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Jan de Leeuw

The Gifi System is one particular way to define
and organize a large class of descriptive
multivariate analysis techniques. The system
allows the techniques to be implemented in in a
modular series of computer programs.

A. Gifi, Nonlinear Multivariate Analysis, Wiley,
1990.

G. Michailides and J. de Leeuw, The Gifi System
of Descriptive Multivariate Analysis, Statistical
Science, 13, 1998, 307-336.
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We start with an n x m data matrix X, with n
observations on m variables.

This 1s, of course, the basic format for data in
packages like SPSS and SAS, in spreadsheet
programs such as Excel, and (as the data frame)
in R.

For the time being, we assume (without loss of
generality) all variables are discrete, and variable
j has kj categories.

A Data
Matrix

can also be
coded as
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Smearing

B-spline (order 2)

0 1 2 3 4 5 6 [-1,1] [02] [13] [24] [3,5] [46] [5.7]
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212 0 0.25 0.50 0.25 0 0 0 25| 0.0 0.0 0.5 0.5 0.0 0.0 0.0
313 0 0 0.25 050 0.25 0 0 02| 038 0.2 0.0 0.0 0.0 0.0 0.0
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5 11]025 050 0.25 0 0 0 0 1.3 ] 0.0 0.7 0.3 0.0 0.0 0.0 0.0
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Interactive Coding
ap aq ar bp bg br cp cq cr The basis of the Gifi system for MCA is the notion

lfa pyt 0 0 0 0 0 0 0 0 of homogeneity, applied to a joint plot of objects
2/bgqf0 0 0 0 1 0 0 00 and categories. This means we like the plot if:
3la r{0O O 1 O O O O O O

4 la p/1 0 0O O O O O 0 O e Objects with similar profiles are close
S|b p| O 0O O 1 O O O 0O O together.

6 ({c p/]O O O O O O 1 0 O . . .

7/a p|/1 0 0 0 0 0 0 0 o0 e (Categories with similar content are

§la p/l1 0 0 0 0 0 0O 0 O close together.

9 lc pj0 0 0 0 0 0 1 0 0 e Objects are close to the categories they
I0ja p(f1 0 0 O O O O O0 O

are in.




We now have to construct a quantitative measure of
homogeneity, or rather of loss of homogeneity,
which we will then minimize. Here are the basic
ingredients.

e An n X p matrix X of object scores.

e k; X p matrices Y; of category quantifications.
e n X k; indicator matrices G .

The Y; can be collected in a K X p matrix Y, and the
Gjin an n X Kmatrix G.

Now suppose we represent all n objects and all K
categories as points in p-space. The coordinates
are the rows of X'and Y.

We can think of the indicator super-matrix G as
the adjacency matrix of a graph, in which object
i 1s adjacent to category k (of variable ;) if i is in
category k of variable ;.

We can draw this graph by connecting the object
points to all category points that they are in, so m
lines depart from each object, for a total of nm
lines in the drawing. This is the graphplot.
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® The lines must be short.
e Normalize the object scores by X'X = 1.

e Use squared distances to measure
length.

e So we minimize the (squared) amount
of ink in the graphplot.
More precisely, we must minimize

1 m
o(X.Y) =~ > SSQX - GY))
j=1

over both Y and the normalized X.
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The core of the algorithm is the reciprocal
averaging (or alternating least squares) algorithm.
Start with some X@. Then iteratively apply the
centroid principles.

Y® = D7 1G'x®,
X=m'GY",
XD = opth(X®).

Here orth() is an orthogonalizer, such as Gram-
Schmidt or QR or Procrustus.

Iterate until convergence, that is until X® no
longer changes. Let us illustrate a single iteration.
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Make Y from X in the “small” example, using
the first centroid principle. Start with a circle.
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We can illustrate the iterations using movies.

© ! +
z | \_ - ¥
\ 31 1y

| -

34 7
" K = 34
=R e Gl
ef , .
. - — B -
31 = it ¥ —
a4 -z oo a2z oa 02 6 -4 02 ac 0z

“Small” example

On the left: changes in the graphplot over iterations

On the right: changes in the object scores over
iterations
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Some real examples we use throughout are

© — & (09

-- the GALO data (1290 students, gender (2), 1Q
(9), Advice (6), SES(7)).

