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Gifi goes Logistic
Abstract

The techniques in the Gifi system for
descriptive multivariate analysis are
based on least squares loss functions,
alternating least squares algorithms,
and star plots.

We develop an alternative system here
using logistic likelihood functions,

majorization algorithms, and Voronoi

plots.
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The Data

Suppose H={h;;! is a data frame, i.e. a set of n
observations on m categorical variables. Variable
J has k;j categories (values). There is no restriction
that n > m.

The variables can have numerical, ordered, or
nominal categories, and they can be grouped into
sets of variables that have different roles in the
analysis (such as input-output, background,
predictors, confounders, outcomes, and so on).
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Coding

Data are coded as m indicator matrices G;, where
Gj is an n x k; binary matrix whose rows add up
to one.

There are extensions possible to missing data, in
which some rows add up to zero, and to fuzzy
indicators in which rows are non-negative and
add up to one but are not necessarily binary.




Star Plots

Suppose we have a representation (map) of the n
objects as n points in low-dimensional space
(usually the plane).

Make m copies of the map, one for each variable.

For each variable j connect all points in category
one to the centroid of category one, ..., all points
in category k; to the centroid of category k;. Thus
each map gets n lines, connecting the objects to
the centroid of the category they are in.
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This plot is the star plot for variable j. We want
the 4; stars in the plot to be small, relative to the
total size of the plot. Or: we want the within-
category variance to be small relative to the fotal
variance.

Thus the basic problem of homogeneity analysis:
make a map of the n objects such that the stars
are small (for each variable, if possible). In the
usual case we actually measure size by using
squared line length.

Homogeneity

A solution X for the objects is normalized if
X'X=I.

Heterogeneity of a normalized solution is
measured by

1m
X) = — tr X -G, Y)(X-G;Y)),
o(X) mZ” Y (X-G,Y;)
where =

Y; =(G'G)"'G'X =D;'G'X.

7

Alternating Least Squares
To minimize heterogeneity over normalized maps

we use alternating least squares or reciprocal
averaging.

Xk = orth(ZE.k)).




This is the Bauer-Rutishauser simultaneous
iteration method to compute the eigenvectors
corresponding to the p dominant eigenvalues of

1 N : -1,
P, = %Z;P,- with P; = G,D7'G’.
]:

The method capitalizes nicely on the sparseness
of the indicators and converges quickly and
reliable to the global minimum of the loss
function.
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Senate Example

Object score plot for senate

<
Q —
o
Safierum Lieberman
S - '\%I%%Svich B(‘Z”c&peKerry
(=} Lugar H r
B Aligisign  McCain a
n,
o 84 M She BlEne Johnsqgon|
c o omas Bindoem
2 Nﬂmmellléﬁg% Chafee nouye
S o Hulichi SiBmlinits
e g Sl Dorgad
£ S Mlﬁffords Bingaman
°oT o Miler Caifipagli
Fdiriatedn
3 Caf¥igens Nelsdducus
o
! Breaux
g oY
T

T T T T T T T
-0.083 -0.02 -0.01 0.00 0.01 0.02 0.03

dimen'sllon 1

0o

0

dimension 2

-0.02

-0.04

0.00 ooz 0.04

dimension 1

Cars Data

Object score plot for cars
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Two variables

If there are only two variables, then homogeneity
analysis becomes correspondence analysis. One
way of thinking about CA is making the
approximation

p
fii = aiBi(l+ > xiyjs)
s=1

using a least squares loss function. Homogeneity
analysis with m > 2 makes a similar approximation
to the Burt table.

Rank and Level Restrictions

We see from the examples that order relations
between categories are not always respected, and
that in some cases maps are bend into somewhat
redundant horseshoes.

In the Gifi system these problems are resolved by
restricting the Yj in the loss function by the rank
restrictions ,

Yj=aq,aj
which requires the Y; to be on a line through the
origin.
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Now for computation we use
o(X,Y) = %tr (X -G,;¥))(X-G;Y)+
+ %tr (Y; - q,a)Dj(Y; - q,d)).
and for interpretation we use
o(X,Y) = %tr (X-G,q,;a7) (X-G;q;a’) =
_ ! tr (R—XAY(R-XA)+ (p-1).

T m
where R has the m columns Gg;.
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GALO Again
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Interactive Coding and Additivity

If we have r variables with k;,...,k- categories
these can be coded as one variable with &7 x ... x
k- categories. We can then restrict the Y to be on a
grid | .

Vjtogrs = Yjis Tt Y

or on a rank-one grid

1 1 ro.r
Vivejrs = dj,8s T 00+ 4 Ay
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These additivity restrictions allow one to
efficiently incorporate sets of variables. 1f we
combine the predictors into a single set, for
instance, we have regression analysis; in the
same way we can have canonical analysis in its
various forms.

This allows one to incorporate much of classical

descriptive multivariate analysis, coupled with
the notion of optimal scaling or transformation.
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GALO Again
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Summary

We have: flexible system with fast least squares
algorithms.

We have but may not want. we have to impose
orthogonality constraints to get multidimensional
solutions and they bring us horseshoes.

We do not have: interpretation on a natural
probability scale, notion of fitting a model, notion
of separation.
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Gifi Goes Logistic

Instead of starting from )
fii = aiBi(l+ D xiyje)
start from =
fij = aiBjexp(n(x:, y;))
with choices
n(Xi,y;) = Xi¥js
n(xi,y;) = —llxi = yjll,
n(xi,y;) = —llx = yjll*.
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Instead of starting from least squares loss, start
from the negative Poisson log-likelihood

A@.B, X, Y) = ) > i — fiylog i),

i=1 j=1
with

Aij = a;Bjexp(n(x;,y;)).

And instead of alternating least squares uses
majorization.
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In this context we use Uniform Quadratic
Majorization, which amounts to (lots of technical
detail omitted) minimizing (or continuously
decreasing) loss functions of the form

(@B, X,Y) = Z Z(n(xl,yp TR

Here the target Z changes from one iteration to
the next, but all subproblems are standard least
squares multidimensional scaling problems.
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Rothkopf Morse Code Data
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Now this just seems to generalize ordinary CA,
not homogeneity analysis. But now make the step
of applying the same loss function to indicator
matrices

n m kj
A@B,XY) = ) > (e — gijelog dyjeh

i=1 j=1 (=1

~.

where

Aije = a;;Bje exp(m(xi, yjc))-

This brings us close to the basic Gifi setup, but
we need one final step.

min A(a,3,X,Y) =

a

kj

S ﬁ]f eXP(TY(Xz, yjf))
Z Z g1]£1 k;
1 j=1 ¢=1 ZV 1 ﬁjv exp(n(x;, y]v))

S

i

except for some constants. And this is what we
hit with majorization, potentially using all the
Gifi restrictions on the Y.
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GALO Again

Voronoi plot for galo : gender

Voronoi plot for galo : 1Q
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Senate Again
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Row Objects senate
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I did say earlier that the star plots are replaced by
Voronoi plots. This can be made more clear. Suppose
there are no weights and we use one of the distance
combination rules.

Loss can be made equal to zero if and only if there is a
solution to the system of strict inequalities

i = yjell < Illxi = yjll Vi, j, {3 gije = 1.

Or: if and only if each object can be placed closest to
the category point the object is in if and only if each
object is in the correct category Voronoi cell.
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Summary

We have: an alternative system, which inherits
(and extends) the flexibility of the Gifi system. A
new geometrical interpretation, new convergent
algorithms, a likelihood interpretation.

We have but may not want: very heavy
computation, slow convergence, more clumping.

We do not have: experience with the new system.
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