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This paper describes a computational method for weighted euclidean distance scaling which 
combines aspects of an "analytic" solution with an approach using loss functions. We justify this 
new method by giving a simplified treatment of the algebraic properties of a transformed version of 
the weighted distance model. The new algorithm is much faster than INDSCAL yet less arbitrary 
than other "analytic" procedures. The procedure, which we call SUMSCAL (subjective metric 
scaling), gives essentially the same solutions as INDSCAL for two moderate-size data sets tested. 
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Introduction 

The weighted euclidean distance model originated independently by Horan [1969], 
Bloxom [Note 1], and Carroll and Chang [1970], is the basis for one of the most popular 
multidimensional scaling methods. The INDSCAL method of Carroll and Chang [1970] 
seems to provide a satisfactory approximation to important structural characteristics of 
the data in most of the cases in which it has been applied, and its feature of uniquely 
orienting the axes greatly facilitates interpretation. From the computational point of view 
the INDSCAL program has been quite successful, but convergence of the procedure is 
usually painfully slow. An alternative computational procedure has been suggested by 
SchSnemann [1972]. His method gives a very simple "analytic" solution to the model 
equations in those cases in which perfect fit can be obtained. In most practical cases exact 
solutions will not be possible, and we have to be satisfied with approximate ones. 
SchSnemann's methods have the disadvantage of making some arbitrary choices, which 
do not influence the solution in the perfect case, but which may greatly influence the 
solution in the fallible case. Carroll and Chang [Note 2] have proposed a modification of 
SchSnemann's procedure in their IDIOSCAL program which seems considerably better 
from a statistical point of view, although the element of arbitrariness is still not eliminated 
completely. In this paper we combine aspects of SchSnemann's "analytic" solution with 
an approach using loss functions. The result is an algorithm for weighted euclidean 
distance scaling which we call SUMSCAL (subjective metric scaling). SUMSCAL is 
considerably faster than Carroll and Chang's INDSCAL procedure and considerably less 
arbitrary than SchSnemann's. 

Comments by J. Douglas Carroll and J. B. Kruskal have been very helpful in preparing this paper. 
Requests for reprints should be sent to Sandra Pruzansky, Bell Laboratories, 2C-573, 600 Mountain 

Avenue, Murray Hill, New Jersey 07974, 
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1. The Model and Its Transformations 

The basic model we are analyzing in this paper is 

(l) 6 , j ~  [~'~ w~s(xts-xjs)2] 1/2" 
8 = 1  

Here 6~j~ is the (known) dissimilarity between objects i and j, as measured on data source k. 
The x's are the coordinates of the objects in r-dimensional space and the w's are weights or 
saliences. For an extensive discussion of the appropriateness of this model, and for its 
interpretation in several interesting applications, we refer to the basic Carroll and Chang 
[1970] paper, and to work described by Wish and Carroll [1974]. If we use d~j~ for the 
weighted euclidean distance defined in (1), then one obvious computational approach 
would be minimizing 

k = l  / = 1  J = l  

This, in fact, seems to be the logical extension of what Kruskal and Carroll [1969] refer to 
as "simple scaling". Elegant convergent iterative algorithms for minimizing the loss 
function (2) have been proposed by Heiser [Note 7] and De Leeuw and Heiser [1977]. 
Convergence of these algorithms, however, is usually very slow. As a consequen6e the 
algorithms are impractical if we do not have a very good starting point for the iterations. It 
does not seem to be possible to derive a "rational" initial configuration directly from the 
model equations (1). 

It seems worthwhile, therefore, to apply a transformation, that is, to replace the 
model, interpreted as a system of nonlinear equations, by an equivalent system of equa- 
tions. Of course models in data analysis are usually interpreted as "fuzzy" systems of 
equations, and transformations are applied as if the equations were exactly solvable. After 
the transformation we "fuzzify" the new system of equations, which now defines a new 
(but closely related) model. Thus a transformation actually changes the model, although it 
does not change the corresponding system of equations in an essential way. To make the 
discussion less awkward, however, we often call models equivalent if the correspond- 
ing systems of nonlinear equations are equivalent, and we call Model A derived from 
Model B if the system of equations corresponding with A is a consequence of the system 
corresponding with B. 

