
ACCELERATED LEAST SQUARES MULTIDIMENSIONAL SCALING

JAN DE LEEUW

ABSTRACT. We discuss some simple acceleration methods for the SMACOF

iterations used in Multidimensional Scaling (MDS). The relaxation method pro-

posed by De Leeuw and Heiser in 1980 tends to speed up the basic algorithm

by a factor two. The method proposed in this paper leads to an algorithm that is

about four times as fast as the original one. It can easily be implemented within

the usual SMACOF programs.

1. CANONICAL MDS PROBLEMS

The least squares metric multidimensional scaling or MDS problem is the mini-
mization of

(1) σ(X) =
1
2

n

∑
i=1

n

∑
j=1

wi j(δi j−di j(X))2,

over all m× p configurations X . Here wi j are given non-negative weights and δi j are
given non-negative dissimilarities. The di j(X) are the Euclidean distances between
rows i and j of X . Thus

di j(X) =

√
p

∑
s=1

(xis− x js)2.

The MDS problem is the minimization of the function (1), which is often called
stress, over the n× p variables X . Parametrization the problem in terms of the
configurations is mathematically not very convenient. Distances are invariant un-
der translations and rotations, which means there are really only np− 1

2 p(p + 1)
variables. The fact that some coordinates are in the same row and others are in
different rows leads to unpleasant expressions, for example for the higher partial
derivatives.

Date: May 26, 2008 — 21h 18min — Typeset in TIMES ROMAN.

2000 Mathematics Subject Classification. 62H25.
Key words and phrases. Multivariate Analysis, Multidimensional Scaling, Convergence

Acceleration.
1

2 JAN DE LEEUW

By reparametrizing we can put the MDS problems in a more simple canonical
form [De Leeuw, 1993]. As a first step, use the fact that

d2
i j(X) = (ei− e j)′XX ′(ei− e j) = tr X ′Ai jX ,

where the ei and e j are unit vectors (columns of the identity matrix), and where
Ai j = (ei− e j)(ei− e j)′.

As a second step, use a basis of n× p matrices Y1, · · · ,YK to express the configu-
ration as X = ∑

K
k=1 θkYk. Using a basis allows one to eliminate the indeterminacy

due to translation and rotation, and also makes it possible to easily include MDS
problems in which X is constrained to lie in a subspace of Rn×p.

Using our new parameters

d2
i j(θ) = θ

′Gi jθ ,

where Gi j is a matrix of order K with element (k, `) equal to tr Y ′kAi jY`. Thus

σ(θ) = 1+
1
2

tr θ
′V θ −

n

∑
i=1

n

∑
j=1

wi jδi j
√

θ ′Gi jθ .

where V = ∑
n
i=1 ∑

n
j=1 wi jGi j.

The next simplification is to use a decomposition V = SS′ to define new parameters
ξ = S′θ . Define

σ(ξ) = 1+
1
2
‖ξ‖2−

n

∑
i=1

n

∑
j=1

wi jδi j

√
ξ ′Ci jξ ,

where Ci j = S−1Gi j(S−1)′, and thus ∑
n
i=1 ∑

n
j=1 wi jCi j = I.

The final step is to forget about the double indexing altogether. Just assume we
have M positive semi-definite matrices Cm of order K, and two M-vectors w and δ ,
such that ∑

M
m=1 wmCm = I and 1

2 ∑
M
m=1 δ 2

m = 1. Find ξ that minimizes

(2) σ(ξ) = 1+
1
2
‖ξ‖2−

M

∑
m=1

wmδmdm(ξ),

where dm(ξ) =
√

ξ ′Cmξ . This is our final form of the MDS problem. Computa-
tionally this usually is not the best parametrization, because the matrices Cm can
be large and sparse, but conceptually (2) is simpler to deal with than (1). For-
mula’s become shorter and more elegant, expressions are easier to manipulate, and
programs are simpler to write.

ACCELERATED SCALING 3

It is shown in De Leeuw [1984] that in the neighborhood of a local minimum of
stress we have dm(ξ) > 0 for all m. For completeness we give a proof here. Define
M+(ξ) as the set of all m with dm(ξ) > 0 and M0(ξ) as the set of all m for which
dm(ξ) = 0. Also define

B(ξ) = ∑
m∈M+(ξ)

wm
δm

dm(ξ)
Cm.

Then the directional derivatives of stress at ξ in the direction τ exist and are equal
to

σ
′(ξ ,τ) = lim

ε↓0

σ(ξ + ετ)−σ(ξ)
ε

= (ξ −B(ξ)ξ)′τ− ∑
m∈M0(ξ)

wmδmdm(τ).

At a local minimum ξ̂ we must have σ ′(ξ̂ ,τ)≥ 0 for all τ . If ξ̂ −B(ξ̂)ξ̂ 6= 0 then
clearly there is a τ such that σ ′(ξ̂ ,τ) < 0. Thus ξ̂ −B(ξ̂)ξ̂ = 0 and σ ′(ξ̂ ,τ) =
−∑m∈M0(ξ̂) wmδmdm(τ). If M0(ξ̂) is non-empty then again there is a τ such that

σ ′(ξ̂ ,τ) < 0. Thus M0(ξ̂) is empty, and dm(ξ̂) > 0 for all m. In fact there is an
open sphere S (ξ̂), centered at ξ̂ , such that dm(ξ) > 0 for all ξ ∈S (ξ̂).

At a point where dm(ξ) > 0 for all m the partials are

Dσ(ξ) = ξ −B(ξ)ξ .

The second partials are

D2
σ(ξ) = I−H(ξ),

with

H(ξ) =
M

∑
m=1

wm
δm

dm(ξ)

{
Cm−

Cmξ ξ ′Cm

ξ ′Cmξ

}
.

Observe that H(ξ) is positive semi-definite, and that its smallest eigenvalue, corre-
sponding to the eigenvector ξ , is equal to zero. At a strict local minimum D2σ(ξ)
is positive definite, which means that H(ξ) has all its eigenvalues strictly less than
one.

2. THE SMACOF ALGORITHM

The SMACOF algorithm for MDS [De Leeuw, 1977] is derived from the Cauchy-
Schwarz inequality. For all ξ and for all θ such that dm(θ) > 0 we have

dm(ξ)≥ 1
dm(θ)

ξ
′Cmθ .

4 JAN DE LEEUW

This implies that
m

∑
m=1

wmδmdm(ξ)≥ ξ
′B(θ)θ ,

and thus

(3) σ(ξ)≤ 1+
1
2
‖ξ‖2−ξ

′B(θ)θ .

Define the Guttman transform Φ(ξ) = B(ξ)ξ and the majorization function

(4) η(ξ ,θ) = 1+
1
2
‖ξ −Φ(θ)‖2− 1

2
‖Φ(θ)‖2.

