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Abstract.

1. Homogeneity Analysis

1.1. One-dimensional.In (one-dimensional)homogeneity analysis(also
known asmultiple correspondence analysis, and under many other names)
we minimize a function of the form

σ(x, y)
1
=

1

m

m∑
j =1

(x − G j y j )
′(x − G j y j ),

where theG j are n × k j indicator matrices(or dummies) coding then
observationson variable j into k j categories. In order to prevent trivial
solutions, we requirex′x = 1. For an extensive discussion of the technique
we refer to Gifi [1990] and Michailidis and Leeuw [1999], alhough the basics
are already discussed in detail in Guttman [1941].

As a first step towards the solution, define, using the Moore-Penrose inverse,

Pj
1
= G j G

−

j = G j (G
′

j G j )
−G′

j ,

and

P
1
=

1

m

m∑
j =1

Pj .

Then it is easy to see that minimizingσ(x, y) overx andy can be done by
maximizing the Rayleigh quotient

λP(x)
1
=

x′Px

x′x
overx, and then settingy j = G−

j x.
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It is trivial that we could also defineQ j = I − Pj andQ as the average of
the Q j , and then minimize

λQ(x)
1
=

x′Qx

x′x
.

Nevertheless it is important to state the equivalence of maximizingλP and
minimizingλQ here, because we will introduce generalizations in which the
two problems are different.

For interpretational purposes, we note thatPj is the orthogonal projector on
the column space ofG j , andQ j is the orthogonal projector on its null space.
ThusPj x replaces elements ofx by their category means on variablej and
Q j x replacesx by deviations from those category means. The between-
category variance isx′Px and the within-category variance isx′Qx.

We should also note that

λP(x) =
1

m

m∑
j =1

x′Pj x

x′x
,

λQ(x) =
1

m

m∑
j =1

x′Q j x

x′x
,

another trivial equivalence which will get lost in our later examples.

Although homogeneity analysis is a very useful technique, as many examples
in many areas show, there are some disadvantages which can complicate the
interpretations. In the one-dimensional context, the main one is that the
technique is very sensitive to outliers.

1.2. Multidimensional. In the multidimensional case we look for more than
one solution. There are three obvious ways to proceed.

• The first one is to observe that the stationary equations for homogene-
ity analysisPx = λx have more than one solution. Each eigenvalue
of P defines a solution, and each solution can be used to define an
additional dimension.

• We could also proceed by optimizingλP(x) over all x, adding the
requirement thatx must be orthogonal to all the previous solutions.
This is thesuccessivestrategy.

• Finally, there is thesimultaneousstrategy. We maximizetr X′P X
over X′X = I , or equivalently we maximizetr (X′X)−1X′P X.
Thus we compute a number of solutions at the same time, replacing
the solution vectorx by a solution matrixX.
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The nice property of homogeneity analysis is that all three strategies give the
same multidimensional solution, the eigenvectors ofP corresponding with
the largest eigenvalues. Again, this is a property which we will not be able
to generalize to our later techniques.

It seems perhaps more straightforward to define

λP(X) =
tr X′P X

tr X′X
,

and then maximize this overX. Unfortunately this does not really give a
multidimensional solution, because it simply sets each dimension equal to
the eigenvector corresponding with the dominant eigenvalue. This does not
happen for

λP(X) =
det(X′P X)

det(X′X)
,

so it becomes interesting to look for other generalizations of these ratio mea-
sures of homogeneity that do not collapse the points into one-dimensional
subspaces.

Multidimensional generalizations have another problematic aspect. In many
cases it produces what is commonly known as “horseshoes”, in which sub-
sequent solutions are quadratic and cubic functions of the first solution,
and consequently do not contribute independent information. See Schriever
[1985] and Bekker and Leeuw [1988] for extensive discussions of horse-
shoes.

2. Reformulation

2.1. One-dimensional.For positive semi-definiteA, define the semi-norm

‖x‖A
1
=

√
x′ Ax.

