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ABSTRACT. We study linear systems in which both the coefficients of

the linear combinations and the variables which are combined linearly

are only partially known. This includes the two logical extremescom-

pletely knownandcompletely unknown. The systems we study include

the usual linear systems of simultaneous equations, as well as nonlin-

ear multivariate analysis systems. Throughout, we use unweighted least

squares loss functions and majorization algorithms to minimize them.

We incorporate both errors-in-equations and errors-in-variables as ad-

ditional unknowns into the loss function, and arrive at algorithms for

decompositions of partially unknown matrices.

1. INTRODUCTION

1.1. Problem. We compute approximate solutions to homogeneous linear

systems of the formAB = 0. HereB is anm× p matrix, andA is ann×m

matrix. Elements ofB are calledcoefficients, columns ofB areequations,

columns ofA arevariables, rows areobservations.

Both A andB are, in general, partially known and our job is to impute the

unknown elements. Unknown information on the variable side can be the

usual missing data, it can be in the form of unobserved (latent) variables, or

it can be in the form of allowing for transformations of the variables.
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Our fit criterion will be least squares. This is different from the usual pro-

cedure, which embeds the data in a statistical model and then applies some

form of maximum likelihood. In particular, in the classical case, it is as-

sumed that the rows ofA are replications of a random vectora, which

satisfiesa′B = 0. We then transform the system toB′6B = 0, where

6 = E(aa′), and we proceed to estimate6 under these constraints, and

maybe other constraints as well (often assuming multivariate normalility of

a and often integrating out the parts corresponding with missing informa-

tion).

This may be fine in some situations, although in non-normal situations it is

unclear why one should focus on the covariances. But in other situations

the repeated independent trials assumption does not make sense, using ran-

dom variables is not natural, assuming multivariate normality is ludicrous,

and the framework leads to very complicated or even impossible estima-

tion problems. We suggest a more direct approach, formulated directly in

terms of the observations, and using least squares to basically solve matrix

approximation problems.

1.2. Constraints. As indicated above, we will look at the situation in which

some of the coefficients and some of the variables are completely known,

some are completely unknown, and some are partially known.

As far as the coefficients are concerned, we are mainly thinking of set-

ting some of them equal to known constants, typically zero or one. But in

principle the computations below can be easily generalized to put bound

constraints on the individual coefficients, requiring them to be in a known

interval, and even to equality or inquality constraints linking different coef-

ficients.
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As far as the variables are concerned, we will mostly be interested in con-

straints of the forma j ∈ K j ∩ S, with K j a cone and withS the unit

sphere inRn. Cones can be used to allow for monotone transformations,

spline subspaces, or monotone splines. For variables we will also explicitly

discuss more complicated linking constraints, in particular we often require

orthogonality of different variables. A block of variables that is required to

be mutually orthogonal is called anorthoblock.

A key component of our approach is that we allow for variables that are

completely unknown, i.e. their quantifications can be anywhere inRn. Of

course, we need to have some prior knowledge in order to prevent perfect

but trivial solutions to our system of equations. These unknown or latent

variables will usually be linked by orthogonality constraints with other la-

tent and observed (known or partially known) variables. Once again, we

explicitly take the point of view that latent variables are a (rather extreme)

form of missing data, and that the missing values can be incorporated di-

rectly in the estimation process.

1.3. Scope.Clearly this class of bilinear systems, with the correspond-

ing constraints, is sufficiently general to fit the linear models in LISREL,

EQS, CALIS, AMOS and so on. It is also general enough to fit the mod-

els in Gifi’s form of nonlinear multivariate analysis [Gifi, 1990, Michailidis

and Leeuw, 1999, Meulman and Heiser, 1999], i.e. it can be used to fit

HOMALS, PRINCALS, OVERALS and so on. This illustrates that clas-

sical structural (or simultaneous) equation techniques and Gifi’s nonlinear

multivariate analysis techniques can be captured in a single framework (and

can be fit with a single general algorithm).
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1.4. Equivalent Systems.In most cases we can rewrite the system, still in