Clearly σ(ξ)≤ η(ξ ,θ) for all ξ ,θ and σ(ξ) = η(ξ ,ξ) for all ξ .

If a superscript (ν) is used for the iteration counter, then one iteration step of the
SMACOF algorithm computes ξ (ν+1) by minimizing η(ξ ,ξ (ν)), i.e. by setting
ξ (ν+1) = Φ(ξ (ν)). If ξ (ν+1) = ξ (ν) = Φ(ξ (ν)) we stop. If not, the sandwich in-
equality

σ(ξ (ν+1))≤ η(ξ (ν+1),ξ (ν)) < η(ξ (ν),ξ (ν)) = σ(ξ (ν))

tell us the value of stress is always decreased, i.e. the algorithm is stable [Varadhan
and Roland, 2008]. For ease of reference we call SMACOF algorithm A1.

Algorithm A1 (SMACOF)
ξ

(ν+1) = Φ(ξ (ν))

The iteration function is Φ(ξ) = B(ξ)ξ , and the iiteration sequence, which de-
pends on the starting point ξ (0), is the Picard sequence ξ (ν+1) = Φ(ξ (ν)). It is
shown in De Leeuw [1977] what to do if the algorithm happens to stumble on a
point ξ where one or more of the dm(ξ) are zero.

Suppose the SMACOF algorithm converges to ξ?, a fixed point of Φ and a point
where the derivative of σ is zero. The linear convergence rate of this algorithm is
ρ(DΦ(ξ?)), the spectral radius (the largest eigenvalue in modulus, or the square of
the largest singular value) of the derivative of the iteration function. See Ostrowski
[1966] or Ortega and Rheinboldt [1970, Chapter 10]. Note that, by De Leeuw
[1984], this derivative exists at a local minimum. Since DΦ(ξ) = H(ξ), the de-
rivative of the iteration function at a strict local minimum ξ? has all its eigenvalues
between zero and one, with the largest one strictly less than one and the smallest
one precisely equal to zero [De Leeuw, 1988].

More precisely, suppose λi(ξ?) are the K eigenvalues of H(ξ?) ordered as

0 = λK(ξ?)≤ λn−1(ξ?)≤ ·· · ≤ λ2(ξ?)≤ λ1(ξ?) < 1.

ACCELERATED SCALING 5

The rate of convergence of the iteration ξ (ν+1) = Φ(ξ (ν)) is

ρ1(ξ?) = ρ(DΦ(ξ?)) =
K

max
k=1
|λi(ξ?)|= λ1(ξ?).

Thus if ξ (ν) converges to a local minimum at ξ?, then

limsup
k→∞

‖ξ (ν+1)−ξ?‖
‖ξ (ν)−ξ?‖

= λ1(ξ?),

and

limsup
k→∞

σ(ξ (ν+1))−σ(ξ?)
σ(ξ (ν))−σ(ξ?)

= λ
2
1 (ξ?).

3. LINEAR MULTIPOINT ACCELERATION

Now define the more general multipoint iteration function

(5) Ψα(ξ) =
s

∑
r=0

αrΦr(ξ),

where Φ0(ξ) = ξ and Φr(ξ) = Φ(Φr−1(ξ)) for r > 0. To make sure fixed points
of Φ are also fixed points of Ψ we require ∑

r
r=0 αr = 1. Note that we do not require

the αr to be non-negative, but we do require them to be the same in all iterations.
In a later section we shall drop this stationarity requirement.

Now

DΨα(ξ) =
s

∑
r=0

αrDΦr(ξ) =
s

∑
r=0

αr[DΦ(ξ)]r.

The eigenvalues of the iteration function Ψα at ξ are ∑
s
r=0 αrλ

r
k (ξ), and the rate of

convergence at ξ? is

(6) ρ(DΨα(ξ?)) =
K

max
k=1
|

s

∑
r=0

αrλ
r
k (ξ?)|.

This implies that for linear multipoint methods the best attainable rate is

(7) ρ̂s(ξ?) = min
α0+···+αs=1

ρ(DΨα(ξ?)).

Define the Vandermonde matrix Λ(ξ?) by
1 λ1(ξ?) λ 2

1 (ξ?) · · · λ s
1(ξ?)

1 λ2(ξ?) λ 2
2 (ξ?) · · · λ s

2(ξ?)
...

...
...

. . .
...

1 λK(ξ?) λ 2
K(ξ?) · · · λ s

K(ξ?)

 .

6 JAN DE LEEUW

Then Λ(ξ?) is of dimension K×(s+1). Suppose, for the moment, that all eigenval-
ues are different. Then if s = K there will be a α̂(ξ?) such that Λ(ξ?)α̂(ξ?) = 0. The
α̂(ξ?) are the coefficients of a polynomial of degree s in λ that has λ1(ξ?), · · · ,λK(ξ?)
as its roots. The polynomial is unique up to multiplication by a constant, and we
can use this constant to normalize the coefficients so they add up to one. This gives

π?(λ) =
K

∏
k=1

λ −λk(ξ?)
1−λk(ξ?)

=
s

∑
r=0

α̂r(ξ?)λ r.

Note that π?(1) = ∑
s
r=0 α̂r(ξ?) = 1. Also note that if λK(ξ?) = 0, as in MDS, then

also α̂0(ξ?) = 0. If some eigenvalues are equal, then some rows of Λ(ξ?) will be
equal, and we must eliminate these multiples. It then suffices to choose the degree
of the polynomial equal to the number of distinct eigenvalues of DΦ(ξ?). We can
easily compute the coefficients α̂(ξ?) by using the charPoly() function in the
Appendix. The iteration function using α̂(ξ?) has quadratic convergence, but of
course cases in which the λk(ξ?) are known beforehand will be rare indeed.

We have shown that if s is equal to the number of distinct eigenvalues, then at least
theoretically we can attain quadratic convergence by an appropriate choice of coef-
ficients. For smaller s computing the best rate ρs(ξ?) for given λ1(ξ?), · · · ,λK(ξ?)
is a discrete linear Chebyshev problem. By eliminating α0 we get

(8) ρs(ξ?) = min
α

K
max
k=1
|

s

∑
r=1

αr(1−λ
r
k (ξ?))−1|.

The Appendix gives an R interface chebR() to the FORTRAN routine CHEB, to
compute discrete Chebyshev approximations [Barrodale and Philips, 1975].

