HOMOGENEITY ANALYSIS WITH RATIOS OF ALTERNATIVE
NORMS

JAN DE LEEUW AND GEORGE MICHAILIDES

Abstract.

1. Homogeneity Analysis

1.1. One-dimensional.In (one-dimensionalhomogeneity analysiglso
known asmultiple correspondence analysand under many other names)
we minimize a function of the form

1 & ,
oY) = ) (X = Gjy) (X~ Gy,
j=1

where theGj aren x kj indicator matrices(or dummie} coding then
observationon variable j into k; categories In order to prevent trivial
solutions, we require’x = 1. For an extensive discussion of the technique
we refer to Gifi[1990] and Michailidis and Leeuw [1999], alhough the basics
are already discussed in detail in Guttman [1941].

As a first step towards the solution, define, using the Moore-Penrose inverse,
Pj£G;G] = G;(G|G))"G],
and
p2

S

m
Z Pj.
j=1
Then it is easy to see that minimizimgx, y) overx andy can be done by
maximizing the Rayleigh quotient
X'PXx

A
AP = X'X

overx, and then settingj =G x.
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Itis trivial that we could also defin®; = | — Pj andQ as the average of
the Qj, and then minimize

A X'QX
Nevertheless it is important to state the equivalence of maximizingnd

minimizing A 5 here, because we will introduce generalizations in which the
two problems are different.

For interpretational purposes, we note tRais the orthogonal projector on
the column space @, andQ)j is the orthogonal projector on its null space.
ThusPjx replaces elements afby their category means on varialjleand

Q;jx replacesx by deviations from those category means. The between-
category variance i’ P x and the within-category variancexsQx.

We should also note that

1 & x/PJx
Ap(X) = — ,
p(X) mz X'X
=1
1 . X'Qjx
Aqa(X) = — ,
QX mz X'X

Il
[EN

j
another trivial equivalence which will get lost in our later examples.

Although homogeneity analysis is a very useful technique, as many examples
in many areas show, there are some disadvantages which can complicate the
interpretations. In the one-dimensional context, the main one is that the
technique is very sensitive to outliers.

1.2. Multidimensional. Inthe multidimensional case we look for more than
one solution. There are three obvious ways to proceed.

e Thefirstoneisto observe that the stationary equations forhomogene-
ity analysisP x = Ax have more than one solution. Each eigenvalue
of P defines a solution, and each solution can be used to define an
additional dimension.

e We could also proceed by optimizirig, (x) over allx, adding the
requirement thak must be orthogonal to all the previous solutions.
This is thesuccessivstrategy.

e Finally, there is thesimultaneoustrategy. We maximize X'P X
over X’X = 1, or equivalently we maximizér (X’X)"1X'PX.

Thus we compute a number of solutions at the same time, replacing
the solution vectoxk by a solution matrixX.
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The nice property of homogeneity analysis is that all three strategies give the
same multidimensional solution, the eigenvector®aforresponding with

the largest eigenvalues. Again, this is a property which we will not be able
to generalize to our later techniques.

It seems perhaps more straightforward to define

tr X’PX

tr X'X '’
and then maximize this oveX. Unfortunately this does not really give a
multidimensional solution, because it simply sets each dimension equal to

the eigenvector corresponding with the dominant eigenvalue. This does not
happen for

Ap(X) =

det(X'P X)
det(X’X) ’
so it becomes interesting to look for other generalizations of these ratio mea-

sures of homogeneity that do not collapse the points into one-dimensional
subspaces.

)Lp(x) =

Multidimensional generalizations have another problematic aspect. In many
cases it produces what is commonly known as “horseshoes”, in which sub-
sequent solutions are quadratic and cubic functions of the first solution,
and consequently do not contribute independent information. See Schriever
[1985] and Bekker and Leeuw [1988] for extensive discussions of horse-
shoes.

2. Reformulation

2.1. One-dimensional. For positive semi-definité, define the semi-norm

X[ 4 2 VX AX.
Clearly
X112
Ap(X) = )
112

and we see that the one-dimensional homogeneity analysis problem can be
defined as maximizing the ratio of two norms (more precisely, of a semi-
norm and a norm). Of course

IXI11p = I1IPY2x111, = 11IPX|[lp-»

using the Moore-Penrose inverBe .
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2.2. Multidimensional. Itis more complicated to give a satisfactory refor-
mulation of the multidimensional problem in these terms. We can, of course,

define a family of matrix normgX|| a 2V X’AX, and set

200 & 1Xle
X1

but unfortunately this does not lead to a useful technique. The stationary
equations ard® X = A X, which shows that the columns of will all be
equal to the dominant eigenvector Bf This is why we had to require
X’X =1 in the multidimensional version of homogeneity analysis, which
means that we really deal with the multivariate Rayleigh quotient

LX) =tr (X'X)"X'PX.