the required linear form, in such a way that the rewritten systems has the

same solutions set as the original system. This does not mean, however, that

the least squares solutions to the rewritten and the original system are the

same. We shall see some examples of equivalent system of linear equations

below. A classical example is the reduced form of simultaneous equation

systems

1.5. Easy Generalizations.Most of the developments below go through

without modifications if we use weighted least squares, with known weights,

instead of unweighted least squares. Similarly, variables can be elements of

an arbitrary inner product space, instead of vectors inRn. Thus we can

use sample or population distributions to compute the inner products of our

variables, to study what happens in the population case, or to find out what

sampling distributions of our statistics are.

We will not elaborate further on these easy generalizations, but it is good to

remember that they are available at little cost.

2. LOSSFUNCTION AND ALGORITHM

2.1. Loss Function. The problem studied in this paper is to minimize the

least squares loss function

σ(A, B) = tr B′RB.

HereR = A′ A is them × m correlation matrix of the variables.

Thus, we will look at the general class of problems in which we minimize

σ(A, B) over theA satisfying cone and orthogonality restrictions and over

the B with some of the elements known.
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2.2. Algorithm. In De Leeuw [1990], we studied the problem of mini-

mizing any real-valued function of the formφ(R), with R = A′ A, over

a j ∈ K j ∩ S. A majorization algorithm [De Leeuw, 1994, Heiser, 1995,

Lange et al., 2000] was developed there for the case in whichφ(R) is con-

cave inR. Futher developments of this approach are in De Leeuw [1988,

1993] and in De Leeuw et al. [1999].

In the problem studied in this paper we can define

φ(R) = min
B∈B

tr B′RB,

whereB are the matrices inRm×p satisfying the constraints onB. Sinceφ

is the pointwise minimum of a family of functions linear inR, it is clearly

concave inR, and thus it can be minimized by the majorization algorithm.

In that sense the class of techniques discussed here is an important (and so

far unexplored) special case of our previous work. The main generalization

is that in the current framework we do not only have the cone constraints on

individual variables, but we also allow for orthoblocks of variables.

We give a brief outline of the algorithm in the general case. Algorithms

for specific systems will be discussed in more detail below. For the ma-

jorization algorithm we need the subgradient of the loss function. Forφ

the subgradient∂φ(R̃) is the convex hull of the matrices̃BB̃′, whereB̃ is

any matrix maximizingtr B′ R̃B over B ∈ B. Observe that computing̃B

is an unconstrained convex quadratic minimization problem. This is why

it is easy to incorporate bound and linear inequality constraints on the co-

efficients, because we will remain in the convex quadratic programming

framework.

The subgradient inequality tells us thatφ(R) ≤ tr RG̃, for anyG̃ ∈ ∂φ(R̃).

The algorithm selects a subgradientG̃, and minimizes the majorization
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function tr RG̃ by cycling over all variables (or orthoblocks of variables).

This gives us a newR+, and we have

φ(R+) ≤ tr R+G̃ ≤ tr R̃G̃ = φ(R̃).

In majorization theory this is called thesandwich inequality, and it forces

convergence of the sequence of loss function values (and through that, us-

ing Zangwill [1969], convergence of the sequence of solutions).

Observe that if we update a variable, or an orthoblock, we have to recom-

pute the subgradient at the new point, i.e. we have to recompute the optimal

B for currentA, before we proceed to the next variable or block.

2.3. Subproblems for Variables. Suppose we are optimizing over the sin-

gle variablea1 ∈ K1 ∩ S, keepingA2, the rest ofA, fixed at its current

values. PartitionA andG̃ in the obvious way. Then

tr RG̃ = g̃11 + 2a′

1A2g̃1 + tr A′

2A2G22.

Only the second term depends ona1. De Leeuw [1990] shows that the new

optimala1 can be found by projecting̃h = A2g̃1 on the coneK1 and then

normalizing the projection to unit length.