Now consider a more general situation in which the coefficients of the linear com-
bination also depend on the current solution. Thus

(9) Ψα(ξ) =
s

∑
r=0

αr(ξ)Φr(ξ),

where Φ0(ξ) = ξ and Φr(ξ) = Φ(Φr−1(ξ)) for r > 0, and where now we require

∑
r
r=0 αr(ξ) = 1 for all ξ . If the αr(ξ) are differentiable functions of ξ , then

DΨα(ξ) =
s

∑
r=0

Dαr(ξ)Φr(ξ)+
s

∑
r=0

αr(ξ)[DΦ(ξ)]r,

and at a stationary point ξ? where Φr(ξ?) = ξ? for all r we have

DΨα(ξ?) =
s

∑
r=0

αr(ξ?)[DΦ(ξ?]r.

ACCELERATED SCALING 7

Thus the convergence rate is still

(10) ρ(DΨα(ξ?)) =
K

max
k=1
|

s

∑
r=0

αr(ξ?)λ r
k (ξ?)|.

Note that the derivatives of the coefficients αr(ξ) at ξ? do not play a role in (10).
For differentiable coefficients the rate is computed as if the coefficients are the
constants αr(ξ?). Thus the Chebyshev optimal bounds still apply to the case with
non-constant, but differentiable, coefficients in the linear combinations.

4. THREE-POINT ITERATIONS

We do not have a practical procedure, however, to implement general optimal linear
multipoint iterations in the MDS case, and thus we look for simplifications. The
first simplification will be to limit ourselves, for the rest of the paper, to three-point
iterations of the form

Ψ(ξ) = α0ξ +α1Φ(ξ)+α2Φ(Φ(ξ)),

with, of course, α0 +α1 +α2 = 1. The convergence rate is

ρ(DΨα0,α1,α2(ξ?)) =
K

max
k=1
|α0ξ? +α1λk(ξ?)+α2λ

2
k (ξ?)|,

and the optimal convergence rate is

ρ̂2(ξ?) = min
α0+α1+α2=1

ρ(DΨα0,α1,α2(ξ?)).

Instead of tackling the general three-point problem directly, we simplify it some
more, first by setting α2 = 0. The optimal rate becomes

ρ̂1(ξ?) = min
α

n
max
k=K
|αλk(ξ?)+(1−α)|.

The iteration function is Ψα(ξ) = αΦ(ξ) + (1−α)x = x−αDσ(ξ), i.e. to a
gradient method with constant step-size α .

The computation of ρ̂1 is illustrated in Figure 2, which shows an example with
λ = 0.00(0.01)0.99. Each of the 100 functions graphed in the plot is a V-shaped
function of the form |αλk +(1−α)|, and the boundary of the wedge-shaped area in
the middle is the function defined as the maximum of those 100 V’s. The minimum
is attained at the intersection of αλ1 +(1−α) (in green) and −αλK− (1−α) (in
blue), i.e. at

α̂ =
2

2− (λ1 +λK)
.

8 JAN DE LEEUW

−3 −2 −1 0 1 2 3

0.
97

0.
98

0.
99

1.
00

1.
01

1.
02

1.
03

alpha

en
ve

lo
p

FIGURE 1. Computing ρ̂1

At this point the rate is

(11a) ρ̂1 =
λ1−λK

2− (λ1 +λK)
.

If λK = 0, as in SMACOF, the best rate is

(11b) ρ̂1 =
λ1

2−λ1
,

which is attained at

α̂ =
2

2−λ1
.

If, for example, λ1 is 0.99 and thus the optimal two step rate is ρ̂1 = 0.980198,
attained for α̂ = 1.980198.

Of course in actual examples we do not know λ1, so we cannot implement

Ψα(ξ) =
2

2−λ1
Φ(ξ)− λ1

2−λ1
x

directly. In an implementation we can replace λ1 by a simple estimate, which
does not influence the asymptotic convergence rate. Thus the algorithm, which is
generally not stable, becomes

ACCELERATED SCALING 9

Algorithm A2 (STEP)

ζ
(ν) = Φ(ξ (ν)),

λ̂
(ν)
1 =

‖ζ (ν)−ξ (ν)‖
‖ζ (ν−1)−ξ (ν−1)‖

,

α̂
(ν) =

2

2− λ̂
(ν)
1

,

ξ
(ν+1) = α̂

(ν)
ζ

(ν) +(1− α̂
(ν))η(ν).

This algorithm can be just as easily implemented in the original configuration
parametrization, there is no need computationally to switch to the canonical form
involving the Cm.

4.1. The Relaxed Update. Equation (4) implies that stability σ(ξ (ν+1))≤σ(ξ (ν))
is guaranteed if we update by

ξ
(ν+1) = αΦ(ξ (ν))+(1−α)ξ (ν) = ξ

(ν)−αDσ(ξ (ν))

for any 0≤ α ≤ 2.

De Leeuw and Heiser [1980] have proposed to use the update with α = 2. The
reasoning was that if λ1 = 1− ε, with ε small, then 2λ1−1 = λ 2

1 − ε2 < λ 2
1 . Thus

the convergence rate goes from λ1 to λ 2
1 and the algorithm uses only approximately

half the number of iterations. This, however, does not tell the whole story. Because
λK = 0 is an eigenvalue of the SMACOF iteration, the convergence rate of the
relaxed update Ψ(ξ) = 2Φ(ξ)− ξ is maxK

k=1 |2λk− 1| = 1, which indicates sub-
linear convergence. The sandwich inequality for the relaxed update is

σ(ξ (ν+1))≤ η(ξ (ν+1),ξ (ν)) = η(ξ (ν),ξ (ν)) = σ(ξ (ν)),

which means we cannot show strict improvement in each iteration.

In fact, suppose we start iteration ν with ξ (ν) = τξ̂ , where ξ̂ is a fixed point of the
Guttman transform and τ 6= 1. Then for the relaxed update ξ (ν+1) = Ψ(ξ (ν)) =
(2−τ)ξ̂ and ξ (ν+2) = Ψ(Ψ(ξ (ν))) = τξ̂ = ξ (ν). Thus there is no convergence and
the sequence cycles between the two different points τξ̂ and (2−τ)ξ̂ . Both points
have stress value 1 + 1

2 τ(τ−2)‖ξ̂‖2 > σ(ξ̂). Moreover any point of the form τξ̂

is a fixed point of Ψ2(ξ) = Ψ(Ψ(ξ)).

10 JAN DE LEEUW

4.2. Normalization. To effectively deal with the shortcomings of the relaxed up-
date we can define a normalized relaxed update, following Groenen et al. [1999].

Suppose Ψ is any MDS iteration function. Instead of updating ξ by Ψ(ξ), we
update by τΨ(ξ), where the scalar τ is chosen to minimize stress. This defines the
normalized algorithm

Algorithm A3(NORM)

η
(ν) = Ψ(ξ (ν)),

τ
(ν) =

(η(ν))′Ψ(η(ν))
(η(ν))′η(ν) ,

ξ
(ν+1) = τ

(ν)
η

(ν).

