 

if i is ir 

0 otherwi 

,? ?^ , - _in correspondence with fc, 
(2.13b) Wik = {^ A . 

F 

otherwise. 

With these definitions, obviously s(?) is again the sum of squares of the distances 

between the objects and the categories they are in, i.e. our "minimum squared ink" 

criterion. We need some kind of normalization to find a nontrivial solution, and 

using X'X = J produces MCA. 

There is another way to introduce MCA using MDS ideas, which was first dis- 

cussed by [13]. Since that paper the approach has been extended considerably 

by Meulman [42, 43] and it has been implemented in the computer program PIO- 

NEER [26]. 

The basic idea here is to scale the objects using some form of MDS. Suppose we 

define a distance-like measure ?y between each pair of objects. We now want to 

map the objects into points Xi in W such that the distance d(xi, x*) approximates 

Sij. 

We have not specified yet which distances we intend to use, and how we will 

measure approximation. In MCA we use chi-square or Benz?cri distances. They 
are defined on the rows of G. Write gi for the column-vector containing row i of G 
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and ei for the ith unit vector. Then 

(2.14) ?J 
= 

?(ft-W)/p-1(ft-?) 
= 

ra 

?(e? 
- 

ejYGD^G'iei 
- 

ej) 
= (e? 

- 
?,)'?*(?? 

- 
e,) = 

ra 

(e? 
- 

e,)'X AX'fe 
- 

ej) 
= fe- Zj)'fe 

- 
Zj), 

where P* is the average between-category projector of MCA, and where ? = 

XA1/2. If we only use the first ? dimensions, i.e. the first ? columns of Z, then we 

underestimate the chi-square distance, i.e. we approximate S2j 
from below. This 

defines MCA. We can also proceed the other way around and define Benz?cri dis- 

tances between columns of G, and again come up with the MCA solution for Y. 

But instead of approximating squared distances from below, we can also use (2.7) 
on the Benz?cri distances, or on any other distance function defined on the objects 
or categories. We will loose the duality between rows and columns we have in 

MCA, but we may find more interesting solutions. The solutions for the sleeping 

bag example using (2.7) and Benz?cri distances on the objects and the categories 
of the variables, are given in Figures 6 and 7, respectively. If we compare them 

with the correspondence analysis solution, we see that the "horseshoe" or parabolic 

shape in Figure 2 is no longer there. Points are spread more uniformly in the plane. 

However, this also results in too many edge crossings for the solution based on 

distances between categories. 

2.3. Parallel Coordinate Plots. (PCP) There is another simple way to plot multi- 

variate quantitative data. This is the parallel coordinate plot discussed by Inselburg 
and Dimsdale [33], Wegman [57]. In these plots, we draw ra parallel straight lines, 

one for each variable. The objects are then plotted on each of the lines, and points 

corresponding with the same objects are connected by broken line segments (and 

perhaps colored with different colors). 

2.3.1. PCP and MCA. There are some interesting connections between PCP and 

MCA. Suppose we have the freedom to put the categories of the variables in arbi- 

trary locations on the ra parallel vertical lines, except that the categories of variable 

j must be on line j. Each object now defines a broken line through ra category 

points. Suppose z?? is the induced quantification of object i on variable j, which 

is the same number as the category quantification of the category of variable j that 

object i is in. We can partition the variance in the induced quantifications, as in Ta- 

ble 4. This measures in how far the object-lines deviate from the horizontal lines, 

by computing the variance around the best-fitting horizontal line. The best fitting 
horizontal line is, of course, the object score of MCA, i.e. Xi = Zi%. Minimizing 
the ratio of the within-object variance y'(D 

? 
^C)y to the total variance y*Dy 

amounts to computing the first dimension of an MCA. Observe that this is the same 

as maximizing the between-object variance -??y'Cy for a given tot al variance, i.e. 
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we also want the horizontal lines to be as far apart as possible. This is discussed in 

more detail in [24, Chapter 3]. 

Source Sum of Squares Matrix Expression 

Z^?=1 ?^j=lfej 
~~ 

zi?) 