Clearly

λP(x) =
‖x‖

2
P

‖x‖
2
I

,

and we see that the one-dimensional homogeneity analysis problem can be
defined as maximizing the ratio of two norms (more precisely, of a semi-
norm and a norm). Of course

|||x|||P = |||P1/2x|||I = |||Px|||P−,

using the Moore-Penrose inverseP−.
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2.2. Multidimensional. It is more complicated to give a satisfactory refor-
mulation of the multidimensional problem in these terms. We can, of course,

define a family of matrix norms‖X‖A
1
=

√
tr X′ AX, and set

λ(X)
1
=

‖X‖P

‖X‖|I
,

but unfortunately this does not lead to a useful technique. The stationary
equations areP X = λX, which shows that the columns ofX will all be
equal to the dominant eigenvector ofP. This is why we had to require
X′X = I in the multidimensional version of homogeneity analysis, which
means that we really deal with the multivariate Rayleigh quotient

λ(X) = tr (X′X)−X′P X.

This does not readily translate into maximizing a ratio of norms. Never-
theless we think the norm formulation is still interesting, because it can be
readily generalized and may lead to approaches for dealing with the outlier
and horseshoe problems.

3. Generalizations

3.1. One-dimensional.In this paper we will deal with the following gener-
alization of one-dimensional homogeneity analysis. We want to maximize

λP,ψ(x) =
‖x‖P

ψ(x)
,

whereψ is any vector norm. In fact, we will also study the even more general
problem in which we maximize

λφ,ψ(x) =
φ(Px)

ψ(x)
,

or minimize

λφ,ψ(x) =
φ(Qx)

ψ(x)
,

whereφ andψ are both arbitrary vector norms.

There is a further generalization possible: in HOMALS we really minimize

1

m

m∑
j =1

min
y j

‖x − G j y j ‖
2
2 =

1

m

m∑
j =1

‖x − Pj x j ‖
2
2 = ‖x‖

2
2 − ‖x‖

2
P.

This suggests

λφ,ψ(x) = max
x

∑m
j =1φ(Pj x)

mψ(x)
,
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or we minimize the same criterion withQ j instead ofPj . Observe that
HOMALS is not even a special case of this generalization, because in
HOMALS we add squared norms in the numerator.

Indeed, we can go even further than this. The operatorsPj and Q j are
projections in the least squares norm. If we use general norms it is more
consistent to define

λφ,ψ(x) = min
x

∑m
j =1 miny j φ(x − G j y j )

mψ(x)
,

3.2. Multidimensional. There are two obvious ways to generalize these ap-
proaches to more than one dimension. The first one is asuccessiveapproach:
after we have computed a solution we compute the next solution with the
added requirement that it is orthogonal to the previous one. And then the
third one with the requirements that it is orthogonal to the previous two, and
so on. The second is asimultaneousapproach: we reformulate our criteria
using matrix norms, and optimize over all dimensions at the same time.

Thus in the simultaneous case we are interested in maximizing

λP,ψ(X) =
‖X‖P

ψ(X)
,

whereψ is any matrix norm, or in maximizing

λφ,ψ(X) =
φ(P X)

ψ(X)
.

Observe that we have already established that maximizingλP,ψ withψ(X) =

‖X‖I does not work. Hopefully, we can find other matrix norms that are
better behaved.

4. Robert’s Algorithm

Robert’s algorithm [Robert, 1967], also studied in more specific cases by Boyd
[1974] and Tao [1976, 1975, 1984, 1985], maximizes the ratio of two norms

λφ,ψ(x) =
φ(x)

ψ(x)
.

It was first applied in data analysis by De Leeuw [1977], in the original
derivation of the majorization method for multidimensional scaling.
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The algorithm starts with an arbitraryx1 and then generates two sequences
xk andyk according to the rules

yk ∈ ∂φ(xk),

xk+1 ∈ ∂ψ◦(yk).

Theorem 4.1.

Proof. Clearlyφ◦(yk) = ψ(xk) = 1 for all k. Also φ(xk) = 〈xk, yk〉 and
ψ◦(yk) = 〈xk+1, yk〉. Therefor

φ(xk) = 〈xk, yk〉 ≤ ψ◦(yk)ψ(xk) = ψ◦(yk),

ψ◦(yk) = 〈xk+1, yk〉 ≤ φ(xk+1)φ
◦(yk) = φ(xk+1),

and

φ(xk) ≤ ψ◦(yk) ≤ φ(xk+1).

