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Majorization Algorithms for Logit, Probit, and Tobit Models
Abstract

For a large variety of discrete choice models (or contingency table
models) efficient and stable maximum likelihood methods can be

constructed based on the majorization method. The course introduces
majorization methods for algorithm construction. We show how to use

the majorization principle to reduce complicated optimization problems

to sequences of weighted or unweighted least squares problems.

Majorization methods are then applied to data analysis techniques
used in economics, political science, psychometrics, ecology,
sociology, and education.

Part I: Minimizing Loss

Many problems in computational statistics are, or
can be cast as, optimization problems that
maximize a numerical goodness-of-fit function or
minimize a loss function.

Such problems are often solved by using general
purpose optimization routines based on as
steepest descent, conjugate gradient, or Newton
methods. General purpose methods tend to work
well for relatively small problems, but often need
to be tweaked for large problems with many
parameters.




So let's make the problem more specific and
make some assumptions along the way.

We are given a continuous non-negative loss
function ¢ : Q@ — R*. Our problem is to
compute inf,cq ¢(x) and, if the minimum ex-
ists, the place where it is attained.

This covers maximum likelihood, least squares,
minimum chi-square, and so on.

We will study some general classes of iterative
algorithms to solve this problem.
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Iterative algorithms are described by algorithmic
maps
A:Q—>Q

which compute iterative sequences by

D = A W),

The behavior of such sequences is described by
two key theorems. The first theorem addresses
(global) convergence, the second theorem (local)
rate of convergence.

Theorem (Zangwill). Suppose the map A : Q — Q
is continuous and satisfies ¢(A(x)) < ¢(x) for all
x # A(x). Then ¢(x®) converges to, say, ¢o.. For
any subsequence x) converging to, say, x.,, we have
Xoo = A(Xoo) and ¢(Xeo) = Poo.

This does not say that there exist convergent
sequences, or that there is at most one such
subsequence (and thus the sequence converges).

The assumptions we have made do imply that the
sequence is asymptotically regular, i.e.

[x*+D — x®) - 0.
This implies the set of accumulation points, if
nonempty, is either a single point or a continuum

(a connected and closed set). And all accumulation
points have the same function value.
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Zangwill's Theorem can be extended to point-to-
set maps A : Q — 2% and sequences of the form

D e AP,

but going in that direction will lead us too far
astray.

Also, for computation purposes, we need point-
to-point maps anyway (and point-to-set maps
generally have continuous selections).

Theorem (Ostrowski). Suppose A : Q — Q is differ-
entiable and the sequence x**1 = A(x®) converges
to, say, X«. If A(xs), the modulus of the largest eigen-
value of DA(x), is less than one, then the sequence
converges linearly with rate A(x).

Thus

(k+1)

[l — Xool

= A(x) < 1.
O T g A

This has as a special possibility that A(x,) = 0, in
which case we have super-linear and, under
some additional regularity conditions, quadratic
convergence.

If A(x») = 1 we have sub-linear convergence,
often intolerably slow.

Block Relaxation

It is often helpful to partition the variables over
which we are minimizing into two or more
blocks of variables.

min ---min ¢(xy, -+, X
X1€Q, XSEQS¢( b ’ S)

Block relaxation algorithms cycle through the
blocks, minimizing over one block, while
keeping the others fixed at their current values.
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k+1 . k k k
x(1 ) = argmln(/b(xl,x(z), e ,x(s_)l,xg ),
X1€Q
(k+1) _ . (k+1) (k) k
Xy = argmin (x| xy, 0 x00 L x0),
X2€QH

LD e

(k+1)
1 ) s A | a-xs)-

x**D = argmin ¢(x
Xs€Q

Of course block relaxation is only interesting if
the subproblems are easier to solve than the
original problem. This can happen because of the
structure of the constraint sets, but more
commonly because of the functional form of the
specification we are fitting.