One first transformation that may be applied involves squaring both sides of( l  ). This 
gives the model 

(3) 6~j~ ~ ~ wgs(xt, - xj,) 2, 
8 = 1  

and the corresponding least squares loss function 

k=l /=i j f f i l  

This loss function is minimized in thc (ratio scale option of the) ALSCAL program of 
Takane, Young, and De Lecuw [1976]. Although (3) and (4) are simpler than (1) and (2), 
the minimization of (4) still involves fairly complicated iterativc least squares procedures. 

There is another transformation, which simplifies the model even more. It has bccn 
used by both Carroll and Chang [1970] and SchSnemann [1972] in their analysis of the 
model (I). This transformation, defined in (5), converts the data from each data source 
into scalar products of vectors. It's history is reviewed in Torgerson's book [ 1958, Chapter 
I I]. Define 

= 62  -6 ~ -6~k+6 2 (5) O,j~ -½{ ~j~ ~.k ..~}, 
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where dots replacing indices indicate averaging over the range of that index. In the same 
way 

(6) z,j4 = -½{~j4 - ~ik - an.~4 + ~.n}, 

is applied to the right hand side, and the new model is 

(7) ~,j4 ~ z~4 = ~ ~8(x~,  - x .A (x j s  - x .A .  
8=1 

Without loss of  generality we can assume x., = 0 for all s, and use simply 

(8) z,j~ = ~ w~sx,sx~8. 
8=1 

Here Carroll and Chang stop transforming the model, define the loss function 

(9) ~ ~ ~ (3 , ,4 -  z,,4)', 
4=1 t= l  y=l 

and minimize it by using alternating least squares methods. 
The advantage of(9) over the previous loss function (4) is that zLj4 is a much simpler 

function of the parameters, and more efficient methods for minimization become avail- 
able. Nevertheless the Carroll-Chang CANDECOMP algorithm is still iterative. Con- 
vergence can be quite slow, and is not necessarily towards the global minimum. A very 
good initial configuration is needed. It turns out that an additional advantage of trans- 
forming model (1) into model (7) is that a 'rational' initial configuration can now be 
derived fairly easily. 

2. Algebra of Transformed Model 

We translate model (7) into matrix algebra. Define the n × n matrices Z4 by 

(10) z4 = x ~ x '  

with X an n × r matrix and ~ a non-negative diagonal r X r matrix. If we set B~ equal to 
the k th slab of 3~4, the basic model becomes 

(11) B~ ~ Z4 = X ~ X ' .  

In this section we are interested in the solvability of  the corresponding system of  equations 

(12) B4 = XW~X', 

or, more generally, in the structure of the solution set of this system. We make two very 
important simplifying assumptions. In the first place we are only interested in solutions for 
which W~,, the sum of  the W~, is nonsingular. Or, equivalently, for each s = 1, • . . ,  r there 
must be at least one k with w~ks > 0. This assumption can be made without any real loss of 
generality. I f  1~. is singular, then a solution of our system is possible in r' < r dimensions. 
In the second place we are only interested in solutions in which X has full column rank r. 
This excludes a considerable number of situations of theoretical, and possibly also of 
practical, interest. The assumption excludes, for example, cases in which the number of 
dimensions, r, is larger than the number of objects, n [cf. Kruskal, 1976]. It also excludes 
some situations with/"oblique" dimensions discussed by Harshman [Note 6]. 

SchSnemann [1972] is not very explicit about his assumptions, but his discussion 
indicates that he is only interested in solutions for which X has full column rank, and for 
which all ~ are positive definite (from now on we shall use the abbreviations pd and psd 
for positive definite and positive semi-definite). 