This does not readily translate into maximizing a ratio of norms. Never-
theless we think the norm formulation is still interesting, because it can be
readily generalized and may lead to approaches for dealing with the outlier
and horseshoe problems.

3. Generalizations

3.1. One-dimensional. In this paper we will deal with the following gener-
alization of one-dimensional homogeneity analysis. We want to maximize
Xl p

Y (x)’

whereys is any vector norm. Infact, we will also study the even more general
problem in which we maximize

AP,y (X) =

d(PXx)
A = ,

AR

or minimize 5(0%)

X
A = :

ARETCY

where¢ andys are both arbitrary vector norms.

There is a further generalization possible: in HOMALS we really minimize

1 & 18
=Y "min|x = Gjyills = = X — Pixi 12 = (IX[I2 = [IXII2.
2 minlx = Gjyjliz = = > X = Pixjllz = IxI2 — XI5
j=1 =1
This suggests
YL ¢ (Pix)

A =
R (X) mxax MY (X)

9
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or we minimize the same criterion witQ; instead ofP;. Observe that
HOMALS is not even a special case of this generalization, because in
HOMALS we add squared norms in the numerator.

Indeed, we can go even further than this. The operafprand Q; are
projections in the least squares norm. If we use general norms it is more
consistent to define

YL miny ¢(x — Gjyj)
my (X)

9

Aoy (X) = mxin

3.2. Multidimensional. There are two obvious ways to generalize these ap-
proaches to more than one dimension. The first onsuseessivapproach:
after we have computed a solution we compute the next solution with the
added requirement that it is orthogonal to the previous one. And then the
third one with the requirements that it is orthogonal to the previous two, and
so on. The second isamultaneouspproach: we reformulate our criteria
using matrix norms, and optimize over all dimensions at the same time.

Thus in the simultaneous case we are interested in maximizing

1XI
hpy(X) = —F

Y (X)’

whereyr is any matrix norm, or in maximizing
_9(PX)
P =000

Observe thatwe have already established that maxirrﬂzFi[wwith Y(X) =
| X|l, does not work. Hopefully, we can find other matrix norms that are
better behaved.

4. Robert’s Algorithm

Robert’s algorithm [Robelrt, 1967], also studied in more specific cases by Boyd
[1974] and Tap[[1976, 1975, 1984, 1985], maximizes the ratio of two norms

¢ (X)
Apy(X) = ——.
T 0
It was first applied in data analysis by De Leeuw [1977], in the original
derivation of the majorization method for multidimensional scaling.
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The algorithm starts with an arbitrary and then generates two sequences
Xk andyy according to the rules

Yk € 0 (Xk),
Xk+1 € Y (V).
Theorem 4.1.

Proof. Clearly ¢°(y) = ¥ (x) = 1 for allk. Also ¢ (x) = (X, yk) and
¥°(Yi) = (Xi+1, Yk). Therefor

d(X) = (X, Yk) < ¥ (Y)Y (Xk) = ¥°(Yk),
VO (Yk) = (Xkt1, Yk) < @ (Xk11)9°(Yk) = ¢ (Xk+1)»

and
d(XK) < Y (Vi) < ¢ (Xks1)-
If we define
o Ye(X)
A = 7
o009 50

then the chain above can also be written as

Mgy (i) < Ag oy (V) < Ag oy (Xkt1)

which shows that  (Xk) and)\(‘;’w(yk) are bounded increasing sequences,
converging to the same value. Since subdifferentials are closed maps and
all iterates are in a compact set, we actually see that any accumulation point
of the algorithm is a stationary point [Zangwill, 1969]. U

Robert’s algorithm can be tied in with general block relaxation theory [De
Leeuw, 1994] by observing that

d(X) max (X, y)

AX) = —— = max——>—.
¥ (X) y ¢y (X)¢°(y)
Thus, letting
A Xy
SN = 0pe(y)
we see that

maxa(x) = fQ’%XS X, y).

Thusé is anaugmentatiorof A, and alternating maximizatiohover x for
fixed y and overy for fixed x is exactly Robert’s algorithm.
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Now minimizing A (X) is clearly equivalent to maximizing/1(x), and thus
for minimization we can use the algorithm

Yk € 0Y (X),
Xk+1 € 09°(Yk)-

5. Results for specific norms

5.1. Schatten p norms.In this section we look at maximizing

tr X'PX
Yp(X)

over all X e R™", wherey, is the Schatterp-norm, i.e. thef, norm of
the singular values.