?S?=?(*.-*..)2 

y'(D 
- 

?c)y 

hy'Cy 

Within Objects, Between Variables 

Between Objects 

2-^i=i Z^j=i\zij 
~ 

z??) Total Variance y'Dy 

Table 4. Partitioning Quantification Variance 

We illustrate the above with our sleeping bag example (see Figure 8). The basic 

classification of the bags is again obvious from this representation. Observe we 

have one crossing, basically because some sleeping bags filled with synthetic fibers 

are good, while some filled with down are only acceptable. 

cheap 

not expensive 

Figure 8. Parallel coordinate plot. The numbers on the edges 
indicate how many objects share that particular edge. 

2.4. Seriation. Seriation, also known as ordination, is of importance in archae- 

ology [1], DNA sequencing [5], hypertext ordering [6], ecology [19], and sparse 
matrix ordering [2]. 

The key concepts in this area are the Robinson and the P?trie matrices. The 

Robinson matrix, known in psychometrics as a simplex, is a symmetric matrix R 

such that rij < rik if j < fc < i and ry > r^ if i < j < fc. If rows and columns 

of a symmetric matrix can be permuted such that it becomes Robinson, we call it 
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pre-Robinson. A P?trie matrix is a binary matrix for which in each row the ones 

form a consecutive sequence. If we can permute the rows of the binary matrix so 

that it becomes P?trie, we call it pre-Petrie. If both rows and columns can be made 

to have the "consecutive ones" property, we say the matrix is two-way P?trie. 

A closely related matrix is the Guttman matrix, in which the pattern of one's is 

triangular. In both a P?trie matrix and a Guttman matrix, the pattern is basically 
one-dimensional. If artifacts are found in a particular time interval, or plants are 

found in a particular aridity interval, or if politicians vote for a proposition in a 

particular left-right interval, then we deal with a parallelogram structure. I such 

a case, we have comparison data in the sense of [10] or non-cumulative items in 

the sense of [49]. If subjects respond to test items, then they will give the correct 

response to all items that are easy enough. These are dominance data, or cumulative 

items, and they give rise to a triangular pattern. 

In psychometrics the techniques to recover the triangular or parallelogram pattern 
are known as Guttman scaling or parallelogram analysis ( [10, 20]). 

2.4.1. Seriation, MCA, and MDS. In many seriation examples, MCA is used to 

find the ordering of the rows and columns of the matrix. It is shown by [31] that if 

a matrix can be permuted to become two-way P?trie, then correspondence analysis 
will find the order. It is shown by [27] that MCA produces the correct order for 

a Guttman matrix. Other situations in which MCA gives the "correct" order are 

discussed by [52]. 

Kendall [36] applied nonmetric multidimensional scaling to the product moment 

matrix GG', which is pre-Robinson if G is pre-Petrie. He developed the popular 
HORSHU method, that produced a two dimensional plot of the seriation, which 

often looked like a horseshoe (i.e. a quadratic curve in the plane). See [30] for 

additional discussion of the Robinson and P?trie forms of a matrix in the MCA and 

MDS contexts, and see [44] for some archaeological examples in which MCA is 

used. 

2.4.2. Spectral Methods of Seriation. Recent reviews of seriation, from a modern 

computational point of view, can be found in [2] and [6]. Both papers rely on a 

spectral method of seriation, which is closely related to some of the techniques we 
have discussed above. They start with a binary data matrix, which they interpret 
as the adjacency matrix G of a bipartite graph. They then embed the matrix in a 

symmetric matrix A, using (1.1). 

Define now the Fiedler value of a doubly-centered positive-semidefinite matrix 
as the smallest nonzero eigenvalue. The corresponding eigenvector is called the 
Fiedler vector. Seriation computes the Fiedler vector of the Laplacian C(A), and 
uses the rank order of the elements of the Fiedler vector to reorder rows and columns. 
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Computing the Fiedler vector means solving the eigenvalue problem 

(2.15a) Gy = (m-X)x, 

(2.15b) G'x = (D- XI)y, 

which is of course very close to the equations 

(2.16a) Gy = mXx, 

(2.16b) G'x = XDy, 

that define MCA. As in MCA, it is shown next that if there is a permutation trans- 

forming the matrix to Robinson form, then the Fiedler ordering produces that per- 
mutation [2]. 