Following SchSnemann [1972], Tucker [1972], and Carroll and Chang [Note 2] we 
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first consider the more general system 

(13) B~ = XUkX',  

with U~ merely restricted to be symmetric and psd, and not necessarily diagonal. Again we 
are only interested in solutions for which 6', is pd, and for which X is of  full column rank 
(abbreviated fcr). The major difference between (12) and (13) is that the requirement that 
X is fcr can be made without any real loss of generality for the system (13). More precisely, 
if(13) has a solution with rank X = r' < r, then (13) also has a solution in r' dimensions. 

There is a fundamental indeterminacy in the system (13). If  X, Uk is a solution, and T 
is any nonsingular matrix, then X = X T  -~ and U~ = TUk7 ~ is another solution. For  
identification purposes we can require U, to be any pd matrix. Following Scht~nemann we 
require U, = I. With this restriction the same indeterminacy exists but with T restricted to 
orthogonality. 

Theorem 1. The system (13) has a solution X, U~, with X fcr, U~ psd for all k, and U, 
pd iff Bk is psd for all k, rank B~ < r for all k, and rank B, = r. 

Proof  We construct the general solution to (13) with U, = I to prove sufficiency. 
Necessity is obvious. If U, = I then B, = XX'.  Because rank B, = r and B, is psd we can 
find an n × r matrix Y which is fcr, and satisfies B, = YY' .  Moreover the general solution 
to B, = XX'  is given by X = YT' for some orthonormal T. Define Ck = Y+B~(Y+) ', with 
Y+ denoting the Moore-Penrose inverse of Y. The general solution for Uk, if it exists, is of 
the form Uk = TCkT'. Observe that indeed U, = I. Now Uk = TCkT" is a solution if and 
only if (I - YY+)B~ = 0 for all k. But I - YY÷ is the projector corresponding with the null 
space of  B,, and the null space of  B, is the intersection of  the null spaces of  the B~. Thus 
(I - YY+) B~ = 0 for all k, and the theorem is proved. 

Our Theorem 1 simplifies the results in Section 3 of SchSnemann. For completeness 
we also state the following corollary. 

Corollary 2. Suppose (13) has a solution satisfying the conditions of Theorem 1. Then 
the solution is of the form 

(14a) X = Y T  -1, 

(14b) U, = TC, 7" 

with T an arbitrary nonsingular matrix. The solutions satisfying the additional condition 
U, = I are of  the same form, but with T orthonormal.  

Now consider system (12). If  X, W~k is a solution, and T is any nonsingular diagonal 
matrix, then X = X T  -1 and ~ = TW~T' is another solution. Again we can require 
without loss of  generality that W~, = I. 

Theorem 3. The system (12) has a solution X, 14rL with X fcr, ~ psd for all k, and W~, 
pd iff Bk is psd for all k, rank B, < r for all k, rank B, = r, and BkB+,Bh = BhB+,Bk for all k, 
h. 

Proof  It follows from Corollary 2 that (12) is solvable under the additional condition 
14q, = I iff there exists an orthonormal T such that TCkT' is diagonal for all k. Such a T can 
be found iff the C, commute in pairs, i.e., iff C, Ch = ChCk for all k, h. This transforms to 
the last condition mentioned in the theorem. 

Our Theorem 3 simplifies the theorem given in Section 4 of  Sch6nemann. It is closely 
related to a result of  Bhimasankaram [1971, Section 4, Corollary 2]. 

Corollary 4. Suppose (12) has a solution satisfying the conditions of  Theorem 3. Then 
the solution is of the form (14) with T a nonsingular matrix that diagonalizes all C~. The 
solutions satisfying the additional condition ~ = I are of the same form, but now T is an 
orthonormal  matrix that diagonalizes all C,. 
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A final corollary gives a simple uniqueness theorem which is stronger than previous 
theorems proved by Harshman [Note 5, Note 6]. 