Coordinate Relaxation is a special case, in which
each block only contains a single variable. It is
useful in linear and quadratic programming, and
in solving large sparse linear systems and large
sparse eigenvalue problems. And in [ferative
Proportional Fitting.
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Zangwill and Ostrowski usually apply. The case
of two blocks without constraints

min min ¢(x
XER™ yeR™ ¢( ’ y)

1s especially interesting. Think, for example,

min minlog [Z(9)] + (v - XB)Y= (O — XP).

See Oberhofer and Kmenta, Econometrika, 1974.
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In block relaxation the linear convergence rate is
given by the largest eigenvalue of

_ -1 -1
M=D;'D DD,

where

[Dxx ny]
Z)yx Z)yy

is the Hessian of the loss function at the solution.




Block-relaxation has as a special case Alternating
Least Squares, in which a least squares loss
function is minimized over two or more blocks of
variables. Factor Analysis and Non-metric
Multidimensional Scaling provide examples.

min mintr (R — XX’ - A)/'(R - XX’ - A),
XeR™P A>0

min min tr (A — dist(X))' (A — dist(X)).

XeR™P AeKnNS

Augmentation

Suppose the loss function we try to minimize has
a representation of the form

¢(x) = min(x, y).
yeY
We then minimize loss ¢ by applying block

relaxation to the augmented loss function 1.

Finding a suitable augmentation and then using
block relaxation defines an augmentation
algorithm (which generalizes the EM algorithm).
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Augmentation algorithms are natural in the case of

missing data (unbalanced ANOVA, factor
analysis, SVD with missing cells). The missing
data are introduced as additional variables. In a
least squares context we then use simply

Q0= fG6)’ = min 3 (5= fx.6))"
Jud

- z;=y; for ieJ
i€l i€

For augmentation algorithms the linear
convergence rate can be written as the largest
eigenvalue of the ratio of the Hessian of the loss
function and the partial Hessian of its
augmentation.

M=1I- {.Dxxw}_l®xx¢-

This uses the obvious fact that

De(x) = Dp(x, y(x)).
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The study of convergence rates are important,
because they are the basis of acceleration
techniques and because block relaxation
techniques without modifications can be very
slow.

This is also the reason why there has been a lot of
research on accelerating the EM algorithm.
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Part II: Majorization
Algorithms
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Majorization Algorithms

For majorization algorithms (De Leeuw, from

1977) we construct special type of augmentations.
We say that  : Q — R majorizes ¢ : Q - R
aty € Qif

o d(x) < yY(x) Vx e Q,

o d(y) = Y(y).

The point y is called the support point of the
majorization.
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Thus the majorization function at y is always
above the function that it majorizes, but it
touches that function in y, which is why we call y
the support point of the majorization. There can
be many support points.

A majorization with a single support point is a
strict majorization at y. In that case we have

d(x) < Y(x) for all x # y.
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Below we see log(x) strictly majorized by the
(tangent) line log(y) +(x-y)/y aty =2.

log(x)
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The function #(x) = x* — 10sin*(x) is majorized
by the quadratic x? and it has support points at all
multiples of 7.
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Majorizing Differentiable Functions

If Y majorizes ¢ at y then clearly ¥ — ¢ has
its minimum in y. Thus if both functions are
differentiable we have

Dy(y) = Dg(y).

And if both functions are twice-differentiable
also

D2y (y) = D*¢(y).
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We say that a function ¢ : Q®Q — Risa
majorization scheme for ¢ : Q — R if Y(e,y)
majorizes ¢ for each y € Q.

For a majorization scheme

¢(x) <yY(x,y)  Yx,y e,
d(x) = Y(x, x) Vx e Q.
and thus

¢(x) = miny(x, y),
yeQ
which shows majorization provides augmentation.
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The function |x| is majorized in y # 0 by

_L 2, .2
Y(xly) = 2|yl(x +y9).

We draw this for y=2 and y=3.

Observe we sometimes write ¥(x]y) for ¥(x, y) to
emphasize the different roles of x and y.

A majorization algorithm, like any augmentation
algorithm, consists of two steps. First we find the

majorization (the E step of EM) then we minimize the

majorization (the M step of EM).

