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Majorization Algorithms for Logit, Probit, and Tobit Models

Abstract

For a large variety of discrete choice models (or contingency table
models) efficient and stable maximum likelihood methods can be
constructed based on the majorization method. The course introduces
majorization methods for algorithm construction. We show how to use
the majorization principle to reduce complicated optimization problems
to sequences of weighted or unweighted least squares problems.

Majorization methods are then applied to data analysis techniques
used in economics, political science, psychometrics, ecology,
sociology, and education.

Part I: Minimizing Loss
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Many problems in computational statistics are, or 

can be cast as, optimization problems that 

maximize a numerical goodness-of-fit function or 

minimize a loss function.

Such problems are often solved by using general 

purpose optimization routines based on as 

steepest descent, conjugate gradient, or Newton 

methods. General purpose methods tend to work 

well for relatively small problems, but often need 

to be tweaked for large problems with many 

parameters.
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So let's make the problem more specific and 

make some assumptions along the way.

This covers maximum likelihood, least squares, 

minimum chi-square, and so on.

We will study some general classes of iterative 

algorithms to solve this problem.
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We are given a continuous non-negative loss
function φ : Ω → R+. Our problem is to
compute infx∈Ω φ(x) and, if the minimum ex-
ists, the place where it is attained.

Iterative algorithms are described by algorithmic 

maps

which compute iterative sequences by

The behavior of such sequences is described by 

two key theorems. The first theorem addresses 

(global) convergence, the second theorem (local) 

rate of convergence. 
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A : Ω→ Ω

x(k+1) = A(x(k)).
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Theorem (Zangwill). Suppose the map A : Ω → Ω
is continuous and satisfies φ(A(x)) < φ(x) for all
x ! A(x). Then φ(x(k)) converges to, say, φ∞. For
any subsequence x(") converging to, say, x∞, we have
x∞ = A(x∞) and φ(x∞) = φ∞.

This does not say that there exist convergent 

sequences, or that there is at most one such 

subsequence (and thus the sequence converges).

The assumptions we have made do imply that the 

sequence is asymptotically regular, i.e.

This implies the set of accumulation points, if 

nonempty, is either a single point or a continuum 

(a connected and closed set). And all accumulation 

points have the same function value.
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‖x(k+1) − x(k)‖ → 0.



Zangwill's Theorem can be extended to point-to-

set maps                     and sequences of the form

but going in that direction will lead us too far 

astray. 

Also, for computation purposes, we need point-

to-point maps anyway (and point-to-set maps 

generally have continuous selections).
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A : Ω→ 2Ω

x(k+1) ∈ A(x(k)),
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Theorem (Ostrowski). Suppose A : Ω → Ω is differ-
entiable and the sequence x(k+1) = A(x(k)) converges
to, say, x∞. If λ(x∞), the modulus of the largest eigen-
value of DA(x∞), is less than one, then the sequence
converges linearly with rate λ(x∞).

Thus

This has as a special possibility that                   in 

which case we have super-linear and, under 

some additional regularity conditions, quadratic 

convergence.

If                  we have sub-linear convergence, 

often intolerably slow.
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lim
k→∞
‖x(k+1) − x∞‖
‖x(k) − x∞‖

= λ(x∞) < 1.

λ(x∞) = 0,

λ(x∞) = 1

Block Relaxation

It is often helpful to partition the variables over 

which we are minimizing into two or more 

blocks of variables.

Block relaxation algorithms cycle through the 

blocks, minimizing over one block, while 

keeping the others fixed at their current values.
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min
x1∈Ω1
· · · min

xs∈Ωs
φ(x1, · · · , xs)
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x(k+1)
1 = argmin

x1∈Ω1

φ(x1, x
(k)
2 , · · · , x

(k)
s−1, x

(k)
s ),

x(k+1)
2 = argmin

x2∈Ω2

φ(x(k+1)
1 , x2, · · · , x(k)

s−1, x
(k)
s ),

...

x(k+1)
s = argmin

xs∈Ωs

φ(x(k+1)
1 , x(k+1)

2 , · · · , x(k+1)
s−1 , xs).