If we define

λ◦

φ,ψ(x) =
ψ◦(x)

φ◦(x)

then the chain above can also be written as

λφ,ψ(xk) ≤ λ◦

φ,ψ(yk) ≤ λφ,ψ(xk+1)

which shows thatλφ,ψ(xk) andλ◦

φ,ψ(yk) are bounded increasing sequences,
converging to the same value. Since subdifferentials are closed maps and
all iterates are in a compact set, we actually see that any accumulation point
of the algorithm is a stationary point [Zangwill, 1969]. �

Robert’s algorithm can be tied in with general block relaxation theory [De
Leeuw, 1994] by observing that

λ(x) =
φ(x)

ψ(x)
= max

y

〈x, y〉

ψ(x)φ◦(y)
.

Thus, letting

ξ(x, y)
1
=

〈x, y〉

ψ(x)φ◦(y)
,

we see that

max
x
λ(x) = max

x,y
ξ(x, y).

Thusξ is anaugmentationof λ, and alternating maximizationξ overx for
fixed y and overy for fixed x is exactly Robert’s algorithm.
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Now minimizingλ(x) is clearly equivalent to maximizing 1/λ(x), and thus
for minimization we can use the algorithm

yk ∈ ∂ψ(xk),

xk+1 ∈ ∂φ◦(yk).

5. Results for specific norms

5.1. Schatten p norms.In this section we look at maximizing

λP,ψ =

√
tr X′P X

ψp(X)
,

over all X ∈ Rn×r , whereψp is the Schattenp-norm, i.e. thè p norm of
the singular values.

Now
ψp(X) = [tr (X′X)p/2

]
1/p

It is clear that the problem of maximizingtr X′P X over all X such that
tr (X′X)p/2

= 1 is equivalent to the Schatten-p homogeneity analysis prob-
lem we formulated above. It turns out that this problem can be solved by
conventional eigenvalue-eigenvector methods.

The stationary equations areP X = µX(X′X)
p−2

2 and tr (X′X)p/2
= 1.

It follows that at a solutionµ = tr X′P X. SupposeX = K3L ′ is the
singular value decomposition ofX. Then the stationary equations become
P K3 = µK3p−1 andtr 3p

= 1. We must solve this forK ∈ Rn×r with
K ′K = I and for diagonal3 ≥ 0. The diagonal elements of3 are also
non-increasing along the diagonal. Observe that the right singular vectors
L are irrelevant for the Schatten problem, because both norms are invariant
under right multiplication ofX by a orthonormal matrix. In fact we can
require without loss of generality that the columns ofX are orthogonal.

We shall actually solver sets of stationary equations, each set defined by
the additional condition that the firsts elements of3 are positive and the
lastr − s elements are equal to zero, withs = 1, · · · , r . Of course we only
solve for the firsts columns ofK and for the remainings positive diagonal
elements of3. To indicate this, we write the parts we are solving for asKs

and3s. Thus, for problems, we solveP Ks = µKs3
p−2
s andtr 3p

s = 1.

Let us first deal with the situationp = 2, in which the Schatten norm
is the Frobenius norm. Then we must haveP Ks = µKs, which is only
possible ifP has an eigenvalue of multiplicity at least equal tos. Sinceµ
is equal to that eigenvalue, andtr X′P X = µ, we see that the maximum
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is attained by choosing the largest eigenvalue ofP. Ks is a corresponding
set of eigenvectors. Generally, the multiplicity of the largest eigenvalue
will be one, and thusX will be one-dimensional. In any case forp = 2 the
maximum ofλP,ψ is the largest eigenvalue ofP. If we collect all eigenvalues
in the diagonal matrix in a vector�, then the optimum is the spectral norm,
or the Schatten∞-norm, of�.