If we are optimizing over an orthoblock of variablesA1, then by the same

reasoning

tr RG̃ = tr G̃11 + 2tr A′

1A2G̃12 + tr A′

2A2G̃22.

Thus the optimalA1 is found by solving the orthogonal Procrustus problem

for H̃ = A2G̃12. If H̃ has full column rank, and̃H = K3L ′ is its singular

value decomposition, then the optimalA1 is K L ′. In the Appendix we

generalize this to singular̃H , a generalization we will need in our factor

analysis algorithm.
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We discuss two more subproblems we can come across in implementing

the general algorithm. First, we want to finda1 ∈ K1 ∩ S orthogonal to the

block A2, but not necessarily to the blockA3. Clearly

tr RG̃ = a′

1A2g̃2 + a′

1A3g̃3 + terms not dependent ona1

To find the optimala1 we need to project

h̃ = (I − A2(A′

2A2)
−1A′

2)A3g̃3

onK1, and normalize. We do not assume here thatA2 is an orthoblock.

The second subproblem asks for an orthoblockA1 which is orthogonal to

block A2, but not necessarily to blockA3. With the same reasoning as in

the previous subproblem, we now have to apply Procrustus to

H̃ = (I − A2(A′

2A2)
−1A′

2)A3G̃31.

2.4. Algorithm Flow. The flow of the algorithm is to partitionA into

blocks that are either orthoblocks or single variables. We optimize the vari-

ables over the first block, optimize over B, optimize variables in the second

block, optimize over B, and so on. It is not necessary to go through the

blocks of variables in order, in fact we can change the order or use “free-

steering” methods [De Leeuw and Michailidis, 1999], but in general it is

necessary to updateB every time we update a block of variables. This

may be inefficient if computingB is much more complicated than updating

blocks of variables. There are variations of the algorithm possible based on

using majorization a second time, this time to bound.

It is sometimes also possible, and even advisable, to decomposeB into a

number of blocks and apply block relaxation to optimize overB. Thus

many variations are possible with our general “algorithm model”.
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3. EXAMPLES

Let us look at some “classical ” systems to see how they fit into our frame-

work. and to see what loss functions and algorithms we can expect to dis-

cover (or rediscover). In discussing regression and various other special

cases of our general framework, we use additional notation which is natural

for the problem at hand and consequently obvious.

3.1. Regression.It has always been somewhat ambiguous what regression

analysis want of the residuals. On the one hand, we want the residuals to

be “small”, on the other hand we want them to be “unsystematic”, which

means unrelated to the predictors (and may mean more). Clearly being

small does not imply being unsystematic, and vice versa.

This means that we can distinguish two regression problems in our frame-

work. The first system is

[
y | X | e

] 
1

−β

−σ

 = 0,

or y = Xβ + σe, where we requiree′X = 0.

Minimizing loss gives the usual regression statistics (regression coefficients,

residuals, residual sum of squares), which actually make the minimum loss

equal to zero. There is no room for improvement of the loss in this case

by using optimal cone transformations of the variables. If we have missing

information inX and/ory, we can just fill it in arbitrarily, and we will still

have zero loss. This simply repeats the obvious: if we project a vector or-

thogonally on a subspace then the residuals are orthogonal to the subspace,

and thus the decomposition we seek is always possible.
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Now let us “ignore errrors”, i.e. removee from the system. We concentrate

on making the residuals small. Thus

[
y | X

] 1

β

 = 0.

The solution forβ, for givenX andy, is again the usual vector of regression

coefficients, but now, of course, the minimum loss is non-zero, and we can

use transformations, quantifications, or imputations to attain a better fit. In

other words, we can requirey and/or the columns ofX to vary over cones.

This leads to techniques implemented, for example, in ACE [Breiman and

Friedman, 1985], TRANSREG [SAS, 1992], or CATREG [Meulman and

Heiser, 1999]. Our majorization algorithm is identical to the algorithms

used in these programs.