Of course block relaxation is only interesting if 

the subproblems are easier to solve than the 

original problem. This can happen because of the 

structure of the constraint sets, but more 

commonly because of the functional form of the 

specification we are fitting.

Coordinate Relaxation is a special case, in which 

each block only contains a single variable. It is 

useful in linear and quadratic programming, and 

in solving large sparse linear systems and large 

sparse eigenvalue problems. And in Iterative 

Proportional Fitting.
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Zangwill and Ostrowski usually apply. The case 

of two blocks without constraints 

is especially interesting. Think, for example,

See Oberhofer and Kmenta, Econometrika, 1974.
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min
x∈Rn

min
y∈Rm
φ(x, y)

min
θ∈Rn

min
β∈Rm

log |Σ(θ)| + (y − Xβ)′Σ−1(θ)(y − Xβ).

In block relaxation the linear convergence rate is 

given by the largest eigenvalue of 

where

is the Hessian of the loss function at the solution.
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[
Dxx Dxy

Dyx Dyy

]

M = D−1
yyDyxD−1

xxDxy



Block-relaxation has as a special case Alternating 

Least Squares, in which a least squares loss 

function is minimized over two or more blocks of 

variables. Factor Analysis and Non-metric 

Multidimensional Scaling provide examples.
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min
X∈Rn×p

min
∆≥0

tr (R − XX′ − ∆)′(R − XX′ − ∆),

min
X∈Rn×p

min
∆∈K∩S

tr (∆ − dist(X))′(∆ − dist(X)).

Augmentation

Suppose the loss function we try to minimize has 

a representation of the form

We then minimize loss     by applying block 

relaxation to the augmented loss function      

Finding a suitable augmentation and then using 

block relaxation defines an augmentation 

algorithm (which generalizes the EM algorithm).
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ψ.

φ(x) = min
y∈Y
ψ(x, y).

φ

Augmentation algorithms are natural in the case of 

missing data (unbalanced ANOVA, factor 

analysis, SVD with missing cells). The missing 

data are introduced as additional variables. In a 

least squares context we then use simply
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∑

i∈I
(yi − f (xi, θ))2 = min

zi=yi for i∈I

∑

i∈I∪J
(zi − f (xi, θ))2.

For augmentation algorithms the linear 

convergence rate can be written as the largest 

eigenvalue of the ratio of the Hessian of the loss 

function and the partial Hessian of its 

augmentation. 

This uses the obvious fact that
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Dφ(x) = Dxψ(x, y(x)).

M = I − {Dxxψ}−1Dxxφ.



The study of convergence rates are important, 

because they are the basis of acceleration 

techniques and because block relaxation 

techniques without modifications can be very 

slow.

This is also the reason why there has been a lot of 

research on accelerating the EM algorithm.

21

Part II: Majorization 

Algorithms

22

Majorization Algorithms

For majorization algorithms (De Leeuw, from 

1977) we construct special type of augmentations. 
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We say that ψ : Ω→ R majorizes φ : Ω→ R
at y ∈ Ω if

• φ(x) ≤ ψ(x) ∀x ∈ Ω,

• φ(y) = ψ(y).

The point y is called the support point of the
majorization.

Thus the majorization function at y is always 

above the function that it majorizes, but it 

touches that function in y, which is why we call y 

the support point of the majorization. There can 

be many support points.

A majorization with a single support point is a 

strict majorization at y. In that case we have

                    for all x ! y.
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φ(x) < ψ(x)



Below we see log(x) strictly majorized by the 

(tangent) line log(y) +(x-y)/y at y =2.
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The function                                       is majorized 

by the quadratic x2 and it has support points at all 

multiples of 
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φ(x) = x2 − 10 sin2(x)

π.

Majorizing Differentiable Functions
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If ψ majorizes φ at y then clearly ψ − φ has
its minimum in y. Thus if both functions are
differentiable we have

Dψ(y) = Dφ(y).

And if both functions are twice-differentiable
also

D2ψ(y) ≥ D2φ(y).
and thus

which shows majorization provides augmentation.
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We say that a function ψ : Ω ⊗ Ω → R is a
majorization scheme for φ : Ω→ R if ψ(•, y)
majorizes φ for each y ∈ Ω.