If p 6= 2 it follows thatKs consists ofs ≤ r orthogonal eigenvectors ofP,
andµ3p−2

s is equal to the corresponding nonzero eigenvalues, say collected
in a diagonal matrix�s . Thus

tr 3p
s = tr

[
1

µ
�s

] p
p−2

= 1,

and thusµ = [tr �q
s]

1/q, whereq = p/(p − 2). Thus the optimum is the
Schattenq-norm of�s. Sincetr X′P X = µ, it follows we must choose the
eigenvalues such that this norm is maximized.

Again, there are two cases to consider. Ifp > 2 thenq is positive. The
optimum is found by choosing thes largest eigenvalues, i.e. the optimum
is the Ky Fan(s,q) norm of P. The very best solution is the Ky Fan
(r,q) norm. And, moreover, the solution forX is identical to the usual
homogeneity analysis solution based on alternating least squares. Ifp < 2
thenq is negative. We want to chooses eigenvalues such thattr �q

s is a
small as possible. This means that we again choose thes largest eigenvalues,
but if we varys we see that the best solution is obtained fors = 1, in which
case we have the largest eigenvalue only, andµ is again equal to the spectral
norm of P.

Thus, in summary, maximizing the ratio with the usual norm
√

tr X′P X in
the numerator and the Schattenp norm in the denominator gives the same
solution as classical least squares homogeneity analysis ifp > 2 and gives
the eigenvector corresponding to the largest eigenvalue ofP as a solution if
p ≤ 2. For p > 2 the optimal value is the Ky Fan(r,q) norm of P, where
q = p/(p − 2). For p ≤ 2 it is the spectral norm.

From the data analysis point of view this means that using Schattenp-norms
to normalize does not give us anything new. It is interesting, however, that
classical homogeneity analysis solutions can be recovered from maximiza-
tion of a ratio of two matrix norms, without imposing orthonormality re-
strictions.

5.2. Orthogonally invariant norms.
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6. Algorithm

We have versions of the basic algorithm in both R and Matlab. The R
version is build on top of the existing homogeneity analysis implementa-
tion [de Leeuw and Ouwehand, 2003], and it uses some subroutines from
that implementation. R code is in the appendix. Since the algorithm is so
simple, the implementation is straightforward. The two norms are passed as
parameters, so that users can add more norms to the repertoire of the algo-
rithm.. The matrixP, which can be both large and dense, is never actually
computed and stored.

7. Examples
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Appendix A. Norms

In this Appendix we collect, for easy reference, some material about vector
and matrix norms. Most of it is classical, but some other results, directly
related to the discussion in our paper, are relatively recent.

A.1. Generalities. First some terminology [Rockafellar, 1970, Section 15].
A gaugeis a non-negative positively homogeneous convex function. Thus
η is a gauge if

• η(x) ≥ 0,∀x,
• η(λx) = λη(x),∀x,∀λ > 0,
• η(x + y) ≤ η(x)+ η(y),∀x,∀y

A gauge is asemi-normif it is finite everywhere and

• η(x) ≥ 0,∀x,
• η(λx) = |λ|η(x),∀x,∀λ,
• η(x + y) ≤ η(x)+ η(y),∀x,∀y,

and it is anorm if it is finite everywhere and

• η(x) > 0,∀x 6= 0,
• η(λx) = |λ|η(x),∀x,∀λ,
• η(x + y) ≤ η(x)+ η(y),∀x,∀y,

A gauge, or norm, or semi-norm issymmetricif, in addition,

• η(x) = η(5x),∀x,∀5, with5 a permutation matrix,
• η(x) = η(6x),∀x,∀6, with6 a sign matrix, i.e. a diagonal matrix

with elements±1.

We writeη◦ for thedual (or polar) gauge, i.e.

η◦(y) = inf {λ ≥ 0 | 〈x, y〉 ≤ λη(x),∀x},

which can be written for a norm as

η◦(y) = sup
x 6=0

〈x, y〉

η(x)
.

This definition implies
〈x, y〉 ≤ η(x)η◦(y),

which is the generalization of Hölder’s inequality we use to prove conver-
gence of our algorithm.
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For a normη (actually, for any convex function) a vectory is asubgradient
at x if, for all z,

η(z) ≥ η(x)+ 〈y, z − x〉.