The normalizing scalar τ is equal to one at a local minimum ξ̂ . If the original
algorithm is stable, then the normalized algorithm is stable, because σ(ξ (ν+1)) ≤
σ(η(ν))≤ σ(ξ (ν)). Also

Dτ(ξ̂) =− ξ̂

ξ̂ ′ξ̂
,

and thus for the derivative of the normalized iteration function Ψ̃ at the local mini-
mum ξ̂ we find

DΨ̃(ξ̂) = (I− ξ̂ ξ̂ ′

ξ̂ ′ξ̂
)DΨ(ξ̂).

Thus derivatives of iteration functions which have DΨ(ξ)ξ = ξ , such as the re-
laxed update, are deflated and the trivial unit eigenvalue is removed. All other
eigenvalues remain the same.

The rate of convergence of the normalized relaxed update becomes

(12) λ3 = max{|2λ1−1|, |2λK−1−1|}.

We have a rate λ3 = 2λ1−1 if λ1 > 1
2 and λK−1 > 1

2 . We also have λ3 = 2λ1−1 if
λ1 > 1

2 and λK−1 < 1
2 and λ1 +λK−1 > 1. In all other cases λ3 = 1−2λK−1. For the

example with λ = 0.00(0.01)0.99 the rate is 0.98, which is actually slightly better
than the optimal rate for two-point convex combinations of the form αΦ(ξ) +
(1−α)ξ , which was 0.980198. Since the dm(ξ (ν)) can be re-used in the next
iteration to quickly compute the dm(ξ (ν+1)) normalizing the relaxed update does
not significantly increase the amount of work in an iteration.

ACCELERATED SCALING 11

4.3. Stabilization. There is an alternative method to normalize, which we call
stabilization, following Varadhan and Roland [2008]. We set

Algorithm A4(STABLE)

η
(ν) = Ψ(ξ (ν)),

ξ
(ν+1) = Φ(η(ν)).

If we apply stabilization to the relaxed update, we find σ(ξ (ν+1)) ≤ σ(η(ν)) ≤
σ(ξ (ν)). The convergence rate is

ρ(DΦ(Ψ(ξ)DΨ(ξ)) =
m

max
k=1
|λk(2λk−1)|.

On the unit interval the convex quadratic λ (2λ − 1) has roots at zero and 1
2 , and

a minimum at 1
4 , which minimum value equal to −1

8 . Thus the maximum of
|λk(2λk − 1)| is attained at either the eigenvalue between zero and 1

2 for which
λ (1−2λ) is maximized (which is the eigenvalue closest to 1

4) or at λ1. Assuming
that λ1 > 1

4(1+
√

2)≈ 0.6035534 we have

ρ(DΦ(Ψ(ξ)DΨ(ξ)) = λ1(2λ1−1).

But for λ1 = 1−ε with ε small λ1(2λ1−1) = λ 3
1 −λ1ε2 < λ 3

1 , and thus stabilized
relaxed updates converge at least three times as fast as raw SMACOF. If λ1 = .99
then λ 3

1 = 0.970299 and λ1(2λ1−1) = 0.9702.

4.4. Three-point Relaxation. The original idea behind relaxation can be gener-
alized to three-point acceleration. Define the relaxed update

Ψ(ξ) = 3Φ(Φ(ξ))−3Φ(ξ)+ξ ,

and normalize this.

Algorithm A5(RELAX3−N)

χ
(ν) = Φ(ξ (ν)),

ζ
(ν) = Φ(χ

(ν)),

η
(ν) = 3ζ

(ν)−3χ
(ν) +ξ

(ν),

τ
(ν) =

(η(ν))′Ψ(η(ν))
(η(ν))′η(ν) ,

ξ
(ν+1) = τ

(ν)
η

(ν).

12 JAN DE LEEUW

The convex quadratic 3λ 2−3λ +1 is non-negative on the unit interval and is sym-
metric around its minimum at 1

2 . Thus the convergence rate is

ρ5 =
K−1
max
k=1
|3λ

2
k −3λk +1|= max(3λ

2
1 −3λ1 +1,3λ

2
K−1−3λK−1 +1).

Thus ρ5 = 3λ 2
1 − 3λ1 + 1 if λ1 + λK−1 > 1. If λ1 = 1− ε , then ρ5 = λ 3

1 + ε3 and
thus we expect the number of iterations to be divided by a factor of three. Note that
the analysis depends critically on using the normalization, and on the fact that the
eigenvalues of the SMACOF iteration function are between zero and one. Thus the
method will not necessarily perform well with other fixed point iterations.

The stabilized three-point relaxation is

Algorithm A6(RELAX3−S)

χ
(ν) = Φ(ξ (ν)),

ζ
(ν) = Φ(χ

(ν)),

η
(ν) = 3ζ

(ν)−3χ
(ν) +ξ

(ν),

ξ
(ν+1) = Φ(η(ν)).

The third degree polynomial λ (3λ 2− 3λ + 1) is non-negative and increasing on
the unit interval. Thus

ρ6(ξ) = λ1(ξ)(3λ
2
1 (ξ)−3λ1(ξ)+1),

and if λ1(ξ) = 1− ε , then ρ6(ξ) = λ 4
1 (ξ)+ λ1(ξ)ε2. For λ = .99 we have λ 4 =

0.960596 and λ (3λ 2−3λ +1) = 0.960597.

4.5. Three-point Self-Scaling Iterations. An iteration function Ψ is called self-
scaling if Ψ(θξ) = Ψ(ξ) for all ξ and for all real θ , i.e. if the iteration function is
homogenous of degree zero. This implies, by Euler’s Theorem, that DΨ(ξ)ξ = 0
for all ξ . The SMACOF iteration function Φ is self-scaling. Note that three-point
algorithms are self-scaling if and only if α2 = 0. This is even true after normaliza-
tion and stabilization, although both normalization and stabilization guarantee that
DΨ(ξ)ξ = 0,

So let us look at three-point self-scaling algorithms with α2 = 0. The optimal rate
is

λ5 = min
α

K
max
k=1
|αλ

2
k +(1−α)λk|.

ACCELERATED SCALING 13

Rate λ5 corresponds with the iteration Ψ(ξ) = αΦ(Φ(ξ))+ (1−α)Φ(ξ), which
is self-scaling because Φ is.

−10 −5 0 5 10

0.
90

0.
95

1.
00

1.
05

alpha

en
ve

lo
p

FIGURE 2. Computing λ5

The 100 V-shaped functions |αλ 2
k +(1−α)λk| and their envelop are given in Fig-

ure 2. We find the minimum by intersecting the line with the steepest increase,
which is αλ 2

1 + (1−α)λ1, with one of the n− 1 reflected parts −(αλ 2
k + (1−

α)λk). We conclude that the minimum occurs for some k at

α̂ = min
k>1

λ1 +λk

(λ1 +λk)− (λ 2
1 +λ 2

k)
.