Because of this Ken Lange (2000) has proposed the
name MM algorithms (Majorization-Minimization).
Willem Heiser (1995) has proposed Iterative
Majorization.
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The key result needed for Zangwill's Theorem is
provided by the sandwich inequality.

D) < YUV < p(OID) = 9 ().

If we have strict majorization, or if we strictly
improve the majorizing function, then the
inequalities are strict, and we generate a
decreasing sequence of loss function values.
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By Zangwill, we do not actually have to minimize
the majorizer. It suffices to have a continuous
map A that decreases the majorizer -- this will
force the sandwhich inequality and thus
convergence.

In the EM world this generalization is called

GEM, so we could use GMM. The key condition
is that ¥ (A(x), x)) < ¥(x) for all x.
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Let’s analyze a simple artificial example.
Take ¢(x) = x* — 10x>. Because x> >
v+ 2y(x —y) = 2yx — y*> we see that
W(x,y) = x* = 20yx + 10y? is a suitable ma-
jorization scheme. The majorization algo-
rithm is x**D = V550,

At xX@ = 5 we have the red majorization
W(x|5). It is minimized at x ~ 2.92 with
y(xV|5) =~ 30.70 and y(xV) =~ -12.56.
Then (x|xD) is green and has a minimum at
x? ~ 2.44, where y(x@|xV) = =21.79 and
d(xP) =~ —24.1. We are rapidly getting close
to the local minimum at V5, where ¢ is —25.
The convergence rate at this point is %
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Tricks of the Trade

First trick: Majorization schemes can often be
derived from elementary inequalities.

We illustrate this with an example from
multidimensional scaling (De Leeuw, 1977). The
problem is to minimize stress

a(X) = > > wij(8i; - dij(X))®
i=1 j=1
over all n x p configurations.
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Here d;;(X) is the Euclidean distance between
rows 1 and j of the configuration matrix X. Thus

d7(X) = (e — ¢;) XX'(e; — €)) = tr X'A;;X,
where A;j = (e; —ej)(e; —¢))’.

Both the weightsw;; and the dissimilarities;; are
supposed to be known numbers.

36




Define

Then

oX)=1+tr X'VX - 22 Z Wijéijdij(X)-

i=1 j=1

By Cauchy-Schwarz

dl'j(X) > tr X’Ain.

d;j(Y)
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In particular if w;;0;; > O for all i and j we
have

o(X) < 1+tr X'VX = 2tr X'(Y)Y,

where
ij
BY) = Z Zw”d (Y)A’f
i=1 j=1 ij

This provides us with a majorization scheme
and with the algorithm

X*D = vl p(x®)x®.

Here is another example. The EM algorithm is
designed for functions of the form

¢(x) = —log f f(x, 2)dz.
Using Jensen's Inequality

f f(x, Z)dZ

(x) - 60) = ~1o
A L T v

[fo.dz  ~ [ £, 2)dz
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JIwaggds [ fonalog f5ds

Letting
flaly = LD
[ fG.2)dz

we derive the majorization scheme

YY) = B(y) - f F(ely) log f(x, D)dz+

+ f f(zly)log f(y,2)dz

Thus in step k£ +1 of the algorithm we minimize
the majorization function by minimizing

- f f@x®)log f(x, 2)dz.
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Second trick: Majorizations schemes can be
derived from convexity considerations.

If ¢ is concave then
Y(xly) = ¢(y) + 2 (x - y)

with z € d¢(y) any subgradient of ¢ at y is a
(linear) majorization scheme.

This says that concave functions are majorized by
their tangents.
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The next two results are due to Lange and De
Pierro. They apply the definition of convexity to
obtain separable majorizations.

Suppose ¥ : R' — R! is convex, w > 0,
and Q is the positive orthant. Define ¢(x) =
v(w’x). Then

1
w'y

() = — > Wiyi)’(wl)’§)
i=1 !

defines a majorization scheme for ¢.
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Suppose ¥ : R! — R! is convex. Define
¢(x) = y(w'x). Then any choice of v in the
unit simplex

Wly) = Y vyl = 3 + w'y)

i=1

defines a majorization scheme for ¢.
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Third trick: Majorization schemes can be derived
from Taylor's Theorem.