APy =

Now

Yp(X) = [tr (X' X)P/2]H/P
It is clear that the problem of maximizinty X'P X over all X such that
tr (X’X)P/2 = 1is equivalent to the Schattgmhomogeneity analysis prob-
lem we formulated above. It turns out that this problem can be solved by
conventional eigenvalue-eigenvector methods.

The stationary equations aReX = ;LX(X/X)’%2 andtr (X’X)P/2 = 1.

It follows that at a solutionn = tr X’P X. SupposeX = KAL' is the
singular value decomposition &f. Then the stationary equations become
PKA = uKAP Landtr AP = 1. We must solve this foK € R"*" with

K’K = | and for diagonalA > 0. The diagonal elements df are also
non-increasing along the diagonal. Observe that the right singular vectors
L are irrelevant for the Schatten problem, because both norms are invariant
under right multiplication ofX by a orthonormal matrix. In fact we can
require without loss of generality that the columnsXoére orthogonal.

We shall actually solve sets of stationary equations, each set defined by
the additional condition that the firstelements ofA are positive and the
lastr — s elements are equal to zero, wigh= 1, - - - , r. Of course we only
solve for the firss columns ofK and for the remaining positive diagonal
elements ofA. To indicate this, we write the parts we are solving fokas

andAs. Thus, for problens, we solveP K = 1K A2 andtr AL = 1.

Let us first deal with the situatiop = 2, in which the Schatten norm
is the Frobenius norm. Then we must haR&, = ©K, which is only
possible ifP has an eigenvalue of multiplicity at least equabtoSinceu
is equal to that eigenvalue, atd X'P X = u, we see that the maximum
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is attained by choosing the largest eigenvalu® ofKs is a corresponding
set of eigenvectors. Generally, the multiplicity of the largest eigenvalue
will be one, and thu will be one-dimensional. In any case fpr= 2 the
maximum ofip y is the largest eigenvalue 8. If we collectall eigenvalues

in the diagonal matrix in a vectd@e, then the optimum is the spectral norm,
or the Schatteno-norm, ofQ2.

If p # 2itfollows thatKg consists o < r orthogonal eigenvectors &,
andMA‘l‘,’_2 is equal to the corresponding nonzero eigenvalues, say collected
in a diagonal matriX2s . Thus

p

1 -2
tr AP =tr | =Qs =1,
7

and thuse = [tr 319, whereq = p/(p — 2). Thus the optimum is the
Schatterg-norm of Qs. Sincetr X'P X = p, it follows we must choose the
eigenvalues such that this norm is maximized.

Again, there are two cases to consider.plt- 2 thenq is positive. The
optimum is found by choosing thelargest eigenvalues, i.e. the optimum
is the Ky Fan(s, q) norm of P. The very best solution is the Ky Fan
(r,gq) norm. And, moreover, the solution fof is identical to the usual
homogeneity analysis solution based on alternating least squanes< &
thenq is negative. We want to chooseeigenvalues such that Q4 is a
small as possible. This means that we again chooss#ingest eigenvalues,
but if we varys we see that the best solution is obtainedset 1, in which
case we have the largest eigenvalue only,amlagain equal to the spectral
norm of P.

Thus, in summary, maximizing the ratio with the usual naytn X’P X in
the numerator and the Schattpmorm in the denominator gives the same
solution as classical least squares homogeneity analygis-i2 and gives
the eigenvector corresponding to the largest eigenvalieaxf a solution if

p < 2. Forp > 2 the optimal value is the Ky Fam, q) norm of P, where

g = p/(p—2). Forp < 2itis the spectral norm.

From the data analysis point of view this means that using Schattemms

to normalize does not give us anything new. It is interesting, however, that
classical homogeneity analysis solutions can be recovered from maximiza-
tion of a ratio of two matrix norms, without imposing orthonormality re-
strictions.

5.2. Orthogonally invariant norms.
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6. Algorithm

We have versions of the basic algorithm in both R and Matlab. The R
version is build on top of the existing homogeneity analysis implementa-
tion [de Leeuw and Ouwehand, 2003], and it uses some subroutines from
that implementation. R code is in the appendix. Since the algorithm is so
simple, the implementation is straightforward. The two norms are passed as
parameters, so that users can add more norms to the repertoire of the algo-
rithm.. The matrixP, which can be both large and dense, is never actually
computed and stored.

