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We discuss two classes of drawing methods for multivariate categorical
data. Both are inspired by multidimensional scaling, and are intimately
linked to the notion that similarity in the data is naturally represented as
distance in a low-dimensional Euclidean space. The objects that are mea-
sured, or categorized, by our variables are represented as points. Each
variable defines a partition of the points into subsets corresponding with
the values of the variable.

The first class of methods are the clumping methods, that try to represent
the objects with the same values on a variable by small compact sub-
sets of space. Since there are many ways to measure the size of a point
set, there are many clumping methods. The second class are separation
methods, which try to construct smooth surfaces from some parametric
family to separate points having different values on the variable.

Clumping and separation methods can be implemented using either least
squares or likelihood based algorithms, which define the two main ways
to measure and minimize badness-of-fit.

1. Data

Data are n observations on m categorical
variables. Variable j takes k; different values,
where / <k; <n. Numerical variables are just a
special case.

There are two basic ideas in the techniques we
discuss. The n objects are represented as points in
low-dimensional Euclidean space in such a way
that objects with similar profiles (values on the
variables) are relatively close (in some sense).

Somewhat more specifically, if two objects have
the same value on a variable, then that should
make them more close, if they have the same
values on all variables, then they should map into
the same point.

One easy way to portray the results of an analysis
1s to make m copies of the plot of the n objects
and label them by the values (categories) of the
variable.




2. Clumping

In this class of techniques we use a measure of
the size of a cloud of points in R”. Suppose X are
the coordinates of the points representing the »
objects. Variable j defines a partition into &;
subsets, which have measures

o i1(X), 0, (X).

We also define a measure o(X), which measures
the size of the cloud of all # points.

It is now easy to define a loss function by the
simple rule

S 0 jeX)

AX) = %) ;

although other ways of combining the size
measures into a single numerical loss value are
certainly possible.

A clumping technique finds » points x; € R?
such that A(X) is minimized.

Many measures of size have been proposed, and
some have actually been studied from a
computational points of view.

We mention the edge-length of the minimal spanning
tree, the circumference of the convex hull, the radius
of the circular or elliptical hull, the sum of the
distances to the Weber point, the maximum distance
between two points.

Anybody is free to suggest their own measures of
homogeneity. That's the easy part. However,
implementating good algorithms 1s quite another
matter.

7

We discuss one particular choice of size in more
detail. Each point set with k points has a star,
which is the set of lines connecting the & points
with their centroid (average). The size of the star
is the sum of squares of the £ lines.

The loss function associated with this definition
of size defines multiple correspondence analysis
(or homogeneity analysis). It is closely related
(but mathematically far simpler) than the Weber
correspondence analysis we mentioned before.




This can be expressed in matrix notation, which
already suggests why this is a fortunate choice.

Let G be the n x k binary indicator matrix (a.k.a.
dummy) indicating which objects belong to which
categories. Also D = G'G. Then Y=D'G'X are
the & centroids, and

ocX)=tr X -GY) (X -GY)

is the sum of the sizes (squared line lengths) of
the £ stars.

The clumping technique we derive from measuring
star size (with squared distances) minimizes

o1(X) + ---0,(X) over all centered configurations
X such that tr X’X = 1. This clumping technique is
due to Louis Guttman in the early forties.

The optimization problem turns out to be an
eigenvalue problem for the matrix

1m
P*:%;Pj,

Yl

where
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Alternatively we can define
G = (Gi]---1Gw).

And solve the generalized eigenvalue problem
Cy = mADy, where C=G'G and D=diag(C).

In fact, what I just said is not quite correct. We
have to require X'X=I instead of tr(X'X)=1. Then
X corresponds to the eigenvectors corresponding
to the p largest eigenvalues (except for the largest
one, which 1s always / and corresponds to a
column of ones).

The resulting technique (MCA or homals) 1s
computationally very efficient. In the Gifi
(1990) system MCA is generalized to minimizing

oX; Y, V) =

1 m
= - Z tr (X —G;Y;YM;(X -G,Y))
j=1

over both X and Y with various restrictions on the Y.

Some of the other clumping techniques (size
measures) have been tried, and they generally have
failed.
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Two problems with MCA is that it is somewhat
inelegant that we have to use a normalization to
force multidimensional solutions.

Moreover requiring orthogonality produces
horseshoes (for well-understood reasons).
Subsequent dimensions are quadratic, cubic, ...
functions of the first dimension.

To some extent we can get around this by
restricting the Y, for instance requiring them to
be of rank one. This encourages the centroids to

The GALO Data
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be on straight lines through the origin.
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Or, alternatively, suppose we have a binary
variable taking values "aye" and "nay". We want
to locate the » points x; in the plane such that
there is a circle with all the "aye" points in the
circle and all the "nay" points outside the circle.

Separation techniques have been around since the
mid-sixties, and they are direct descendants of
the Shepard-Kruskal approach to non-metric
multidimensional scaling (1965). Although there
is Guttman (1940) and Coombs (1950). Because
of this ancestry the original separation techniques
mostly use least squares loss functions.

21

We will go another way here, because we want to
measure fit (loss) on the probability scale. This
dispenses with the need for normalization, and it
may get rid of the horseshoes.

Consider the loss function

35 "Z exp(—lx; = yjel)
== gijc1og —

K :
i=1 j=1 (=1 2oL exp(=llxi = yull?)
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Let's interpret optimizing this loss as a geometric
problem. If we can find X and Y such that

gijv =1 & |lxi —ypll <llxi = yjell Ve +v,

or, in words, such that each object is closest to
the category the object is in, then we can get
arbitrarily close to a solution with loss equal to
Zero.

So one way to think of the method is to find an
approximate solution to a system of nonlinear
inequalities (Motzkin, Agmon, 1950)

Where are the separations ? Well, if we let the
categories of each variable define Voronoi cells
in R?, then the inequalities say that objects
should be in the correct Voronoi cells (for all
variables). Voronoi cells provide a non-
parametric system of separations.

As with MCA we can make this parametric by
constraining the Y;. Requiring them to be of rank
one, for instance makes the Voronoi cells into
strips bounded by parallel lines or planes.
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Conclusions

Separation techniques became computationally
feasible only very recently. They use complicated
majorization algorithms.

They provide an interesting alternative to the
much more familiar (much less expensive, and

much better understood) least squares techniques.

http://www.cuddyvalley.org/psychoR
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