See Rockafellar [1970, Section 23]. The set of all subgradients ofη at
x is thesubdifferentialat x, written as∂η(x). Because norms are finite,
their subdifferential is a nonempty compact convex set. If the normη is
differentiable atx, then its only subgradient is the gradient atx.

By looking at the rayz = θx, with θ > 0, and by using the homogeneity of
the norm, we see that ify ∈ ∂η(x) thenη(x) = 〈y, x〉. Thus subgradients
y of η at x are also defined by the condition thatη(z) ≥ 〈y, z〉 for all z and
η(x) = 〈y, z〉. In other words

η◦(y) = max
z6=0

〈y, z〉

η(z)
= 1,

and the maximum is attained atz = x.

Appendix B. Matrix Norms

There are excellent reviews of the theory and application of matrix norms in
Householder [1964, Chapter 2], Horn and Johnson [1985, Chapter 5], and
Stewart [2001, Chapter 1, Section 2] . There is some disagreement over
terminology, however.

Both Householder and Horn and Johnson emphasize square matrices, and
call a normη amatrix normif it satisfies, in addition to the usual conditions,

• η(AB) ≤ η(A)η(B),∀A, B

Norms on the space of square matrices which do not satisfy this condition
are calledgeneralized matrix norms.

We prefer Stewart’s terminology. A matrix norm is simply a norm defined
onRn×m. And three matrix normsη1, η2, andη3 areconsistentif

• η1(AB) ≤ η2(A)η3(B),∀A, B

B.1. Vector norms.

B.2. Orthogonally invariant norms. This is an interesting class of norms,
studied first by Neumann [1937]. They have the defining characteristic
thatη(U XV) = η(X) for all square orthonormalsU andV . Some obvious
examples are theFrobenius norm, which we write as|||X|||I , thetrace norm,
which is the sum of the singular values, and thespectral norm, which is the



12 JAN DE LEEUW AND GEORGE MICHAILIDES

largest singular value. Von Neumann also proved the basic theorem that any
orthogonally invariant norm is a symmetric gauge function of the singular
values (also see Mirsky [1960]). We use the notationψ(X) = φ(σ(X)),
with φ a symmetric gauge, and withσ(X) the vector of singular values of
X. A good overview of the properties of orthogonally invariant norms is
in Horn and Johnson [1991, Section 3.5].

The Frobenius norm, the trace norm, and the spectral norm are all examples
of theSchattenp-norms, which are simply thè p norms of the vectors of
singular values. For Frobenius we havep = 2, for tracep = 1, and for the
spectral normp = +∞.

Another class of orthogonally invariant norms are theKy Fank-norms, which
are the sums of thek largest singular values. They play a central role in the
theory of orthogonally invariant norms. Clearly both the spectral and the
trace norm are in this class.

We can combine the Schatten and Ky Fan classes to find the class ofKy
Fan (k, p)-norms. These are simply thèp norms of thek largest singular
values.

There are several general results available for subgradients of orthogonally
invariant norms. [Watson, 1992; Zietak, 1988, 1993; Sá, 1994; Lewis, 1995].
Watson [1992, Theorem 2] shows that for any orthogonally invariant norm
ψ corresponding to a symmetric gaugeφ we have

∂ψ(X) = conv{Kdiag(d)L ′
| X = Kdiag(λ)L ′,d ∈ ∂φ(λ)}.

It is shown by Zietak [1993] and Sá [1994] that it is not necessary to actually
take the convex hull, because the set inside the brackets is already convex.
Lewis [1995, Corollary 2.5] proves the result for general orthogonally invari-
ant functions, which are not necessarily norms or gauges. It is also shown
by Lewis [1995, Theorem 3.1] thatψ is differentiable atA if and only if φ
is differentiable atσ(A) and that

∇ψ(X) = Kdiag(∇φ(σ(X))L ′

whereX = Kdiag(σ (X))L ′. Moreover

σ(∇ψ(X)) = ∇φ(σ(X).

B.3. Operator norms.