S
-- the senate data, 20 votes in the 2002 US Senate e
(50 senators). n
a
t
e
Starplots for GALO
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Starplot for galol, 1:4] : advice

GALO 3d object scores (cloud function
LR from lattice package)
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dimension 2

Object score plot for senate Starplot for senate : Party
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We can relate homogeneity to principal component
analysis by restricting the category quantifications of
all variables to be on straight lines through the
origin. A separate line for each variable, of course. In
other words, we require the category quantifications
to be of rank one. In formula

— . ,

The z; are called the lower rank quantifications, the
a;j are the category loadings. They are written, by
default, to the output file of the homals program.
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The algorithm using rank restriction is based on
the partitioning

1 © 5
o(X.Z.A) = — Z SSQ(X - G;¥;)+
j=1

1, e .
+ Do tn(¥; - 2;a) Di(¥; - zjd).
Jj=1
We use alternating least squares. The update for
X given Y is the same as before. If we update 7Y,
we use the rank restrictions, except for multiple
variables.
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0.02 0.04

dimension 2
00

Projection plot for galo[, 1:4] : IQ

-0.02

0.04

-0.04

0.02

-0.04 -0.02 0.00 0.02 0.04

dimension 1

dimension 2
0.00

-0.02

-0.04

-0.04 -0.02 0.00 0.02 0.04

dimension 1

28




Regression and canonical analysis can also be
incorporated in a simple way.We have seen that we
can introduce the notion of sets of variables using
interactive coding. All variables in a set become a
single variable, and we then apply ordinary
homogeneity analysis. But interactive coding can
soon become impractical. Then we use additivity
restrictions.

By using suitable partitionings of the variables into
sets, and by using measurement and rank
restrictions, we can construct generalizations of
many classical descriptive multivariate analysis
techniques.
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With both rank and additivity constraints, category
quantifications are on a regular lattice grid.
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The Gifi loss function, incorporating additivity by
using sets of variables, becomes

1 m
o(X.Y) =~ Z; SSQ(X — ; G,Yy).
J= cL;j

Here the indicators can be fuzzy or incomplete,
and there can be rank constraints on the category
quantifications.
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Software

The homals package in R does principal component
analysis, correspondence analysis, multiple
correspondence analysis, regression, canonical
correlation analysis, and multiset canonical correlation
analysis. It allows for treating variables nominal,
ordinal, numerical; as well as single and multiple.

A similar set of options is available in SPSS
Categories, except that they are distributed over
various programs.
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So far, we have measured homogeneity using
Euclidean geometry, centroids, and correlations,
and all loss functions lead to some form of /east
squares. We now depart somewhat from the
framework and measure loss on a probability
scale. This has the additional advantage that no
arbitrary normalizations are needed.

Our basic data are still the indicator matrices, but
our metric becomes logistic likelihood. This 1s not
necessarily better than least squares, but it can be
expected to lead to quite different solutions.
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Let us look at a single indicator matrix G with n
rows and k columns. The probability that object i is
in category / is

exp(¢(xl-, yf))
Y exp(@(xi,y)

for some suitable function ¢, which we do not
specify yet.

mie(X,Y) =

Assuming independence, we find for the deviance
(-2 times the log likelihood)

n m kj
AX,Y)==23" %" gijelogmj(X, Y).

i=1 j=1 (=1

This means that if object i is in category / of
variable j, then we want

o(xi, yj1) > o(xi, Yj0) Y.

If ¢ is homogeneous, i.e. if

(o, ayji) = " d(xi, yj1)-
for some non-negative r, and these inequalities

are satisfied, then we can actually make sure
that

7TZ'J[<X, Y) =1

and the deviance can be made equal to zero.
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For instance
Gije(X,Y) = —|lz; — yjul-

This means we wants objects to be closer to the
category they are in than to any other category, i.e.
objects need to be in the Voronoi cell of the
category.

Gije(X,Y) = 2jy 0 + oy
which means categories are separated by

hyperplanes, which can be chosen to be parallel by
using rank one restrictions.
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Instead of least squares we use majorization to
arrive at a sequence of related least squares
problems.

The general 1dea behind majorization, in the form
in which we use it here, supposes we minimize a

function with an upper bound for the Hessian. So
X' D? f(y)x < Kx'x. This implies

I4 1 4
S < JO) + (x =yy DFG) + S Kx = y)(x = y),
and gives the convergent algorithm

.Xk+1 — Xk _ K_IZ)f(.Xk).
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For a constrained problem the least squares
sequence becomes

¥ e argmin(x — 2 (x - 2,
xeX
with .
k_ ok k
= X~ Db,
r=x - f(x)

Now apply this to our logistic likelihood.
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and this bound can be used to majorize the
deviance.
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After a great deal of calculation we see that in each
iteration we must minimize

n m kj
Z Z Z(¢ij€(X> Y) - %)%,
i=1 j=1 (=1

where

Zije = Gije(X, Y) + 2(gij0 — mije(X, 1)),

Thus (a) we are back to least squares, and (b) no
normalization is needed.
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In the case of negative distance we must
minimize
n m kj
~ W2
N (dxinyie) = (<Zie)

i=1 j=1 ¢=1

This is a metric unfolding problem (with the
additional complication that the target values or
dissimilarities may be negative). We can use
existing unfolding algorithm to update the object
scores and category quantifications.
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GALO: IQ Senate Voting
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