Using the k̂ that yields the minimum shows that

(13) λ5 = α̂λ
2
1 +(1− α̂)λ1 =

λ1λk̂(λ1−λk̂)
(λ1 +λk̂)− (λ 2

1 +λ 2
k̂
)

In our example the optimum α̂ is 5.559968, which gives a rate of λ4 = 0.9349563.
The accelerated algorithm is 6.7 times as fast as the basic SMACOF algorithm (but
it uses twice as many computations for the update, so we expect it to be about three
to four times as fast).

14 JAN DE LEEUW

During the iterations we usually do not have information about the intermediate
eigenvalues, but we can estimate what λ1 is. Thus it is advantageous to have an
expression that only involves λ1, similar to what we had in the two-step case. Now

α̂ = min
k>1

1

1− λ 2
1 +λ 2

k
λ1+λk

≥ min
0≤x≤1

1

1−λ1
1+x2

1+x

=
1

1−λ1(2
√

2−2)
.

Letting λ = 1
2(1+

√
2)≈ 1.207107 we find

α̂ ≥ λ

λ −λ1
.

If we us this lower bound for α̂ we find the convergence rate

(14) λ6 = λ
2
1

λ −1

λ −λ1
≥ λ5.

As our examples show, λ5 and λ6 are generally close. In our example with 100
equally spaced eigenvalues the bound for the rate is λ6 = 0.9349563, the same as
the optimal rate λ5.

In our implementation we replace λ1 by the same estimate we used before. Thus
the algorithm, which is generally non-monotone, becomes

Algorithm A7(SCALING)

η
(ν) = Φ(ξ (ν)),

ζ
(ν) = Φ(η(ν)),

ρ̂
(ν) =

‖ζ (ν)−η(ν)‖
‖η(ν)−ξ (ν)‖

,

α̂
(ν) =

λ

λ − ρ̂(ν)
,

ξ
(ν+1) = α̂

(ν)
ζ

(ν) +(1− α̂
(ν))η(ν).

5. EXAMPLES

5.1. Equal Dissimilarities. If all dissimilarities are equal then optimal MDS so-
lutions in two dimensions will be on one or more concentric circles [De Leeuw
and Stoop, 1984]. In A.4.1 we give a small R program eqdiss() that computes
normalized dissimilarities and a basis for order n.

For n = 4 the global minimum in two dimensions is four points at the corners
of a square. Since it does not matter which point we put in which corner, the

ACCELERATED SCALING 15

minimum is not unique. The basis consists of 5 matrices Cm of order 6. Mini-
mum stress is σ(ξ?) = 0.0285955. The four non-zero eigenvalues of H(ξ?) are
0.840537, 0.585786, 0.585786, and 0.492796. The convergence rate of raw SMA-
COF is λ1(ξ?) = 0.840537. Note that two of the eigenvalues are equal. The optimal
Chebyshev rate for three-step algorithms is 0.349517, and for four-step algorithms
it is 0.0773212. Five-step algorithms can attain quadratic convergence.

step α0 α1 α2 α3 α4 rate

2 -0.724937 1.724937 – – – 0.724937
3 0.349517 -3.428725 4.079207 – – 0.349517
4 -0.077322 5.377768 -16.081755 11.781308 – 0.077322
5 0.000000 -7.242595 35.677494 -57.284050 29.849152 0.000000

TABLE 1. Chebyshev Algorithms

5.2. Example with Perfect Fit. For the dissimilarities we use the normalized dis-
tances of the two-dimensional configuration in Table 2.

1 2

1 0.09 0.53
2 −1.17 −0.67
3 −0.57 −0.02
4 0.59 −1.58
5 −1.66 −0.88
6 −0.73 −0.47
7 0.84 −1.33
8 1.09 −0.24
9 0.12 0.28

10 −0.91 −0.73

TABLE 2. Random Configuration

Thus the global minimum of stress should be zero. We start with ξ equal to
1,2, · · · ,17. All the relevant code is in the Appendix. Basic SMACOF uses 772
iterations and time 4.871 seconds. Some of this is overhead, of course. If we define
a version of SMACOF which makes two SMACOF steps in each iteration before

16 JAN DE LEEUW

recomputing stress and deciding to stop or not, then we need 415 of these double
iterations and only 3.619 seconds of time. SMACOF with relaxation and normal-
ization uses 410 iterations and time 3.429. Especially in this last case some time
could be gained by more efficient programming. Three-point relaxed uses 288 iter-
ations and time 3.062. The λ -algorithm uses 145 iterations with time 1.271, which
is promising.

For this example we have computed eigenvalues of the algorithmic map at the
solution, and thus the theoretical convergence rates. They are in Table 3. The
three-point Chebyshev solution has α̂ = 7.780288 and α̂ = −7.684987 and γ̂ =
0.904699.

algorithm formula value

basic λ1 0.987749
two-step λ 2

1 0.975648
three-step λ 3

1 0.963695
three-point λ1 0.904684

optimal λ2 0.975795
relax/norm λ3 0.975498

relax(2)/norm λ4 0.963697
α̂ λ5 0.921032
λ λ6 0.921159

TABLE 3. Theoretical Convergence Rates

The code in the Appendix also implements Newton’s method. The iteration for-
mula is Ψ(ξ) = (I−H(ξ))−1B(ξ)ξ . With the same start for ξ we need only 26
iterations, and use only 0.284 seconds. Unfortunately convergence is to a saddle
point, and not to the global minimum. If we try ten random permutations of ξ as
starting points, then Newton’s method uses anywhere from 13 to 128 iterations,
with a running time of 0.142 to 1.363 seconds. It only finds the global minimum
in three of the ten runs.

5.3. Ekman Color Circle. This is an example with 14 points in two dimensions [Ek-
man, 1954]. We apply the one-step, one-step-relaxed, two-step, and the λ algo-
rithms. They all start at the same point and converge to the same solution, which

ACCELERATED SCALING 17

has largest eigenvalue λ1 = 0.964896. Table 5 shows the computed rates (which
are very close to the theoretical ones) and the time to convergence.

algorithm empirical rate iterations time

basic 0.964898 519 6.876
two-step 0.931027 270 5.174
relaxed 0.929765 217 4.937
relaxed(two) 0.898387 187 4.428
λ 0.796165 90 1.730

TABLE 4. Ekman Example

As in the previous example, we see convergence rates indicating that the λ -algorithm
is needs about one sixth of the iterations of basic SMACOF and, if we take the
amount of work within iterations into account, is about four times faster. We can
compute the Chebyshev weights at the optimum. This gives α̂ = 6.601501 and
α̂ =−6.369762 and γ̂ = 0.768261, with a rate of λ1 = 0.768264.