Theorem 2.2. If a matrix A is Robinson, then it has a monotone Fiedler vector. 

Proof. We begin by defining two useful matrices, V\ a (n 
? 

1) ? ? matrix given by 

(2.17) Vx = 

-1 1 

0 -1 

0 

1 

0 0 

and V2 a ? ? (? 
? 

1) matrix given by 

-1 

(2.18) V2 = 

0 

1 

1 

1 

0 

0 

1 

1 

0 

0 

Note that for any column vector ? we get V\x = (x2 
? xi,.-.,xn ? 

xn-i)', and 

that V1V2 = /n-l and V2V1 = In ? 
ue\, where u is a vector comprised of ones 

and ei = (1, 0,..., 0)'. Consider now any eigenvector ? of C(A), except the one 

corresponding to the ?? = 0 eigenvalue. We then have 

(2.19) C{A)x = \x& ViC(A)x = XVix & ViC(A)(In 
- 

ue'Jx = XV^x 

?? ViC{A){yW)x = XVxx & VViy = Xx, 

where V = ViC(A)V2 and y = V\x F 0. Hence, ? is an eigenvalue for both C(A) 
and V, for eigenvectors of C(A) other than u (corresponding to ?? = 0). Some 

algebra shows that 

? 

(2.20a) V(it j) = 
? (?& fc) 

- 
Att + *' *))> if { < ? 

j 

(2.20b) V(i, j) = 
?(-A(i, fc) + A(i + 1, fc)), if i > jy 
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which implies that since A is assumed to be a Robinson matrix V(i, j) < 0 for all 

off-diagonal elements. 

Define V = ???-? 
- V for some ? > max?{A?, V(i,i)}. Then, V(i,j) > 0 for 

all ?, j, has eigenvalues given by ?* = ? 
? ?, and shares the same set of eigen- 

vectors with V. But by the Perron-Frobenius theorem, there exists a nonnegative 

eigenvector y corresponding to the largest eigenvalue for V and to the smallest 

nonzero eigenvalue for V. But y = V\x and therefore ? is the Fiedler vector of 

C(A). Moreover, since y > 0 it implies that ? is nondecreasing and the result 

follows. D 

Theorem 2.3. If a matrix A is pre-Robinson with a simple Fiedler value and a 

Fiedler vector without ties, then the permutation p induced by sorting the values in 

the Fiedler vector in increasing order makes A a Robinson matrix. The same holds 

true if the elements of the Fiedler vector are sorted in decreasing order. 

Proof Due to the assumptions made, the Fiedler vector ? is unique up to multi- 

plication by a constant. Notice that permuting A merely changes the order of the 

entries in x. Suppose that a permuted version of A is Robinson. By Theorem 2.2 it 

has a monotone Fiedler vector x, which is unique since the Fiedler value is simple. 
Moreover, since ? has no tied values, the permutation must correspond to either an 

increasing or a decreasing order of the values of x. D 

In the presence of tied values in the Fiedler vector, one needs to examine all 

possible permutations induced (for more details see [2]). 

2.4.3. Example. The ordering of the sleeping bags and categories computed by 
MCA is given in Table 5 below. We see in the parallelogram structure of the table 

the same ordering of sleeping bags and categories that we have already seen in 

other analyses. Observe that we don't quite have the consecutive ones property. 

Major deviations are the "One Kilo Bag" and the "Kompakt Basic", which are 

cheap and filled with synthetic fiber, but still classified as good. Similarly, although 
the "Eiger" is expensive and filled with down, it is not good, only acceptable. If we 
use the two eigenvectors corresponding to the two smallest nonzero eigenvalues of 

C(A) (i.e. the Fiedler value and the second smallest nonzero eigenvalue), we find 
the solution shown in Figure 9. The resulting graph plot has a lot of similarities to 
the one corresponding to the MCA solution (see Figure 2), since both techniques 
recover the parallelogram structure in the sleeping bag data. However, the absence 
of a centroid principle for the solution based on the Fiedler vectors results in placing 
most vertices (both objects and categories) on the periphery of the graph. 
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Table 5. MCA Seriation of Sleeping Bags 
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Figure 9. Graph plot of the sleeping bag data using Fiedler vectors. 