Clearly we can extend this to multivariate regression. Now

[
Y | X | E

] 
I

−0

−6

 = 0,

and we typically requireE′X = 0. This is entirely tautological again, unless

we impose constraints such asE′E = I and6 is diagonal, or we impose

constraints on the coefficients in0.

For path analysis we have

[
Y | X | E

] 
I − 2

−0

−6

 = 0,
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with 2 upper triangular,E′X = 0, E′E = I and6 diagonal. Again this is

a saturated system which can always be solved perfectly, and we need ad-

ditional constraints to make imputing missing information interesting. Ob-

serve we can rewrite this system in the reduced form

[
Y | X | E

] 
I

−0(I − 2)−1

−6(I − 2)−1

 = 0

which may introduced some awkward nonlinear constraints on the parame-

ters.

For both multivariate regression and path analysis, the “ignore errors” ver-

sions are also quite straightforward. We should emphasize here that “’ignor-

ing errors” is somewhat of a misnomer. It is only defined relative to a more

complicated system which does have one or more additional orthoblocks of

unobserved variables. It can also be misleading to emphasize that blocks

such asX andY are “observed”, whileE is “unobserved”. In general, all

blocks of variables have both known and unknown elements, and subsets of

both X andY can be “unobserved” as well.

3.2. Factor Analysis. Again, the notation is adapted to fit the problem.

As in regression, we can take two approaches to residuals. We can make

them “as small as possible”, and we can make them “as unsystematic as

possible”. First we explore making residuals unsystematic.

The system, in matrix form, is

[
Y | U | E

] 
I

−0

−1

 = 0,
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or Y = U0 + E1, whereU ′E = 0,U ′U = I , andE′E = I , and where1

is diagonal.U is n × f , where f is the number of common factors.

Minimizing the least squares loss function is a form of factor analysis, but

the loss function is not the familiar one. In “classical” least squares factor

analysis, as described in Young [1940], Whittle [1952] and Jöreskog [1962],

the unique factorsE are not tparameters in the loss function. Instead the

unique variances are used to weight the residuals of each observed variable

(as suggested by maximum likelihood).

Our loss function, which is

σ(Y,U, E, 0,1) = ‖Y − U0 − E1‖
2

can be better understood, perhaps, by defining the(m + f ) × m matrix

T =

0

1

 ,

and by observing that

min
U,E

σ(Y,U, E, 0,1) =

m∑
j =1

[
λ2

j (Y) + λ2
j (T) − 2λ j (Y T′)

]
≥

m∑
j =1

(λ j (Y) − λ j (T))2.

Here theλ j (•) are the ordered singular values of their matrix argument. See

the Appendix, and for the inequality use the theorem on the singular values

of a matrix product [Horn and Johnson, 1991, Theorem 3.3.14]. Thus we

see that our loss function is just one (orthogonally invariant) way to measure

how similarY′Y is to T ′T = 0′0 + 12.

There is another conceptual problem that has prevented the straightforward

use of our least squares loss function, although it seems such a natural
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choice in the alternating least squares framework of Takane, Young and

De Leeuw [Young, 1981] or the nonlinear multivariate analysis framework

of Gifi [1990]. Factor score indeterminacy implies that generally the solu-

tion of U andE will not be unique, even for fixed loadings0 and unique-

nesses1. For that reason, Takane et al. [1979] go out of their way to rede-

fine the least squares loss function in terms of the correlation matrix of the

observed variables. This makes the algorithm quite complicated, with as a

consequence several errors, and several proposed corrections to fix it [Mooi-

jaart, 1984, Nevels, 1989, Kiers et al., 1993].

But non-uniqueness of factor scores is not really a problem from the algo-

rithmic point of view. Because all solutions to the augmented Procrustus

problem are in a closed set in matrix space, we still have convergence of

our majorization algorithm [Zangwill, 1969], and accumulation points of

the sequences we generate will still be stationary points.