5.4. Rothkopf Morse Code Data. For the next example [Rothkopf, 1957] there
are 36 morse-signals being compared, and thus 630 dissimilarities. A basis for
the two-dimensional configurations has 67 elements. The confusion data are first
transformed to dissimilarities using the Shepard-Luce formula

δi j =− log
√

ni jn ji

niin j j
.

Programming efficiency really begins to matter in this case, because the array con-
taning the Cm has 67× 67× 630 = 2,828,070 elements. We use basic SMACOF,
the normalized relaxed update, and the λ -algorithm. We show the user time, the
system time, and the elapsed time.

Again we see that basic SMACOF takes about six times as many iterations and
about four times as much time as the λ -algorithm. The optimal Chebyshev rate
in this example, by the way, is λ1 = 0.947381. The Newton-Raphson method,
without any safeguards, wildly fluctuates all over the place, and is pretty useless in
this case.

18 JAN DE LEEUW

algorithm empirical rate iterations u-time s-time e-time

basic 0.993152 1214 347.662 238.964 588.013
relaxed 0.986304 655 268.575 172.530 441.900
relaxed(two) 0.979597 457 258.531 165.137 423.767
λ 0.954831 187 83.372 61.496 145.105

TABLE 5. Rothkopf Example

APPENDIX A. CODE

A.1. MDS Code.

1 dyn.load("one_up.so")

2

3 do_some_iters<-function(a,delta,x,upfunc,renorm=FALSE,stable=

FALSE,itmax=1000,eps=1e-15,ips=1e-6,verbose=TRUE) {

4 xold<-x; if (renorm) xold<-optnorm(a,delta,xold)

5 fold<-stress(a,delta,xold); itel<-1; nro<-1; fro<-1

6 repeat {

7 xnew<-upfunc(a,delta,xold)$up

8 if (renorm) xnew<-optnorm(a,delta,xnew)

9 if (stable) xnew<-one_up(a,delta,xnew)$up

10 fnew<-stress(a,delta,xnew)

11 nrn<-norm(xold-xnew); frn<-fold-fnew

12 if (verbose) cat(

13 "Iteration: ",formatC(itel,

width=3, format="d"),

14 "Change: ", formatC(nrn,digits

=8,width=12,format="f"),

15 "TRate: ", formatC(nrn/nro,

digits=8,width=12,format="f"

),

16 "FRate: ", formatC(frn/fro,

digits=8,width=12,format="f"

),

17 "O-Function: ",formatC(fold,

digits=8,width=12,format="f"

),

ACCELERATED SCALING 19

18 "N-Function: ",formatC(fnew,

digits=8,width=12,format="f"

),

19 "\n")

20 if ((itel == itmax) || (abs(fnew - fold) < eps)

|| (nrn < ips)) break()

21 itel<-itel+1; fold<-fnew; xold<-xnew; nro<-nrn

; fro<-frn

22 }

23 return(the_solution(a,delta,xnew,itel))

24 }

25

26 make_x<-function (n,p) {

27 r<-(p*n)-(p*(p+1)/2); l<-1

28 x<-array(0,c(n,p,r))

29 for (i in 1:p)

30 {

31 qrq<-as.matrix(qr.Q(qr(outer(1:(n-i+1),0:(n-i),"^")))

[,2:(n-i+1)])

32 for (k in 1:(n-i))

33 {

34 x[1:(n-i+1),i,l]<-qrq[,k]

35 l<-l+1

36 }

37 }

38 return(x/sqrt(n))

39 }

40

41 make_a_from_x<-function(x) {

42 n<-dim(x)[3]; m<-dim(x)[1]; mm<-m*(m-1)/2

43 c<-array(0,c(n,n,mm))

44 for (s in 1:n) for (t in 1:n)

45 {

46 prd<-x[,,s]%*%t(x[,,t]); k<-1

47 for (i in 1:(m-1)) for (j in (i+1):m)

48 {

49 c[s,t,k]<-prd[i,i]+prd[j,j]-(prd[i,j]+prd[j,i])

50 k<-k+1

51 }

20 JAN DE LEEUW

52 }

53 return(c)

54 }

55

56 make_random_a<-function(n,p) {

57 a<-array(0,c(p,p,n)); bk<-matrix(0,p,p)

58 for (k in 1:n) {

59 ak<-crossprod(matrix(rnorm(p*p),p,p))

60 a[,,k]<-ak; bk<-bk+ak

61 }

62 ev<-eigen(bk); ea<-ev$values; ek<-ev$vectors

63 ck<-matrix(0,p,p); eb<-sqrt(outer(ea,ea)); bk<-matrix(0,p,p)

64 for (k in 1:n) {

65 ak<-crossprod(ek,a[,,k]%*%ek)/eb

66 a[,,k]<-ak; bk<-bk+ak

67 }

68 return(a)

69 }

70

71 the_solution<-function(a,delta,x,itel) {

72 n<-dim(a)[3]; p<-dim(a)[1]

73 b<-matrix(0,p,p); h<-matrix(0,p,p); d<-rep(0,n)

74 for (k in 1:n) {

75 ak<-a[,,k]; ax<-colSums(x*ak)

76 dk<-sqrt(sum(x*colSums(x*ak))); d[k]

<-dk

77 b<-b+(delta[k]/dk)*ak

78 h<-h+(delta[k]/dk)*(ak-outer(ax,ax)/(dk

^2))

79 }

80 eb<-eigen(b,only.values=TRUE)$values

81 eh<-eigen(h,only.values=TRUE)$values

82 cp<-charPoly(c(1,eh))

83 cf<-torgerson(vecAsDist(d))

84 return(list(x=x,f=1+sum(x^2)-2*sum(delta*d),itel=itel,d

=d,b=b,h=h,eb=eb,eh=eh,cp=cp,cf=cf))

85 }

86

87 one_up_r<-function(a,delta,x) {

ACCELERATED SCALING 21

88 n<-dim(a)[3]; p<-dim(a)[1]

89 b<-matrix(0,p,p)

90 for (k in 1:n) {

91 ak<-a[,,k]

92 dk<-sqrt(sum(x*colSums(x*ak)))

93 b<-b+(delta[k]/dk)*ak

94 }

95 up<-colSums(x*b)

96 return(list(up=up))

97 }

98

99 one_up_c<-function(a,delta,x) {

100 n<-dim(a)[3]; p<-dim(a)[1]; b<-matrix(0,p,p)

101 res<-.C("oneUp",as.double(a),as.double(delta),as.double

(x),as.double(b),as.integer(n),as.integer(p))

102 b<-matrix(res[[4]],p,p)

103 up<-colSums(x*b)

104 return(list(up=up))