GRAPH LAYOUT 239 

3. Layout Methods 

3.1. Introduction. In this section we discuss the two types of layout algorithms 

already mentioned in Section 1.4.3. The first class minimizes the number of edge 

crossings in a straight-line layout. It is especially interesting for graphs with lay- 

ers, where the only edges are between layers. The second class are the spring or 

force-directed algorithms, which use a physical analogy to portray the graph as a 

mechanical and/or electric system in which forces pull and push the edges. 

3.2. Minimum Straightline Crossing Algorithms. Suppose we have a bipartite 

graph. We agree to put the two layers of the graph at equal intervals on two parallel 
lines. We then find the permutations of the objects in each layer that minimizes 

the number of line crossings. There is also a one-sided version of the algorithm, 
in which the order in one layer is fixed. In [18] it is shown that even the one- 

sided problem is NP-hard, so heuristics are needed to solve even moderately sized 

problems. Among the heuristics discussed most frequently are the barycenter and 

median heuristics. In our context, we could fix the objects on one of the lines, and 

then compute the category positions as the means or medians of the objects in the 

category. 

More interesting results on straightline crossing minimization are provided in [34]. 
The authors implement an exact algorithm for the one-sided case that turns out to 

work reasonably well even for problems with up to 60 vertices. For the two-sided 

problem the iterated barycenter method, which is basically what we call recipro- 
cal averaging, turned out to be the best heuristic. In fact, it even outperforms the 

method which iteratively alternates the exact optimal one-sided solutions. 

Let us first translate this into the graph-plot we deal with. The objects are located 

on one layer, while the categories of all variables on a second layer. But it is more 

interesting to look at the m + 1-layered graph, which has a layer for each variable, 

and an additional one for the objects. Take two variables, for instance, and locate 

the objects in the middle of the three parallel lines. Variable one is on the right 
of the object-line, variable two is on the left. If the graph-plot does not have any 

crossings, then the categories of a variable correspond with disjoint intervals of 

objects. Clearly m variables can be accommodated in a three-dimensional graph 

plot, in which the m lines are on a cylinder with the objects on the axes. Finding 

orderings without crossings is the same as parallelogram analysis. 

3.2.1. Ordering Variables in PCP. One obvious problem in parallel coordinate 

plotting is how to order the variables, i.e. how to order the parallel vertical lines in 

the plane. This could be done by minimizing the line crossings in the m-layered 

graph. It could also be done by minimizing the amount of ink, as we do in MCA. 

Of course the MCA solution is completely independent of the order of the vari- 

ables. The amount of ink, i.e. the sum of squares of the lengths of the n(m 
? 

1) 
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line segments, does depend on the order. Except for end effects, minimizing total 

squared length means maximizing 

m-l 

(3.1) ??) = 
S,???+&>+?- 

over all y such that y'Dy = 1, and this is a function of the order of the variables. 

Finding the optimal order is, again, a form of seriation. It is related to the traveling 
salesman problem and the existence of Hamiltonian cycles in graphs. If homogene- 

ity is large, i.e. if we can scale the variables such that the broken lines in the parallel 
coordinate plot are almost horizontal, then changing the order of the variables will 

make very little difference. 

3.3. Force-directed or Spring Algorithms. 

3.3.1. General Idea. In [3, Chapter 10] a general approach to force-directed graph 

drawing methods is outlined, that unifies many previous isolated and rather ill- 

defined methods. The force on vertex j is made up out of more elementary forces 

that are defined for each pair of vertices. There is a mechanical or spring force 

pulling at all pairs (?,j) that are connected, and there is an electrical force pushing 
at all pairs, also the ones that are not connected. Thus the force on vertex i is 

? ? 