If ¢ 1s twice-diffentiable and there is a matrix
H such that D?¢(x) < H, then

1
Y(xly) = ¢(y)+(x—y)'®¢(y)+§(x—y)’H (x=y)

defines a majorization scheme.

This 1s known as Uniform Quadratic Majorization
or UQM. Of course not all functions have bounded
second derivatives.
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For UQM the algorithmic map is defined by

x%D = argmin (x — z(x®)) H(x — z(x®)),
xeQ

where the target z® is defined by

Z(X(k)) =y _ H_I'D(;S(x(k)).

Thus algorithms based on UQM lead to solving a
sequence of weighted least squares problems.
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Often the easiest (although not necessarily the
best) way to bound the second derivatives is to
use a scalar bound

D2p(x) < kI,

where it is sufficient to choose k equal to any
upper bound for the largest eigenvalue of the
Hessian.

UQM is the most common way Taylor's Theorem
is used in majorization. There are some (rare)
cases where bounding the cubic term makes
practical sense.
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Best Quadratic Majorization

Uniform quadratic majorization (UQM), where
the bound on the Hessian does not depend on y,
can often be improved.

The trick is to explicitly take y into account and

to compute the best quadratic approximation at
this location.
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A quadratic
Y(x) = ¢() + (x — y) Dp(y)+
1
+ 5=y A= y)

majorizes ¢ at y if and only if

1
E(x - A(x—-y) >
> ¢(x) — d(y) — (x —y) D(y)

for all x.
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This defines an infinite set of linear inequalities that
A must satisfy, and thus a convex set that 4 must be
in. For best quadratic majorization (BOM) we want
the smallest 4 in the convex set.

There are various ways to define "small" for a
matrix, but the most common definition uses the
Loewner ordering, where A > B if 4 - B is positive
semi-definite.

Multivariate BQM has not really been explored
yet, and offers an interesting research area.
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Finding the BQM is easier if we restrict 4 to be
scalar, and BQM's for the one-dimensional case
have been investigated recently for various
functions that are important in statistics (Van
Ruitenbeek, Groenen, De Leeuw, Lange).

The important thing to realize is that in general
the BOM bound will depend on y, and it will
always be as least as good as a uniform bound for
the second derivative. So BQM will generally
improve UQM.
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Over-relaxation

Both UQM and BQM can be over-relaxed.
Consider the example below.

The function (in blue) is majorized at y =/ by the
quadratic in red. The quadratic has its minimum
at x = -1.92 and the usual majorization step
would be to take that as the next iteration.

But we decrease the majorization function by
taking any update of the form Ax + (1 — A)y,
where X is the minimizer of the quadratic and
0<A<2.

The over-relaxed update, proposed by De Leeuw
and Heiser (1980), takes A = 2 and update 2X — y.
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This changes the convergence rate from k to
|2k — 1|. If « is close to one, then |2k — 1| = K,
and convergence is twice as fast (at no cost).

Over-relaxation works 1n all cases where « > —.
This is usually the case. More sophisticated
accelerations that aim to make

Ak + (1 =) =0

are sometimes also worth studying. We have some
recent research that will make the majorization
algorithm for MDS about ten times faster.
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Intermezzo: Speeding up MDS

Suppose the iterations xX*™V = A(x¥) converge
to x. Suppose in addition that the eigenvalues ;
of DA(x.,) are between zero and one, with the
smallest one «, equal to zero and the largest one
k1 strictly less than one. Suppose moreover that 4
is self-scaling, in the sense that A(@x) = A(x) for
all x and all real 6.

Then, by Ostrowski, the convergence rate is ;.
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The convergence rate of the relaxed iterate
AAG®) + (1 = )x®
1s i
V() = rr_l_alx |[Ak; + (1 = A)|.
And the optimum rate in the relaxed family is

min v(A4).