Implementation is quite straightforward. In fact, we can think of two obvi-

ous ways to implement the part of the algorithm that updates the common

and unique factor scores. In the first we update theU andE blocks succes-

sively, in the second we update them simultaneously by treating them as a

single orthonormal block. In the first case we alternate solving the Procrus-

tus problems for(Y − E1)0′ and(Y −U0)1, in the second case we solve

the augmented Procrustus problem forY T′. Updating loadings and unique-

nesses is simple, because the optimal0 is simplyU ′Y and the optimal1

is diag(E′Y). It is also easy, in this algorithm, to incorporate the types of

constraints typical for confirmatory factor analysis.



LSOS/POLS 13

We can also apply the “ignoring errors” strategy to factor analysis. Remove

E and we have

[
Y | U

]  I

−A

 = 0,

or Y = U A, whereU ′U = I . Minimizing the least squares loss func-

tion is principal component analysis with optimal scaling, as implemented

in PRINCALS [Gifi, 1990], CATCPA [Meulman and Heiser, 1999], PRIN-

QUAL [SAS, 1992], or MDRACE [Koyak, 1987]. From our viewpoint the

two techniques are quite close, the difference is incorporating the residuals

in the loss function and requiring them to be an orthoblock, or minimizing

the residuals and maybe looking at them after the analysis is done. It is of

some interest that requiring the matrix of unique variances1 to be scalar in

our least squares factor analysis algorithm doesnot lead to principal com-

ponent analysis.

4. MIMIC

Regression and factor analysis are relatively simple systems, the first step

towards making life more complicated is the MIMIC system [Jöreskog and

Goldberger, 1975]. It is

[
X | Y | U | E | F

]


0 −2

I 0

−0 I

−1 0

0 −�


= 0,
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or

Y = U0 + E1,

U = X2 + F�.

There are presumably various additional assumptions, which make(E|F)

or even(U |E|F) into an orthoblock, and which make1 and� diagonal.

Many variations are possible, in particular the familiar variations which

“ignore the errors”E and/orF . We will not go into implementation de-

tails here, but just point out the flexibility and the painless incorporation

of transformations of the observed variables or imputations of the missing

data.

Of course systems of this form, and more complicated ones along the usual

structural equations lines, can have identification problems. This does not

prevent the algorithm from doing its work properly, but it still remains a

valid topic to be studied, at least if one is interesting in interpreting and

using the computed coefficients.

Also, as we mentioned above, systems can be manipulated algebraically

and rewritten as equivalent but different systems. Suppose, for example,

that F = 0, for simplicity. Then we substituteU = X2, and rewrite the

system as

[
X | Y | E

]


−4

I

−1

0

 = 0,

where4 = 20. This is now reduced rank regression, or redundancy anal-

ysis [Reinsel and Velu, 1998]. Our majorization algorithm can be used to
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minimize‖Y − X4− E1‖
2 with X′E = 0 andE′E = I . In this case opti-

mizing over regression coefficients must of course take the rank restrictions

on4 into account. Again the loss function is different from previous ones,

because it explicitly treats residuals as additional parameters in the matrix

decomposition.

It is clear that the approach we have illustrated here on the MIMIC system

can be extended to even more complicated systems studied in LISREL and

related techniques. Nothing essential really changes, although implemen-

tation details and lists of possible options and variations may become quite

messy.