(3.2a) F(t) = 
J2aijfij- ? gij% 
j=i j=ijfr 

where A = 
{a??} is the adjacency matrix of the graph. It is assumed, in addition, 

that the springs follow Hooke's law, and the electrical force follows an inverse 

square law. This means that 

(3.2b) Ui = WMA*) 
- 

^)f-^y 

(3.2c) 
^=^??^?1, 

where Ay is the zero-energy length of the spring connecting i and j, Wij is the 

stiffness of the spring, and Uij is the strength of the electrical repulsion. 

The choice of the forces is ad-hoc. In [17] and [54] logarithmic springs are used, 

i.e. 

/a i\ t ? ?^(?)\ Xi - 
Xj 

(3.3) 
?.=t?i.log(^j_l. 

In [21], the attractive forces are proportional to the square of the distance, while the 

repulsive force is the inverse of the distance. Sugiyama and Misue [54] introduce a 

third force, by adding a magnetic field that works globally on all springs, and that 

can be parallel, radial, or concentric. This field will tend to influence the global 
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form of the drawing. It is clear that spring algorithms are based on a simple and at- 

tractive idea, but implementing them requires a number of rather arbitrary choices. 

We concentrate on the simpler ones. 

3.3.2. Loss Function. Implementing the spring algorithm of (3.2) means minimiz- 

ing 

(3.4) a(Jr) = 
??a?i^(4?W-?o)2 + ? ? ^???? 
?=ij=i t=ii=u# ****' 

This is obviously close to the MDS problem of minimizing (2.7). The difference is 

that in the spring algorithm we add a penalty for points being too close together. 

Along the same lines as before, we can show that the algorithm that updates X as 

follows 

(3.5a) ?(*+1> = V+{B(XW) + H(xW)}X(k\ 

where 

(3.5b) H{X) = 

?(???), 

and U/D3(X) is the matrix with elements 
Uij/d\j(X), is globally convergent. 

3.3.3. The Barycentric Method. One of the earliest graph drawing methods is the 

barycentric method of Tutte [56]. It is the special case of (3.2) in which Sij = 0, 

Wij = 1, and there are no electrical forces. Thus the loss function is simply given 
by 

(3.6) *(*) = 
??>;4(*)? 
t=l ?=1 

This is the same loss function as the one used in MCA, and it leads to a familiar 

problem. The minimizing solution is X ? 0. Unlike in MCA we do not normalize 
this problem away by requiring X'X = I, but we partition the vertex set into a set 
of (at least three) fixed vertices and free vertices. We then minimize over the free 
vertices. In a one-dimensional MCA context this approach was already discussed 
in [29]. 

Not surprisingly, the algorithm that solves this problem is to set the location of 
a free vertex equal to the centroid of its neighbors, and to cycle over free vertices. 
In the case of the graph with adjacency matrix given by (1.1) this is precisely the 

reciprocal averaging algorithm of MCA (without normalization, and without up- 
dating the fixed vertices). We refer to [3, Section 10.2] for a discussion on how 
well the barycentric method draws typical graphs. From the data analysis point of 

view, we merely have to compare normalizing by fixing a number of points with 

normalizing by requiring orthonormality. The obvious question in this context is 
"Which Points ?" to fix. 
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For our example, we give two different solutions. In the first one (see Figure 

10) we fix the three categories of variable "Price" at the corners of an equilateral 

triangle, and we fit in the remaining points. In the second solution (see Figure 11) 
we fix the three categories of variable "Quality" in the same way. In both plots 
we insert the category quantifications by using the centroid principle, and we draw 

the graph plot. These graph plots are less satisfactory than the MCA graph plot 
2. Fixed points are at the outskirts of the plot, the other points are clumped on 

the inside near the centroid of the plot. This becomes obvious if we rewrite the 

stationary equations for the barycentric method, with a number of category points 

fixed, as 

(3.7a) X^-{GlYi + G2Y2h 
m 

(3.7b) Y2 = D?G'2X, 

where Yi,Gi,D\ correspond to the fixed vertices and Y2>G2i D2 to the free ver- 

tices. If we solve these equations we find 

(3.8a) X = 
?(/ 

- 
?G^J1^)-1^, m m 

(3.8b) Y2 = 
^L^-iG' g y 
m ? 1 

This shows that objects and free categories will be inside the convex hull of the 

fixed categories, and clumped in the middle especially in case m is large. 