Corollary 5. Suppose X, W~k is a solution of(12) with X fcr, W~ psd for all k, and W~. = 
I. Then this solution is the unique solution satisfying these conditions (up to a permutation 
of the dimensions) iff for each s, t there is at least one k such that w~ ~ ~ t .  

Proof The solution is unique iff the transformation matrix T is unique iff there is at 
least one linear combination of the Ck with different eigenvalues. But the eigenvalues of 
linear combinations of the C, can be found by forming the same linear combinations of 
the 14~. Thus there must be at least one linear combination of the ~ with all diagonal 
elements different. This is the condition mentioned in the corollary. Our results can be 
extended to the case in which we do not make the assumption that X is fcr [cf. also 
Kruskal, 1976]. This will be published separately. 

3. Two-Step Methods 

The algebra in the previous section suggests a two-step method to fit the model (11). 
In the first step we find an approximate solution of (I3), and in the second step we 
transform this first solution in such a way that it becomes an approximate solution of(12). 
The first of these two-step methods was proposed by SchSnemann (1972, Section 5). He 
first finds X up to a rotation by solving B. = XX' approximately, and he then finds the 
rotation matrix T by diagonalizing one of the C~. The disadvantages of this procedure are 
clear, and already pointed out by SchSnemann himself. The subject chosen in step two 
may be a particularly bad fitting subject, and the solution based on this subject's transfor- 
mation matrix may be very misleading. We could, of course, compute a separate transfor- 
mation matrix for all subjects, and compare or average the different solutions in some 
way. A major problem with this last approach is that each analysis only determines the 
solution up to a permutation of the dimensions, and consequently a comparison of 
different solutions is only possible by using a kind of matching algorithm that finds the 
optimal permutation matrices. Finding the optimal permutation matrices means solving a 
sequence of assignment problems, and is not at all trivial if r is, say, larger than two. 

Carroll and Chang [Note 2] have generalized SchSnemann's algorithms as follows. 
Suppose CI and C2 are two linear combinations of the Ck, then we can find the transforma- 
tion matrix T as that nonsingular matrix that diagonalizes both C1 and C~. If C2 is the sum 
of the C,, then Ca = I, and T is the orthonormal matrix that diagonalizes C1. If in addition 
C~ = Ck for some k, then we find SchSnemann's proposal again. Carroll and Chang 
indicate that this choice of C1 is not very satisfactory, and propose a different scheme. 
They divide the subjects into two groups by using a simple ad hoc clustering procedure, C1 
is the sum of the C~ in the first group, C2 is the sum of the C~ in the second group. Because 
in this case C1 + C2 = I, it is clear that T can be found as the orthonormal matrix that 
diagonalizes either Ct or C2. 

De Leeuw [Note 4] takes C2 = C, = I, and proposes a slightly more complicated 
procedure to find C1. Because of the uniqueness theorem from the previous section it 
seems desirable to have the eigenvalues of C~ as different as possible. Thus de Leeuw 
chooses C1 as that linear composite for which the eigenvalues have maximum variance. 
This leads to finding the eigenvector corresponding with the dominant eigenvalue of a 
certain m × m matrix. 

Although the proposals of Carroll and Chang and that of de Leeuw improve 
Sch~Snemann's second step, there is still some degree of arbitrariness in the choice of at 
least one of the two composites. Moreover T always diagonalizes the two composites 
exactly, but we are really interested in how well Tdiagonalizes all individual Ck. This leads 
directly to the idea of minimizing a loss function that measures how well T diagonalizes all 
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Ck. Several different approaches have been discussed, independently and almost simulta- 
neously, by MacCallum [1976], Cohen [Note 3], and by us. We translate the two alterna- 
tive proposals into our notation. 

MacCallum uses the loss function 

(15) ~ tr ( T C J ' -  14~k) 2, 
k = l  

which must be minimized over all nonsingular T, with certain normalizing constraints on 
T, and over all diagonal I4~k. This is clearly equivalent to minimizing the sum of  squares of 
all off-diagonal elements of the matrices TCkT'. MacCallum's algorithm uses a gradient 
method. Cohen proposes to minimize 

(16) ~ tr (Ck - SW~S') 2, 
k = l  

over all nonsingular S and all diagonal 14~. The algorithm he uses for this minimization is 
simply CANDECOMP.  After convergence we set T = S -1. 