Appendix C. Code
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require (homals)

normHom<−function (mydat,datanorm,dualnorm,ndim=2,eps=1e−6,homit=10) {
x<−startX(mydat,ndim,homit)

5 while(1) {
y<−datanorm(x,mydat)
z<−dualnorm(y)
print (c(sum(z∗datanorm(z ,mydat) ) ,sum(y∗dualnorm(y) ) ) )
i f (max(abs(x−z) )<eps) break

10 x<−z
}

normHomPlot(x,mydat,deparse(substitute(mydat) ) ,
deparse(substitute(datanorm) ) ,deparse(substitute(dualnorm) ) )

}
15

normHomPlot<−function (x,mydat,name,datanorm,dualnorm) {
xlim <− c(min(x[ , 1]) , max(x[ , 1]) )
ylim <− c(min(x[ , 2]) , max(x[ , 2]) )
name<−paste(name,datanorm,dualnorm)

20 pdf( f i le=paste(name, "pdf" ,sep=" . ") )
graphplot(name,mydat,x,1 ,2)
for ( i in 1:dim(mydat) [2]) {

catplot (name,labels(mydat) [ [2]] [ i ] ,mydat[ , i ] ,computeY(mydat[ , i
] ,x) ,xlim,ylim,1 ,2)

starplot (name,labels(mydat) [ [2]] [ i ] ,mydat[ , i ] ,FALSE,x,1 ,2)
25 }

dev. off ()
}

startX<−function (mydat,ndim,homit) {
30 n<−dim(mydat) [1] ; x<−matrix (rnorm (n∗ndim) ,n,ndim)

for ( i in 1 : homit) x<−newX(mydat,x)
x<−apply(x, 2 , function (z) z − mean(z) )
svd(x)$u
}

35

newX<−function (mydat,x){
m<−dim(mydat) [2] ; n<−dim(mydat) [1] ; z<−matrix (0 ,n,dim(x) [2])
for ( j in 1:m){

g<−mydat[ , j ] ; y<−apply(x, 2 , function (z) tapply (z , g ,
mean) ) ;

40 z<−z+y[g, ]
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}
z<−as.matrix (apply(z , 2 , function (z) z − mean(z) ) ) /m
}

45 sumS<−function (x) {s<−svd(x) ; s$u%∗%t (s$v)}
maxS<−function (x) {s<−svd(x) ; outer(s$u[ ,1] ,s$v[ ,1])}
sumL<−function (x) sign(x)
maxL<−function (x) i felse(abs(x)==max(abs(x) ) ,sign(x) ,0)
quad<−function (x) x/ sqrt (sum(x^2))

50 powr<−function (x) sign(x)∗(abs(x)^(pp−1))∗(sum(abs(x)^pp)^((1/pp)−1))
pows<−function (x) {s<−svd(x) ; d<−s$d[1:kk] ;

(sum(d^pp)^((1/pp)−1))∗(s$u[ ,1:kk]%∗%diag(d^(pp−1))%∗%t (s$v
[ ,1:kk]) ) }

maxLP<−function (x,mydat) {z<−newX(mydat,x) ; sumL(z)}
55 sumLP<−function (x,mydat) {z<−newX(mydat,x) ; maxL(z)}

sumSP<−function (x,mydat) {z<−newX(mydat,x) ; sumS(z)}
maxSP<−function (x,mydat) {z<−newX(mydat,x) ; maxS(z)}
quadP<−function (x,mydat) {z<−newX(mydat,x) ; a<−sqrt (sum(x∗z) ) ; z/a}
powrP<−function (x,mydat) {z<−newX(mydat,x) ; powr(z)}

60 quitP<−function (x,mydat) {
m<−dim(mydat) [2] ; n<−dim(mydat) [1] ; z<−matrix (0 ,n,dim(x) [2])
for ( j in 1:m){

g<−mydat[ , j ] ; y<−apply(x, 2 , function (z) tapply (z , g ,
mean) ) ;

h<−y[g , ] ; a<−sqrt (sum(x∗h) ) ; z<−z+h/a
65 }

z<−as.matrix (apply(z , 2 , function (z) z − mean(z) ) ) /m
}
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