105 }

106

107 one_up<-one_up_c

108

109 one_up_rel<-function(a,delta,x) {

110 y<-one_up(a,delta,x)$up

111 up<-2*y-x

112 return(list(up=up))

113 }

114

115 two_up_rel<-function(a,delta,x){

116 y<-one_up(a,delta,x)$up

117 z<-one_up(a,delta,y)$up

118 up<-3*z-3*y+x

119 return(list(up=up))

120 }

121

122 two_up_kp<-function(a,delta,x) {

123 y<-one_up(a,delta,x)$up

124 nold<-norm(y-x)

125 z<-one_up(a,delta,y)$up

22 JAN DE LEEUW

126 nnew<-norm(z-y)

127 kappa<-nnew/nold

128 kup<-(1+sqrt(2))/2

129 alp<-kup/(kup-kappa)

130 up<-alp*z+(1-alp)*y

131 return(list(up=up))

132 }

133

134 epsilon<-function(a,delta,x){

135 y<-one_up(a,delta,x)$up

136 z<-one_up(a,delta,y)$up

137 r2<-z-y

138 r1<-y-x

139 al<-sum(r2^2)

140 bt<--2*sum(r2*r1)

141 gm<-sum(r1^2)

142 up<-(al*x+bt*y+gm*z)/(al+bt+gm)

143 return(list(up=up))

144 }

145

146 macleod<-function(a,delta,x){

147 y<-one_up(a,delta,x)$up

148 z<-one_up(a,delta,y)$up

149 r2<-z-y

150 r1<-y-x

151 kappa<-norm(r2)/norm(r1)

152 up<-z-((kappa^2)/(kappa-1))*r1

153 return(list(up=up))

154 }

155

156 nwt_up<-function(a,delta,x) {

157 n<-dim(a)[3]; p<-dim(a)[1]

158 b<-matrix(0,p,p); h<-matrix(0,p,p)

159 for (k in 1:n) {

160 ak<-a[,,k]; ax<-colSums(x*ak)

161 dk<-sqrt(sum(x*colSums(x*ak)))

162 b<-b+(delta[k]/dk)*ak

163 h<-h+(delta[k]/dk)*(ak-outer(ax,ax)/(dk^2))

164 }

ACCELERATED SCALING 23

165 y<-colSums(x*b); up<-solve(diag(p)-h,y)

166 return(list(up=up))

167 }

168

169

170 norm<-function (x) sqrt(sum(x^2))

171

172 stress_r<-function(a,delta,x){

173 n<-dim(a)[3]; p<-dim(a)[1]

174 xi<-0

175 for (k in 1:n) {

176 ak<-a[,,k]

177 dk<-sqrt(sum(x*colSums(x*ak)))

178 xi<-xi+delta[k]*dk

179 }

180 return(1+sum(x^2)-2*xi)

181 }

182

183 stress_c<-function(a,delta,x){

184 n<-dim(a)[3]; p<-dim(a)[1]; s<-0.0

185 res<-.C("aLoss",as.double(a),as.double(delta),as.double(x),

as.double(s),as.integer(n),as.integer(p))

186 return(res[[4]])

187 }

188

189 stress<-stress_c

190

191 optnorm_r<-function(a,delta,x) {

192 xi<-0; n<-dim(a)[3]

193 for (k in 1:n) {

194 ak<-a[,,k]

195 dk<-sqrt(sum(x*colSums(x*ak)))

196 xi<-xi+delta[k]*dk

197 }

198 return(xi*x/sum(x^2))

199 }

200

201 optnorm_c<-function(a,delta,x) {

202 n<-dim(a)[3]; p<-dim(a)[1]

24 JAN DE LEEUW

203 res<-.C("aNorm",as.double(a),as.double(delta),as.double(x),

as.integer(n),as.integer(p))

204 return(res[[3]])

205 }

206

207 optnorm<-optnorm_c

208

209 charPoly<-function(a) {

210 n<-length(a)

211 coef<-c(1,rep(0,n))

212 for (i in 1:n) {

213 coef[2:(i+1)]<-coef[2:(i+1)]-a[i]*coef[1:i]

214 }

215 coef<-coef/sum(coef)

216 return(rev(coef))

217 }

218

219 vecAsDist<-function(x) {

220 n<-(1+sqrt(1+8*length(x)))/2

221 e<-matrix(0,n,n); k<-0

222 for (i in 1:(n-1)) {

223 l<-n-i; ll<-1:l

224 e[i+ll,i]<-x[k+ll]

225 k<-k+l

226 }

227 return(as.dist(e))

228 }

229

230 torgerson<-function(diss,p=2) {

231 z<-eigen(-doubleCenter(as.matrix(diss)^2)/2,symmetric=TRUE)

232 v<-pmax(z$values,0)

233 return(z$vectors[,1:p]%*%diag(sqrt(v[1:p])))

234 }

235

236 doubleCenter<-function(x) {

237 n<-dim(x)[1]; m<-dim(x)[2]; s<-sum(x)/(n*m)

238 xr<-rowSums(x)/m; xc<-colSums(x)/n

239 return((x-outer(xr,xc,"+"))+s)

240 }

ACCELERATED SCALING 25

A.2. C Code.

1 #include <stdio.h>

2 #include <math.h>

3

4 void oneUp(double *a, double *delta, double *x, double *b, int

*n, int *p)

5 {

6 int i, j, k, m, l; double dk;

7 for (k = 0; k < *n; k++) {

8 dk = 0.0;

9 for (i = 0; i < *p; i++) for (j = 0; j < *p; j++) {

10 m = (k * (*p) * (*p)) + (i * (*p)) + j;

11 dk += a[m] * x[i] * x[j];

12 }

13 dk = sqrt(dk);

14 for (i = 0; i < *p; i++) for (j = 0; j < *p; j++) {

15 l = (i * (*p)) + j;

16 m = (k * (*p) * (*p)) + l;

17 b[l] += (delta[k]/dk)*a[m];

18 }

19 }

20 }

21

22 void aLoss(double *a, double *delta, double *x, double *s, int

*n, int *p)

23 {

24 int i, j, k, m, l; double dk, xi = 0.0, ssq = 0.0;

25 for (i =0; i < *p; i++) ssq += x[i]*x[i];

26 for (k = 0; k < *n; k++) {

27 dk = 0.0;

28 for (i = 0; i < *p; i++) for (j = 0; j < *p; j++) {

29 m = (k * (*p) * (*p)) + (i * (*p)) + j;

30 dk += a[m] * x[i] * x[j];

31 }

32 dk = sqrt(dk);

33 xi += delta[k] * dk;

34 }*s = 1 + ssq - 2 * xi;

35 }

36

26 JAN DE LEEUW

37 void aNorm(double *a, double *delta, double *x, int *n, int *p)

38 {

39 int i, j, k, m, l; double dk, xi = 0.0, ssq = 0.0;

40 for (i =0; i < *p; i++) ssq += x[i]*x[i];

41 for (k = 0; k < *n; k++) {

42 dk = 0.0;

43 for (i = 0; i < *p; i++) for (j = 0; j < *p; j++) {

44 m = (k * (*p) * (*p)) + (i * (*p)) + j;

45 dk += a[m] * x[i] * x[j];

46 }

47 dk = sqrt(dk);

48 xi += delta[k] * dk;

49 }

50 for (i =0; i < *p; i++) x[i] *= xi/ssq;

51 }

A.3. Chebyshev Code.