We propose to use the same loss function as MacCallum, but to minimize this over all 
orthogonal T and over all diagonal 14~k. Because in our case C~ is constructed in such a 
way that C, = 1, and we are assuming 14q, = I, the orthogonality restrictions follow from 
the fact that TC, T' = I4~,. Working with orthonormal matrices has a number of useful 
features. In the first place the number of free parameters in a nonsingular matrix is 
approximately twice the number of free parameters in an orthonormal matrix, in the 
second place we know that the algorithm we propose has a quadratic convergence rate if 
there is only a single Ck, in the third place working with orthonormal matrices usually 
guarantees good behavior with respect to rounding error, and finally orthonormality of T 
can be used to simplify the loss function. In fact it follows from orthonormality that we 
minimize (15) if we maximize the sum of squares of the diagonal elements of  the TCkT'. 
Considering diagonal elements only is much more efficient than considering off-diagonal 
elements only. We also think that gradient methods in problems like this are usually 
unnecessarily slow [Harshman, Note 5], and that using C A N D E C O M P  in the algorithm 
somehow defeats the purpose of finding a substitute for INDSCAL. Nevertheless a more 
detailed comparison of the three approaches is needed. 

The algorithm we propose can be summarized as follows. We have two explicit loss 
functions that must be minimized. The first one is 

(17) tr (B. - yy,)2, 

which must be minimized over Y. It tests the fit of the model corresponding with equations 
(13). The solution ~ = KrM/~ is found by truncating the eigen-decomposition B. = KAK'. 
The corresponding solution for the parameters of (13) is 

(18a) .~ = Y,  

(18b) Ok = Ck. 

Observe that O, -- I. The second loss function we use is (15), which must be minimized 
over all orthonormal T and over all diagonal WL It tests the fit of the model (11) within the 
more general model corresponding with (13). We can minimize (15) by maximizing the 
sum of  squares of the diagonal elements of the TCkT". An explicit algorithm is given in the 
next section. If 7* is the solution of this second minimization problem, then we can find our 
estimates of the parameters of  (11) as follows 

(19a) ~ = f P ,  

(19b) ~ = diag ~ C ~ ' .  
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Again these estimates have the normalization property ~ = I. 

4. Simultaneous Diagonalization of  Symmetric Matrices 

One classic method for diagonalizing a symmetric matrix is the method of Jacobi 
[1846]. The Jacobi procedure finds an orthonormal matrix T which transforms a real 
symmetric matrix C into a diagonal matrix D. The diagonal matrix is found by zeroing, in 
turn, selected off-diagonal elements of C by "elementary" orthogonal rotations. The 
elementary rotation matrix E(i,j; O) is equal to the identity, except for elements (i, i), (j,j), 
(i, j )  and (j, i), which are given by 

(20) ejj = e ,  = cos 0 

e~ = -el~ = sin 0 

where 0 is an angle of  rotation to be determined. 
An updated matrix C + (note, the superscript + in this context denotes an updated 

matrix not the Moore-Penrose inverse) is the result of  the transformation E'CE. In the 
Jacobi procedure for a single matrix C, 0 is chosen in such a way that the selected off- 
diagonal element, or pivot element, c +~j = 0. Each off-diagonal element is used as a pivot 
element, 0 is determined so as to zero the pivot element and the matrix is again updated. 
Since each of  these elementary rotations affects more than just the pivot element a single 
sweep through all of  the off-diagonal elements will, generally, not result in a diagonal 
matrix. Several iterations are needed to obtain the desired accuracy. 