7. Examples
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Appendix A. Norms

In this Appendix we collect, for easy reference, some material about vector
and matrix norms. Most of it is classical, but some other results, directly
related to the discussion in our paper, are relatively recent.

A.1l. Generalities. First some terminology [Rockafellar, 1970, Section 15].
A gaugeis a non-negative positively homogeneous convex function. Thus
n is a gauge if

e 1(X) > 0, VX,
e n(AX) = An(X), VX, VA > O,
o n(X+Yy) < n(X)+n(y), VX, Vy

A gauge is asemi-normf it is finite everywhere and

e 1(X) > 0, VX,
e N(AX) = |A|n(X), VX, VA,
o N(X+Y) <n(X)+n(y), VX, Vy,

and it is anormif it is finite everywhere and

e 1(X) > 0,V¥x # 0,
o N(AX) = |AIn(X), VX, VA,
e N(X+Y) < n(X)+n(y), VX, Vy,

A gauge, or norm, or semi-norm $ymmetridf, in addition,

e n(X) = n(I1x), VX, VII, with TT a permutation matrix,
e n(X) = n(XX), VX, VI, with X a sign matrix, i.e. a diagonal matrix
with elementst1.

We write n° for thedual (or polar) gauge, i.e.
n°(y) =inf {A = 0] (X, y) = An(x), Vx},

which can be written for a norm as

o _ (Xv Y)
R ST

This definition implies
(X, y) = nOOn°(y),

which is the generalization of Holder’s inequality we use to prove conver-
gence of our algorithm.
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For a norny (actually, for any convex function) a vectgiis asubgradient
atx if, for all z,

n(2) = n(X) +{y, z—X).
See Rockafellar [1970, Section 23]. The set of all subgradients aif
x is the subdifferentialat x, written asan(x). Because norms are finite,
their subdifferential is a nonempty compact convex set. If the npris
differentiable atx, then its only subgradient is the gradienkat

By looking at the ray = 6%, with & > 0, and by using the homogeneity of
the norm, we see that if € dn(x) thenn(x) = (y, x). Thus subgradients
y of n atx are also defined by the condition thatz) > (y, z) for all zand
n(x) = (y, z). In other words

Sy
T =D

and the maximum is attained at= x.

Appendix B. Matrix Norms

There are excellent reviews of the theory and application of matrix norms in
Householder [1964, Chapter 2], Horn and Johnhson [1985, Chapter 5], and
Stewart [2001, Chapter 1, Section 2] . There is some disagreement over
terminology, however.

Both Householder and Horn and Johnson emphasize square matrices, and
call a normn amatrix normif it satisfies, in addition to the usual conditions,

e 1(AB) = n(An(B),VA, B

Norms on the space of square matrices which do not satisfy this condition
are calledgeneralized matrix norms

We prefer Stewart’s terminology. A matrix norm is simply a norm defined
onR"™M_ And three matrix normsgs, n2, andns areconsistentf

e N1(AB) < n2(A)n3(B), VA, B
B.1. Vector norms.

B.2. Orthogonally invariant norms. This is an interesting class of norms,
studied first byf Neumann [1987]. They have the defining characteristic
thatn(U XV) = n(X) for all square orthonormald andV. Some obvious
examples are thierobenius normwhich we write a$|| X|||;, thetrace norm
which is the sum of the singular values, and spectral normwhich is the
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largest singular value. Von Neumann also proved the basic theorem that any
orthogonally invariant norm is a symmetric gauge function of the singular
values (also see Mirsky [1960]). We use the notatiofX) = ¢ (o (X)),

with ¢ a symmetric gauge, and with(X) the vector of singular values of

X. A good overview of the properties of orthogonally invariant norms is
in[Horn and Johnson [1991, Section 3.5].

The Frobenius norm, the trace norm, and the spectral norm are all examples
of the Schattenp-norms which are simply the, norms of the vectors of
singular values. For Frobenius we hgve= 2, for tracep = 1, and for the
spectral nornp = +o0.

Another class of orthogonally invariant norms areklyé-ank-norms which

are the sums of thlelargest singular values. They play a central role in the
theory of orthogonally invariant norms. Clearly both the spectral and the
trace norm are in this class.

We can combine the Schatten and Ky Fan classes to find the cl&ss of
Fan (k, p)-norms These are simply thé, norms of thek largest singular
values.