In MDS thls 1s attained at A = where it is

equal to — K
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If k1 = 1 — €, with € small, then the optimal A4
1s approximately 2 — 2€ and the optimal rate

is approximately (1 — €)* = «7.

Unfortunately the relaxed update, while
monotone, is not self-scaling. To fix this we now

look at
AAAGPY) + (1 = DAGDR)

which is self-scaling. And therefore gives the

same iterates as the family

AAGR)) + pAG®)
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Now the optimal rate is

. n
min max |/<l-2 + uK;l.
uoi=1
This 1s attained for
)
n K + K;
U = —max ——,
i=1 K| + K;

and (for this 1) it 1s equal to

We do not really want to compute this.
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But we can use 4 = —kK1, for which we find the
rate
m%x |/<l.2 — Kik1| = K% m%x ﬁ(1 _ & < lkf
i=1 i=1 K K1 4
This 1s an enormous speed-up, especially for
slow convergence.

With rate .99 we need 230 iterations for an
additional decimal of precision, with rate 0.25
only 1.67 iterations.
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The algorithm is still pretty simple. In one
iteration we start with x®* and compute

1) — A /olk o) — A rrlk dim \ diss eps \ non rel two
y®=4(x®) and z®¥=A4(y™). We then compute 10 1250 | 16 | 505 [ 118 | 3]
YOI b 10 | 250 |le-10] 879 | 300 | 43

[y ® — x®] 3 | 500 |le-10] 455 | 261 | 9

and 3 500 |le-10| 774 | 432 16

L) = _ gy 3 | 500 |le-l6] 1697 | 885 | 23
15 | 45 [le6| 115 ] 63 | 15
15 | 45 [le-10] 214 [ 114 | 22
15 | 45 [le-10] 236 | 137 | 22

60 | 1000 | le-6 | 390 | 445 64
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In this section we apply the basic majorization
results to likelithood functions containing logits,
probits and tobits.

We limit ourselves, for the moment, to regression

Part III: Lo gits, Probits, with a blngry oiutcomet -- simple from the
. algorithmic point of view but extremely
Tobits important from the practical point of view.

Regression with ordered or unordered
multicategory outcomes is next.
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Define
f(x) = log(1l + exp(x)).

Then
;o exp(x)
f (X) - 1+eXp(.X) - \P(.X),
where
Y(x) = —1
() = 1 +exp(—x)’

is the logistic cdf.
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Also
f(x) =¥ -¥(x)),
from which we see that
1
0 144 < _
< f"(x) < E
and thus

1
f) < fO) + YOI = y) + 2 (x - ).
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But we can do better using BQM theory.

Theorem (Jaakola-Jordan).

1
FO) < f0) +YO(x = y) + A0 (x = ),

where
2¥(y) -1

A(y) = 2
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The BQM bound in the logistic case is plotted
below. There is no improvement for y = 0, but a
great deal of improvement in the tails.
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UQM (red) and BQM (green) in the logistic case.

©w - / / w0 -
/
/
/
/ /

o o =

-4 -2 0 2 4 -4 -2 0 2 4

Observe that the BQM majorizations have two
support points: one at y and one at -y.
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Now apply this to logistic regression. The
negative log-likelihood with regressors x; and
binary responses y; 1S

APB) = ) log(l + exp(E),
i=1
where

. Jx ity =0,
Xi = :
—X; if Vi = 1.
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Quadratic majorizers are of the form
W(BIB) = AB) + g(BY X(B -~ B)+
1 . -
+S(B-BYXVBXB-P)
where g;(8) = Y(¥8) and V(B) is diagonal with

elements either equal to 1/4 for UQM or equal to
A(¥B) for BQM.

Alternative we can also use a scalar UQM bound
equal to the largest eigenvalue of X’X/4.This is
usually, of course, a rather poor approximation.

71

The majorization algorithm is
g = pY - X'VEBOX) X g(BY),

and the convergence rate is the largest eigenvalue
of

M=1-XVEHX) XWX,

where Wis W(X.8)(1 — ¥(%B)) evaluated at the
solution.