We generalize the Jacobi procedure to the case where there are m real symmetric 
matrices C~. In particular, we want to minimize the sums of  squares of the off-diagonal 
elements of the matrices TC~T'. An updated matrix C+~ is computed for every k by 
applying the elementary rotation matrix E(p, q; 0) to each C~. The angle 0 is selected such 
that the off-diagonal elements are minimized by minimizing 

(c;q~)5. 
/~=1 

We carry out the minimization to find an optimal 0 because ifm > 2 it will not be possible, 
in general, to make 

(Coq~) ~ = 0. 
~ = 1  

The first step in our procedure is to minimize 

( c + ~ )  ~ 
k = l  

to determine the optimal 0. For a particular pivot location p, q the result of the transfor- 
mation E'CkE is 

(21) 

with 

(22) 

Consequently 

(23) 

C+qk = 2UpQk sin 0 COS 0 + Cpq~ (COS 20 -- sin 2 0) 

= upqk sin 20 + cpq~ cos 20 

= 1  c Upqk A ~( ppt~ -- Cqqk ) .  

S + A ~ (cp+k) ~ = f sin s 20 + g cos 2 20 + 2h sin 20 cos 20 

= g + ( f - g )  sin 2 2 0 +  2h sin 20 cos 20 

= g +  ( f - g )  sin 2 2 0 + h s i n 4 0 .  
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With 

(24) f &  ).j  u~k ,  

(25) g A ~ c ~ ,  

(26) h A ~ UpqkCpqk • 

Differentiating we find the necessary condition for an extreme value 

t ( f - g )  sin 40 + h cos 40 = 0 .  

In the cases where both h # 0 and f - g ¢ 0, the solution is given by 

2h 
tan 40 . . . .  

f - g  

(27) 

(28) 

Letting 

(29) 

we find 

(30) 

with k 

a A a r c t a n ( f 2 h _ g )  

0 = ta  + ¼kr 

any integer, and arctan having its principal value between + ~ .  The second 
derivative of  S + has the same sign as 

(31) ½(f - g) cos 40 - h sin 40. 

This means that we want to choose the integer k in such a way that cos 40 has the same 
sign as jr - g (or, equivalently, that sin 40 and h have opposite signs). 

We must also consider the special cases where h = 0 or f - g = 0. I fh  = 0 and f - g = 
0, then we do not perform any rotation. I fh  = 0 and f - g ¢ '0 ,  we find the solution to sin 
40 = 0, that is, 0 = tk~', with k equal to any integer. I f f  > g we perform no rotation; i f f  < 
g we choose 0 = +Ire, giving S + = f. I fh  ¢ 0 and f - g = 0 we find the solution to cos 40 = 
0, that is 0 = ~ + ¼krr, with k equal to any integer. I fh  > 0 we choose 0 = -tTr making S + 
= g - h ; i f h < 0 w e c h o o s e 0 =  +½r m a k i n g S  + = g + h .  

The determination of  O, depending on the signs of  h and f - g ,  is summarized in the 
following table: 

h / - g  0 
+ + ¼a 

+ - t~ - t~r 
- + ¼ a  

- - I o ~ +  ¼~r 

0 0 no rotation 
0 + no rotation 
0 - :t:¼r 
+ 0 -~r 
- 0 17r 

The next step in our procedure is to minimize the off-diagonal elements of  the Ca 
matrices and to update the C + matrices. For a particular pivot location p, q, the elements 
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of  C'~, where C'~ = E'CkE, are as follows [cf., Greenstadt,  1960]: 

c~k = cp~k cos 0 - cqj~ sin 0, 
c~k = cpjk sin 0 + cql~ cos 0, 

(32) c ~  = c~p~ cos 0 - c~q~ sin 0, i , j  ~ p, q 
c~k = c~p~ sin 0 + ctq~ cos 0, 

+ 
CtJk = CtJk, 

and 

(33) 

(34) 

(35) 

c ~  = Cppk cos 2 0 + CQqk sin s 0 -- 2Cpq~ sin O cos O, 

Cq+qk = Cpp k sin s O + cqqk cos ~ 0 + 2Cpq~ sin O cos 0 

c ~  = (Cpp~ - c~qk) sin 0 cos 0 + Cpqk (cos ~ # - sin ~ O) • 

We repeat the above two steps for each off-diagonal location selected as a pivot 
location, in turn,  and perform an elementary rotation by applying (32)-(35). We continue 
to build up these transformations until the transformed C~ matrices are as nearly diagonal 
as possible. We consider the iterative process complete when the minimum cos 0 in one 
complete sweep over all pivot locations is >1 - 10 -l° and < 1. 