5. NONLINEAR MULTIVARIATE ANALYSIS

Let us now switch to systems studied in nonlinear multivariate analysis [Gifi,

1990]. The system for a general form of homogeneity analysis is

[
X | Q1 | · · · | Qm

]


I I I · · · I

−01 0 0 · · · 0

0 −02 0 · · · 0

0 0 −03 · · · 0

· · · · · · · · ·
. . . · · ·

0 0 · · · 0 −0m


= 0,

or X = Q j 0 j for j = 1, · · · , m. Then×s matrix X and each of then× r j

matricesQ j is an orthoblock. Moreover all columns ofQ j are assumed

to be in the same subspaceL j of Rn. This is because the orthoblockQ j

corresponds with a single variable in the original data, which we allow to

have multiple quantifications. The rank of the quantification for variable

j is r j , which is usually either one (single quantification) ors (multiple

quantification).
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By writing the system in this way, we cover both HOMALS (a.k.a. mul-

tiple correspondence analysis, in which theQ j are known and quantifica-

tions are multiple) and PRINCALS (a.k.a nonlinear principal component

analysis, in which theQ j are partially known and all quantifications are

single). See Bekker and Leeuw [1988] for further details on this. In fact

a slight modification also allows us to include generalized canonical corre-

lation analysis OVERALS, in which each column of the coefficient matrix

has more than one non-zero0 matrix, although each row still only has a

single non-zero0 matrix. Thus there is a partition of the indices 1, · · · , m

into sets of variablesJ1, · · · , J̀ such that

X =

∑
j ∈Jν

Q j 0 j ,

for all ν = 1, · · · , `. As explained in Gifi [1990], this makes it easy to

include canonical analysis and canonical discriminant analysis as special

cases.

The actual majorization algorithm from OVERALS is implemented in R

by de Leeuw and Ouwehand [2003]. The implementation has one additional

feature, to deal with ordinal variables in the case of multiple quantifications.

We can requireQ j to be an orthoblock, with all its columns in the subspace

L j , but with, in addition, its first column in a coneK j ∪ Ł j . Thus we

can require the leading quantification of a variable to be ordinal, while the

remaining quantifications are orthogonal to the leading one.

If all variables are single, then homogeneity analysis becomes principal

component analysis. Combining this with the ideas from the previous sec-

tion show how explicit orthoblocks or errors can be introduced into the tech-

nique, so that we obtain versions of factor analysis or canonical analysis

with orthogonal error.
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APPENDIX A. AUGMENTED PROCRUSTUS

SupposeX is ann×m matrix of rankr . Consider the problem of maximiz-

ing tr U ′X over then × m matricesU satisfyingU ′U = I . This is known

as theProcrustusproblem, and it is usually studied for the casen ≥ m = r .

We want to generalize ton ≥ m ≥ r . For this, we use the singular value

decomposition

X =

[
K1
n×r

K0
n×(n−r )

]  3
r ×r

0
r ×(m−r )

0
(n−r )×r

0
(n−r )×(m−r )


 L ′

1
r ×m

L ′

0
(m−r )×m

 .

Theorem 1. The maximum oftr U ′X over n× m matrices U satisfying

U ′U = I is tr 3, and it is attained for any U of the form U= K1L ′

1 +

K0V L′

0, where V is any(n − r ) × (m − r ) matrix satisfying V′V = I .

Proof. Using a symmetric matrix of Lagrange multipliers leads to the sta-

tionary equationsX = U M , which impliesX′X = M2 or M = ±(X′X)1/2.

It also implies that at a solution of the stationary equationstr U ′X = ±tr 3.

The negative sign corresponds with the minimum, the positive sign with the

maximum.

Now

M =

[
L1

m×r
L0

m×(m−r )

]  3
r ×r

0
r ×(m−r )

0
(m−r )×r

0
(m−r )×(m−r )


 L ′

1
r ×m

L ′

0
(m−r )×m

 .

If we write U in the form

U =

[
K1
n×r

K0
n×(n−r )

]  U1
r ×m

U0
(n−r )×m
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thenX = U M can be simplified to

U1L1 = I ,

U0L1 = 0,

with in addition, of course,U ′

1U1 +U ′

0U0 = I . It follows thatU1 = L ′

1 and

U0
(n−r )×m

= V
(n−r )×(m−r )

L ′

0
(m−r )×m

,

with V ′V = I . ThusU = K1L ′

1 + K0V L′

0. �
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