UQM means less work per iteration, BQM means
fewer iterations.
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Example: Maxwell's percentage of inveterate
liars in five age groups.

Example: Lee's Cancer Remission data, 6
predictors, 27 patients. Un-safeguarded Newton
does not converge from most starting points. We
start with all regression coefficients equal to one.

bound # iterations| rate

BQM <10 0810 bound # iterations| rate

UQM <10 1192 BQM 275 .9600

UQM - scalar >2000 9917 UQM 1475 9929
UQM - scalar >100,000 | 1.0000

BQM-overrelaxed 115 .9200

UQM-overrelaxed 731 .9858

Probit Regression The majorization algorithm is

For binary probit regression we use the basic
result that for f(x) = —log ®(x), with® the
normal cdf, we have 0 <f"(x) < 1. This provides
the constant for UQM, and it turns out that in this
case UQM does provide the BQM as well.

For the negative log-likelihood we find
AB) = - ) log D).
i=1
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6(k+1) zﬁ(k) _ (X/X)—lxlg(ﬂ(k))’

where now g is the Mills Ratio

$(X;5)

giB) = _q)(f,ﬁ).

As we said, no BQM acceleration is available for
probit regression.
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Tobit Regression

The tobit negative log-likelihood in the simplest
case is of the form

AB) = 3 3 00X~ Y D)

iejl i€J2

Clearly the same majorizations as for the probit
case can be applied to the second term, and a
simple unweighted iterative least squares
algorithm is the result.
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Multicategory (Polytomous) Probits

Probit regression models for polytomous
(ordered) data have a negative log-likelihood of
the form

Aa,p) =

= — Z yijlog[®(a; + xi8) — (a1 + x/B)],

i=1 j=1

where —co =g < a; < - < @y < @ = +0
are the thresholds and Y={y;;! is the indicator.
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Majorization theory is dictated here by two
results.

Theorem. Suppose —oo < @ < 8 < 400 and

J(x) = —log[®(B + x) — D(a + x)]

Then 0 < f”(x) < 1.

Theorem. Suppose x is fixed and define
h(a,B) = —1og[D(B + x) — O(a + x)]

Then for all @ < 8 we have 0 < D?h(a, 8) < .

79

This says that if we are minimizing over the
regression coefficients, then we can use UQM
(which 1s also BQM), as in the binary probit
model.

But unfortunately there is no upper bound for the
second derivatives of the loss function as a
function of the thresholds. If thresholds get close
to each other, the second derivatives go to
infinity. Fortunately the loss function is convex in
the thresholds.

80




This strongly suggests the use of block relaxation
with two blocks of parameters.

We alternate improving the regression
coefficients for fixed thresholds using quadratic
majorization and improving the thresholds for
fixed regression coefficients using some
safeguarded version of Newton's method.

So far, this is easier said than done.

8l

Multicategory (Polytomous) Logits

There are various ways to define logit regression
models for polytomous data.

For ordered data we can use

Aa,p) =

m

> vijlogl¥(e; + xiB) — Wlaj1 + xiB).
i=1 j=1

In IRT this is known as the Graded Response
Model.
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This model has not been analyzed yet in terms of
majorization theory. It will be interesting to study
UQM and BQM, and to establish how second

derivatives with respect to the thresholds behave.

For unordered polytomous data we can define
logistic regression by

" exp(x. )
A = - Z Z vijlog iy exp(x),B)

i=1 j=1
UQM is based on the following result.
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Theorem. Suppose

exp(x;)
ey exp(xe)’

F) == ylog;(x),

J=1

mi(x) =

then

0 < D?f(x) = (x) — w(x)n(x)" < %1
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Some Geometry

Interpreting our optimization problems as
maximum likelihood estimation methods is
correct, but possibly misleading. It is generally
more natural to think of the algorithm as finding
approximate solutions to large inconsistent
systems of linear inequalities.