As an experiment, we also implemented a version of the barycentric method using 
the penalty terms in (3.2), so that Sij = 0 and Wij 

= 1 and Uij = .01. This does 

not look good at all, so it seems the penalties are much too harsh. More research, 

perhaps also with other penalty functions, is obviously needed here. 

3.3.4. More on Springs and MDS. A two-dimensional graph layout algorithm that 

is basically MDS was proposed by Kamada and Kawai [35]. Essentially the same 

algorithm was proposed earlier in [37]. A (straightforward) three dimensional ex- 

tension is discussed by Kumar and Fowler [40]. It is argued in [8] that three- 

dimensional pictures of graphs, such as the ones based on MDS, often are more 

"nice" than two-dimensional ones. The main idea in this class of graph layout al- 

gorithms is to approximate path length distances in a graph by Euclidean distances. 

We assume a connected graph with ? vertices, in which there is a path between 

any two vertices. The loss function is (2.7), where 5y is the path length distance 

between nodes i and j, and iu?? is some known weight. Kamada and Kawai [35] 

suggest using wy proportional to 
S^2. 

Kruskal and Seery [37] seem to use Wij = 1. 

They also assign a large number for the distance of a pair of vertices that are not 

connected. 

Now of course our bipartite multivariable graph is not connected. In fact, the 

graph theoretical distances are either zero (for the self-distances), or one (for ob- 

jects and the categories they are in), or two (for objects which share a category, or 
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Figure 12. Barycentric Solution with Eades Penalties 

categories which share an object) or infinity (for the rest). It may not be useful to 

apply MDS to these distances directly. In fact, Kruskal and Seery suggest using 
non-metric multidimensional scaling, in which we minimize 

SG=?S"=??%-<??))2 
(3.9) s(?,?) = 

SG=?S?=?4(*) 

over all drawings X and over all ? = 
{Sij} that are monotonie with the graph 

theoretical distances. 

On the other hand, we can use MDS on the off-diagonal distances only, as we 

have done in MCA, the barycentric method, and the spring algorithm with inverse- 

distance penalty terms. 

4. Concluding Remarks 

In this paper we have considered several popular multivariate data analysis tech- 

niques such as MCA, MDS, parallel coordinate plotting, seriation, and graph layout 

methods, such as force directed and minimum straightline crossing algorithms, and 

explored the relationship between the two classes. The representation of a multi- 

variate (categorical) data set as a bipartite graph and the desire to make the patterns 
in the data more accessible by displaying them in a picture, provide the common 

links between these two sets of techniques. Moreover, it is shown that some of the 
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popular graph drawing algorithms are closely related to MDS. Some of these tech- 

niques, such as MCA and spectral methods of seriation, are easy and inexpensive to 

apply to large data sets (both in terms of objects and variables), while the remaining 
ones are much more computationally demanding since they rely on iterative algo- 

rithms, thus rendering them inefficient for mining and analyzing large databanks. It 

is interesting to examine how these techniques perform when applied to more com- 

plicated data structures than the one examined here. A first step in that direction 

is taken in [46, 48], where MCA is extended to handle hierarchical data (e.g. stu- 

dents clustered within schools) that can be represented by direct sums of bipartite 

graphs. However, relational databases give rise to more complicated graph struc- 

tures such as multipartite graphs and new tools are needed for their efficient visual 

representation. Finally, further research is required to shed light to the following 
third questions: first, what is the appropriate dimensionality that provides a "satis- 

factory" drawing of a graph, second, what are the most "useful" and "informative" 

distances to be approximated by MDS type methods and third how penalty methods 

can lead to improved drawings. A general data analytic framework is introduced in 

[15] that addresses the latter two questions. 
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