For each elementary rotation in the iterative process, we also update the or thonormal  
transformation matrix T. We have 

(36) 7 xl~ = E'~I~ 

(37) T + = E ' + T .  

The elements of  the updated matrix T +, then, are: 

(38) t~ = t,j (i ~ p, q) 

(39) t~  = tpj cos 0 - t~ sin 0, 

(40) t~ = tpl sin 0 + tqj cos 0 ,  

where 0 is the angle of  rotation for the current pivot location. 
Let Cg ~ be the updated Ck after s sweeps, and 7 ~ the cumulated transformation 

matrix. The diagonals of  the transformed Ug ~ converge to our  estimates of  ~ and 7 ~'~ 
converges to our estimate of  T. 

5. Applications to Real  Data 

Implementat ion of the S U M S C A L  procedure described above, consists of [1] fac- 
toring B,, an n × n matrix of  scalar products, averaged over all k data sources, [2] 
diagonalizing all Ck matrices and computing the t ransformation matrix T according to the 
procedure described in Section 4, and finally, [3] computing X = KrA~I/2I ~, where Ar 
contains the r largest eigenvalues and Kr the r largest eigenvectors of  matrix B.. The 
elements of  X are the S UMS C AL estimates of  the coordinates of  the n objects in the r- 
dimensional stimulus space and each diagonalized Ck matrix contains the weights or 
saliences for each data source k. 

This SUMSC AL algorithm was applied to two sets of  data whose I N D S C A L  solu- 
tions have been reported previously. Comparisons  are made between the stimulus and 
weights spaces from S U M S C A L  and I N D S C A L  and the CPU times required by the two 
procedures to analyze the data. 

The first set of  data analyzed by S UMS CAL is from Helm's  [1964] study on judged 
psychological distances among ten colors. A reanalysis of  these data using I N D S C A L  has 
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been reported by Wish and Carroll [1974]. Sixteen matrices of perceived dissimilarities 
among 10 colors served as input to SUMSCAL. The data were analyzed in two dimen- 
sions only since Wish and Carroll [1974] showed that a two-dimensional solution was 
adequate. The SUMSCAL weights and stimulus spaces were virtually identical to the 
INDSCAL configuration shown in Wish and Carroll [1974]. The product moment corre- 
lations between the corresponding unrotated dimensions of SUMSCAL and INDSCAL 
were: 

Dimension 
1 2 

I 
J _  

stimulus space [19999 .9999 I 
weight space 1.. 9999, [ .99991 

The following table shows the CPU times required for a two-dimensional solution of 
the Helm data for both SUMSCAL and INDSCAL: 

Iterations 
to converge CPU time in sec 

I 1 ..... ,0.08 ........... 1 INDSCAL* 25 

SUMSCAL 1 ..738 I 

The second set of data which we analyzed with SUMSCAL is from a study by Bricker 
and Pruzansky of judged dissimilarities of auditory tones generated by varying three 
physical properties. The INDSCAL results from this study were reported in Carroll and 
Chang's original INDSCAL paper [Carroll & Chang, 1970]. This set of data was selected 
because it took many INDSCAL iterations to converge and it is relatively noisy data. 