If we can find B such that x/3 > 0 for ally; = 1
then we can make loss equal to zero by using

AB with 4 — oco. Both for binary logit and probit.
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For ordered polytomous logits and probits we
want the probability of the £ interval to be the
largest whenever y; = . This has no obvious
interpretation in terms of linear inequalities, but
for unordered logits we want (x; — x;;)'8 > 0 for
all jif yir = 1.

Thus perfect solutions are defined by systems of
inequalities. They correspond with zero loss and
with parameter estimates wandering off to
infinity. The inconsistency of the systems for real
data keep the solutions away from infinity.
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Part IV: Logit and Probit
Component and Factor Analysis

87

Distance Association Models

Suppose Y={y;;} 1s an n x m table of observed
frequencies. We are interested in models of the
form

E(y,) = aif;expGn(xi, y;),

where @ and B are the row and column effects
(a.k.a. the main effects) and where X and Y are
configurations of points in R”. The combination
rule n specifies, in some form, the similarity
between row object i and column object ;.
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We now look at a class of models that generalize
simple and multiple correspondence analysis, but
also the RC model and quasi-symmetry models
for cross tables, the Rasch model for item
analysis, and various forms of logit and probit
component and factor analysis.

The various versions of these models can all be
handled by UQM methods, reducing them to
sequences of least squares problems of various

types.
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Different combination rules lead to different
forms of the association model. So far we have
studied

U(Xi, y]) = X;yj,
n(xi,y;) = —lxi — il
U(Xi,yj) = —||x; - yj”'

These are the inner product, negative squared
distance, and negative distance rules.
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It should be emphasized that

exp(—|lx; — y;II*) =
= exp(—Ilx;lI*) exp(—Ily,II*) exp(2x}y ),

which means the inner product rule with row and
column effects is equivalent to the negative

squared distance rule with row and column effects.

This equivalence is no longer true, however, if we
decide not to include one or both of the main
effects in the model.
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The models also have a quasi-symmetric version
in which X = Y (of course this is only relevant for
square tables) and a symmetric version in which
in addition also a = .

The symmetric and quasi-symmetric versions are
often used for input-output, import-export,
stimulus recognition, and confusion data in which
underlying symmetry is masked by bias or size
parameters.
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We now need a rule to measure the distance
between an observed and an expected table. We
use the Negative Poisson Log-Likelihood (or
Deviance) for this purpose.

AR = D (A = yijlog Aip),
i=1 j=1
where

Aij = a;Bjexp(n(x;, y;)).
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As an aside: we do not say that the data come are
realizations of independent Poisson variables and
that we compute maximum likelihood estimates
of the parameters.

We just use the Poisson likelihood to measure
distances between tables.

But in most cases I am familiar with the Poisson
assumption does not make much sense. If it does,
then, yes, we are computing maximum likelihood
estimates.
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First, in minimizing the deviance we use block
relaxation combined with majorization. We can
find optimal values for the marginal effects «
and B by the usual iterative proportional fitting
methods. So the only thing we need majorization
for is to improve 1;;(X, Y) = n(x;, y;).

There are three blocks: improve row-effects,
improve column-effects, and improve the
distance interactions. The blocks are alternated in
the usual way.
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In fact we discuss two different majorizations.

Consider the situation where 7;; = 1(x;, y;) s non-
positive, as it is for the distance and squared
distance rules. Then

exp(n;;) < exp(#j;j)+
. . 1 5
+exp(ii;)(nij — 7ij) + E(nij — i)

because the second derivative is the exponent of
a non-positive number and is thus never larger
than one.
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Now substitute this majorization, complete the
square, and collect terms. Then in a majorization
step we have to minimize

n m

(X, ¥) = > ) @iy - )

i=1 j=1

where the target z;; is defined by

yij — @B exp(7j;;)
a’i:Bj

Zij = nij +
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But we know how to minimize (or decrease) this
least squares loss function. Both for the distance
rule and for the squared distance rule we can use
any number of existing iterative multidimensional
scaling algorithms (some of which are again based
on majorization).