There are several general results available for subgradients of orthogonally
invariant norms.|[[Watson, 1962; Zietak, 1988, 1993} Sa,1994; L ewis| 1995].
Watson [1992, Theorem 2] shows that for any orthogonally invariant norm
Y corresponding to a symmetric gaugeve have

0y (X) = conv{Kdiag(d)L’ | X = Kdiag(A)L’, d € 3¢ (1)}.

Itis shown by Zietak [1993] arid Sa [1994] that it is not necessary to actually
take the convex hull, because the set inside the brackets is already convex.
Lewis [1995, Corollary 2.5] proves the result for general orthogonally invari-
ant functions, which are not necessarily norms or gauges. It is also shown
by|Lewis [1995, Theorem 3.1] that is differentiable atA if and only if ¢

is differentiable at (A) and that

Vi (X) = Kdiag(Ve (o (X)L’
whereX = Kdiag(o (X))L’. Moreover
o (VY (X)) = V(o (X).

B.3. Operator norms.

Appendix C. Code



10

15

20

25

30

35

40

RATIOS OF NORMS 13
require (homals)

normHors—function (mydat, datanorm, dualnorm,ndim=2,eps=6homit=10) {
x—startX (mydat, ndim, homit)
while(1) {
y<—datanorm(x, mydat)
Z—dualnorm(y)
print (c(sum(zxdatanorm(z , mydat) sum(y«dualnorm(y))))
if (mex(abs(x-z))<eps) break
-z
}
normHomPlot(x, mydateparsg substitute(mydat)) ,
deparsgsubstitute(datanorm))deparsg substitute(dualnorm)))

}

normHomPlst-function (x, mydat,name, datanorm, dualnorm) {

xlim <= c(min(x[, 1]) , max(x[, 1]))

ylim <= c(min(x[, 2]) , max(x[, 2]))

name—paste(name, datanorm, dualnorm)

pdf(file=paste(name, "pdf",sep="."))

graphplot(name, mydat,x,1,2)

for (i in 1:dim(mydat)[2]) {
catplot(namdabels(mydat) [[2]][1],mydat[,i],computeY (mydat], i

1,x) ,xlim,ylim,1,2)

starplot(namdabels(mydat) [[2]][i],mydat[,i],FALSE,x,1,2)
}

dev. off ()

}

startX—function (mydat,ndim, homit) {
n<—dim(mydat) [1]; x—matrix (morm (nxndim) ,n,ndim)
for (i in 1: homit) x—newX(mydat, x)

x—apply(x, 2, function(z) z — mean(z))

svd(x)$u

}

newX—function (mydat, x){
m—dim(mydat) [2]; r—dim(mydat)[1]; z—matrix (0O,ndim(x)[2])
for (j in 1:m){
o<—mydat[,]]; yapply(x, 2, function(z) tapply(z, g,
mear)) ;
K:Z-l-y[gv]
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}

z—as.matrix (apply(z, 2, function(z) z — mean(z)))/m

}

sumS—function (x) {s<—svd(x); sb¥60t (s$v)}
maxS—function (x) {s<—svd(x); outer(s$u[,1],sbv[,1])}
sumis—function (x) sign(x)
maxis—function (x) ifelse(abs(x)==max(abs(x)),sign(x),0)
quad—function (x) x/sqrt (sum(x"2))
powr—function (x) sign(x):(abs(x)"(pp—1))x(sum(abs(x)"pp)~((1/pp)-1))
pows—function (x) {s<—svd(x); d<—s$d[1:kk];

(sum(d"pp) *((1/pp)—1))=(sSu[, 1:kkpodiag(d”(pp-1)pofet (sHv

[,1:kk])) }

maxLR—function (x,mydat) {z—newX(mydat,x); sumL(z)}
sumLR—function (x,mydat) {z-newX(mydat,x) ; maxL(z)}
sumSR-function (x, mydat) {znewX(mydat,X) ; sumS(z)}
maxSR—function (x,mydat) {znewX(mydat,x); maxS(z)}
guadR—function (x,mydat) {z-newX(mydat,x); &-sqrt(sum(x«z)); z/a}
powrR—function (x, mydat) {z-newX(mydat,x); powr(z)}
quitP<—function (x, mydat) {
m—dim(mydat) [2]; r—dim(mydat) [1]; Zz—matrix (0,ndim(x)[2])
for (j in 1:m){

o<—mydat[,]]; yapply(x, 2, function(z) tapply(z, g,

mear)) ;
h<-y[g.]; a—saqrt(sum(x+h)); z—z+h/a

}

z—as.matrix (apply(z, 2, function(z) z —mean(z)))/m

}
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