Twenty matrices of perceived dissimilarities among 24 tones served as input to 
SUMSCAL. A three-dimensional SUMSCAL solution was obtained so that it could be 
compared with the three-dimensional INDSCAL solution. The SUMSCAL weights and 
stimulus spaces were, for all practical purposes, the same as the INDSCAL solution. The 
product moment correlations between corresponding dimensions of SUMSCAL and 
INDSCAL were: 

Dimension 
1 2 3 

stimulus space I .9966 [ .9989 I .9986"1 
weights space .9978 [ .9991 .9989 I 

The following table shows the CPU times required for a three-dimensional solution of the 
Bricker and Pruzansky data for both SUMSCAL and INDSCAL: 

Iterations 
to convergence CPU time in sec 

INDSCAL 1 130 I 341.64 
SUMSCAL 4.48 

* All of the INDSCAL results reported in this paper including CPU times, were actually obtained from a new 
program SlNDSCAL (Pruzansky, 1975) which was written to handle only symmetric data. It uses the INDSCAL 
algorithm and produces identical results but runs approximately 30% faster than the INDSCAL program that is 
currently being distributed. 
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6. Discussion 

It is now possible to compare the main advantages of our approach and the other 
approaches. INDSCAL captures all the properties of its model in a single loss function. In 
analysis of variance, stepwise regression, and contingency table analysis, it has proved to 
be useful to partition the loss into components. Of course in our situation, the partitioning 
does not have any nice additivity, orthogonality, or independence properties. Still the 
magnitude of the individual loss components can indicate what causes a bad fit of the 
overall model. 

The fact that we apply more transformations before defining the loss is a possible 
disadvantage. Although INDSCAL also supplies at least one transformation, it derides the 
loss at a much earlier stage. As a consequence, treatment of missing data and of nonmetric 
information is much more difficult in our framework, because all the incomplete informa- 
tion in these cases also has to be transformed in the same way as the numerical informa- 
tion is transformed. While our transformations do simplify matters in the complete case, 
they complicate matters in these other cases. It will also be clear, however, that our 
method does improve SchSnemann's in most respects. Although the computations are 
slightly more complicated, we introduce a satisfactory loss function at the precise point 
where the SchSnemann algorithm becomes unsatisfactory (for fallible data). 

The ultimate success of the method will depend on its numerical behavior (speed, 
local minima) and on its successfully displaying structure in data in the same way as 
INDSCAL. Although this new method is closer to SchSnemann's method than to the 
Carroll-Chang-Harshman method in many respects, the main inspiration for doing this 
work is the success the INDSCAL program has had in many practical applications. 
Extensive numerical investigations are now being carried out to find out if our new 
method can compete with INDSCAL in this respect. As the examples in Section 5 show we 
seem to find solutions that are identical for all practical purposes, and we are certainly 
getting them much cheaper. 

Although SchSnemann's algebraic solution has been a very important contribution to 
the methodology in this paper, we do not agree with his ideas about this class of methods 
in one very important respect. It is not true that the rotational indeterminacy is resolved in 
these models in the same way as in principal component analysis, by imposing some 
"mathematically convenient constraint". The fact that rotations are not permitted here is 
a consequence of the model itself, and it provides, as Carroll-Chang and Harshman have 
observed, a very powerful way to facilitate interpretation. Harshman, in particular, has 
emphasized how this also provides an alternative way to eliminate rotational in- 
determinacy in factor analysis. The other easily available method of doing this is the 
"confirmatory" factor analysis method, which postulates certain patterns of zeroes [e.g., 
JSreskog, 1969]. Postulating just enough zeroes to eliminate indeterminacy may be consid- 
ered as merely a mathematical convenience, but postulating more zeroes than needed 
clearly introduces extra constraints into the model. In our subjective metrics models the 
situation is the same. Requiring that W~k be merely positive semidefinite leaves room for 
indeterminacy. Postulating patterns of zeroes in ~ increases the number of constraints, 
and postulating diagonality of all ~ certainly introduces extra constraints, which define a 
different model and not simply the same model with different identification conditions. Of 
course the methods outlined in Section 4 can, with slight modifications, also be used to 
estimate parameters in models with more general patterns of zeros in WL 
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