Observe, however, that there is no guarantee that
the target is non-positive. This means we need a
multidimensional scaling algorithm that can cope
with negative dissimilarities.
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Rothkopf Morse Code Data
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This algorithm cannot deal directly with the inner
product rule, because it depends on non-
positivity.

We could fit the innner product model by fitting
squared distances rules with bias, but there is a
more direct way (which also makes it possible to
fit inner product rules without bias).

The idea is to minimize min A(a, 8, X, Y). The
minimum is attained at

Yix

a; =

21 Bjexp(iy)

and 1t is equal (except for some irrelevant

constants) to

Bj exp(n;;)

; Jz:; 7 Yie1 Beexp(ic)

But this is of the form we used in the case of
unordered polytomous logit models. Using the
basic majorization result for that case we find

oX,Y) = Z Yix Z(ﬂ(xi,yj) — 7)),
i=1 =
where

zij = ni;(X, V) + 2(pyi — mju(X, ¥, B)),

and pj; and m;; are the row-normalized y;; and 4;;.




Voronoi Models for Categorical PCA

The idea of removing the row effects is more
generally applicable. Consider the situation in
which we have m categorical variables, variable j
has k; categories, and the data are coded as
indicator matrices). Consider the Poisson
deviance

n m k/
A@.B,X,Y)= D" %" > (Aije = yije log i)
i=1 j=1 ¢=1

with

Aije = @ief3je €xp((xi, yje))-
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Minimizing out the a;, gives the loss function

- Z Z Zy log —Dir KR Yit)
ij

i=1 j=1 (=1 v lﬁjv eXP(’?(Xz,y]v))

which can be majorized by our logistic methods.

This gives a basis for a far-reaching
generalization of the non-linear multivariate
analysis methods of Gifi (1990). We can handle
the same data and restrictions, but choose
combination rules.

The geometry of these solutions can be discussed
in the same way as we did in regression. We want
Bjecexp(n(x;,yjc)) to be the largest where gije = 1.

For no bias and the squared distance or distance
rule thus means we want x; to be closest to the y;;
of the category it is in, or we want x; to be in the
correct Voronoi cell. For the inner product model
without bias the cells are cones with apex at the
origin and each x; should be in the correct cone.
For binary data the Voronoi cells are half spaces,
which separate the "aye's" from the "nay's".
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Senate Data
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Logit Models for Single-Peaked Data
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The geometry in this case is somewhat different
from our previous geometry, where using
distances leads to Voronoi cells.

In this cases using distances leads to inequalities
which says that the "aye's" are in a circle (sphere)
around y;, while the "nay's" are outside the circle
(sphere).

Of course the regression specification of the bias
parameters also applies to our previous models,
where we just did not explore this.

Multivariate Probit Models

=2 )0 ), ) viielog @ +1ij(6) = (s + miy®))].

This does not introduce any new theory, but it has
not been implemented in sufficient detail to
produce examples.

Part V: Marginal Maximum
Likelihood




The method so far uses parameters x; for objects.

Thus, in the classical statistical sense, they have
incidental parameters, and this may lead to bias
in the estimation of the structural parameters y;.

A common way out of this dilemma is to use
random score models and marginal maximum
likelihood estimation. Unfortunately this
introduces multidimensional integrals into the
loss function, and causes all kinds of Bayesian
mischief.

Instead of

33 g )
ij X

i=1 j=1 =1 2.1 Bivexpm(xi, yjy))

v log f kﬁ jeexp(n(x, yje)) (.
1 Zvjzl Iij eXP(TI(X» ij))

There are several ways to handle these loss
functions.

First: estimate the density non-parametrically.
This means it becomes a step-function, and we
can use EM (i.e. majorization) in a block-
relaxation process.

Second: approximate the known density by
quadrature. This reduces to our previous
algorithms, except now the X are known
quadrature points.

Third: apply MCMC to compute maximum
posterior probability estimates. This 1s very much

line of research.

, but I'll leave it to others to explore this

Fourth: Use (quadratic majorization to find)
variational approximations to the integrand and
then integrate (assuming, for instance, a normal
density).