1 chebR<-function(a,b,tol=1e-15,relerr=0.0) {

2 m<-nrow(a); n<-ncol(a); ndim<-n+3; mdim<-m+1

3 if (n > m) stop("number of equations exceeds number of unknowns

")

4 aa<-matrix(0,ndim,mdim); bb<-rep(0,mdim); xx<-rep(0,ndim)

5 aa[1:n,1:m]<-t(a); bb[1:m]<-b

6 rlist<-.Fortran("cheb",as.integer(m),as.integer(n),as.integer(m

+1),as.integer(n+3),

7 as.single(aa),bb=as.single(bb),as.single(tol),as.single

(relerr),xx=as.single(xx),

8 rank=as.integer(0),resmax=as.single(0.0),iter=

as.integer(0),ocode=as.integer(0))

9 return(list(coefs=rlist$xx[1:n],resids=rlist$bb[1:m],rank=rlist

$rank,iter=rlist$iter,ocode=rlist$ocode))

10 }

11

12 .First.lib <- function(lib, pkg) {

13 library.dynam("cheb", pkg, lib)

14 }

A.4. Examples.

ACCELERATED SCALING 27

A.4.1. Equal.

1 source("rate.R")

2 eqDiss<-function(n) {

3 delta<-rep(1,n*(n-1)/2)

4 delta<<-delta/norm(delta)

5 x<<-1:((2*n)-3)

6 a<<-make_a_from_x(make_x(n,2))

7 }

A.4.2. Perfect.

1 source("rate.R")

2 ‘xm‘ <-

3 structure(c(0.0947966676671456, -1.17253486825229, -0

.572723099521036,

4 0.589391643055378, -1.66102559283175, -0.72665553801336, 0

.84260817782339,

5 1.09247852299655, 0.115975433324915, -0.906068717410187, 0

.534867387934993,

6 -0.671339193612298, -0.0208153247614012, -1.58028224671476, -0

.884705210987525,

7 -0.471815643394534, -1.32788885314117, -0.240439630416530, 0

.284084940210558,

8 -0.728654644122993), .Dim = c(10L, 2L))

9 delta<-as.vector(dist(xm))

10 delta<-delta/norm(delta)

11 x<-1:17

12 a<-make_a_from_x(make_x(10,2))

A.4.3. Ekman.

1 source("rate.R")

2 library(smacof)

3 data(ekman)

4 delta<-as.vector(100-ekman)

5 delta<-delta/norm(delta)

6 x<-1:25

7 a<-make_a_from_x(make_x(14,2))

28 JAN DE LEEUW

A.4.4. Morse Code.

1 source("rate.R")

2 library(smacof)

3 data(morse)

4 morse<--log((morse*t(morse))/outer(diag(morse),diag(morse)))

5 morse[which(morse==Inf)]<-9

6 delta<-as.vector(morse)

7 delta<-delta/norm(delta)

8 a<-make_a_from_x(make_x(36,2))

9 x<-1:67

ACCELERATED SCALING 29

REFERENCES

I. Barrodale and C. Philips. Algorithm 495 – Solutions of an Overdetermined
System of Linear Equations in the Chebyshev Norm. ACM Transactions on
Mathematical Software, 1:264–270, 1975.

J. De Leeuw. Convergence of the Majorization Method for Multidimensional Scal-
ing. Journal of Classification, 5:163–180, 1988.

J. De Leeuw. Differentiability of Kruskal’s Stress at a Local Minimum. Psychome-
trika, 49:111–113, 1984.

J. De Leeuw. Fitting Distances by Least Squares. Technical Report 130, De-
partment of Statistics, UCLA, Los Angeles, California, 1993. URL http:

//preprints.stat.ucla.edu/130/130.ps.gz.
J. De Leeuw. Applications of Convex Analysis to Multidimensional Scaling. In

J.R. Barra, F. Brodeau, G. Romier, and B. Van Cutsem, editors, Recent develop-
ments in statistics, pages 133–145, Amsterdam, The Netherlands, 1977. North
Holland Publishing Company.

J. De Leeuw and W. J. Heiser. Multidimensional Scaling with Restrictions on
the Configuration. In P.R. Krishnaiah, editor, Multivariate Analysis, volume V,
pages 501–522, Amsterdam, The Netherlands, 1980. North Holland Publishing
Company.

J. De Leeuw and I. Stoop. Upper Bounds for Kruskal’s Stress. Psychometrika, 49:
391–402, 1984.

G. Ekman. Dimensions of Color Vision. Journal of Psychology, 38:467–474, 1954.
P.J.F. Groenen, W. Glunt, and T.L. Hayden. Fast Algorithms for Multidimensional

Scaling: A Comparison of Majorization and Spectral Gradient Methods. August
1999.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in
Several Variables. Academic Press, New York, N.Y., 1970.

A. M. Ostrowski. Solution of Equations and Systems of Equations. Academic
Press, New York, N.Y., 1966.

E.Z. Rothkopf. A Measure of Stimulus Similarity and Errors in Some Paired-
Associate Learning Tasks. Journal of Experimental Psychology, 53:94–101,
1957.

R. Varadhan and C. Roland. Simple and Globally Convergent Methods for Acceler-
ating the Convergence of any EM Algorithm. Scandinavian Journal of Statistics,
2008.

http://preprints.stat.ucla.edu/130/130.ps.gz
http://preprints.stat.ucla.edu/130/130.ps.gz

30 JAN DE LEEUW

DEPARTMENT OF STATISTICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu

	1. Canonical MDS Problems
	2. The SMACOF Algorithm
	3. Linear Multipoint Acceleration
	4. Three-Point Iterations
	4.1. The Relaxed Update
	4.2. Normalization
	4.3. Stabilization
	4.4. Three-point Relaxation
	4.5. Three-point Self-Scaling Iterations

	5. Examples
	5.1. Equal Dissimilarities
	5.2. Example with Perfect Fit
	5.3. Ekman Color Circle
	5.4. Rothkopf Morse Code Data

	Appendix A. Code
	A.1. MDS Code
	A.2. C Code
	A.3. Chebyshev Code
	A.4. Examples

	References