For a majorization scheme

φ(x) ≤ ψ(x, y) ∀x, y ∈ Ω,
φ(x) = ψ(x, x) ∀x ∈ Ω.

φ(x) = min
y∈Ω
ψ(x, y),



The function |x| is majorized in y ! 0 by

We draw this for y=2 and y=3.
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ψ(x|y) =
1

2|y| (x2 + y2).

Observe we sometimes write           for             to 

emphasize the different roles of x and y.

A majorization algorithm, like any augmentation 

algorithm, consists of two steps. First we find the 

majorization (the E step of EM) then we minimize the 

majorization (the M step of EM). 

Because of this Ken Lange (2000) has proposed the 

name MM algorithms (Majorization-Minimization).  

Willem Heiser (1995) has proposed Iterative 

Majorization.
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ψ(x|y) ψ(x, y)

The key result needed for Zangwill's Theorem is 

provided by the sandwich inequality. 

If we have strict majorization, or if we strictly 

improve the majorizing function, then the 

inequalities are strict, and we generate a 

decreasing sequence of loss function values.
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φ(x(k+1)) ≤ ψ(x(k+1)|x(k)) ≤ ψ(x(k)|x(k)) = φ(x(k)).

By Zangwill, we do not actually have to minimize 

the majorizer. It suffices to have a continuous 

map A that decreases the majorizer -- this will 

force the sandwhich inequality and thus 

convergence. 

In the EM world this generalization is called 

GEM, so we could use GMM. The key condition 

is that                                for all x.
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ψ(A(x), x)) < ψ(x)
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Let’s analyze a simple artificial example.
Take φ(x) = x4 − 10x2. Because x2 ≥
y2 + 2y(x − y) = 2yx − y2 we see that
ψ(x, y) = x4 − 20yx + 10y2 is a suitable ma-
jorization scheme. The majorization algo-
rithm is x(k+1) =

3√5x(k).

At x(0) = 5 we have the red majorization
ψ(x|5). It is minimized at x(1) ≈ 2.92 with
ψ(x(1)|5) ≈ 30.70 and ψ(x(1)) ≈ −12.56.
Then ψ(x|x(1)) is green and has a minimum at
x(2) ≈ 2.44, where ψ(x(2)|x(1)) ≈ −21.79 and
φ(x(2)) ≈ −24.1. We are rapidly getting close
to the local minimum at

√
5, where φ is −25.

The convergence rate at this point is 1
3 .
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Tricks of the Trade

First trick: Majorization schemes can often be 

derived from elementary inequalities. 

We illustrate this with an example from 

multidimensional scaling (De Leeuw, 1977). The 

problem is to minimize stress

over all n x p configurations.
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σ(X) =
n∑

i=1

n∑

j=1

wi j(δi j − di j(X))2

Here            is the Euclidean distance between 

rows i and j of the configuration matrix X. Thus

where 

Both the weights      and the dissimilarities     are

supposed to be known numbers.
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di j(X)

d2
i j(X) = (ei − e j)′XX′(ei − e j) = tr X′Ai jX,

Ai j = (ei − e j)(ei − e j)′.

wi j δi j
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Define

V =
n∑

i=1

n∑

j=1

wi jAi j.

Then

σ(X) = 1 + tr X′VX − 2
n∑

i=1

n∑

j=1

wi jδi jdi j(X).

By Cauchy-Schwarz

di j(X) ≥ 1
di j(Y)

tr X′Ai jY.
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In particular if wi jδi j ≥ 0 for all i and j we
have

σ(X) ≤ 1 + tr X′VX − 2tr X′(Y)Y,

where

B(Y) =
n∑

i=1

n∑

j=1

wi j
δi j

di j(Y)
Ai j.

This provides us with a majorization scheme
and with the algorithm

X(k+1) = V−1B(X(k))X(k).

Here is another example. The EM algorithm is 

designed for functions of the form

Using Jensen's Inequality
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φ(x) = − log
∫

f (x, z)dz.

φ(x) − φ(y) = − log

∫
f (x, z)dz
∫

f (y, z)dz
=

= − log

∫
f (x, z) f (x,z)

f (y,z) dz
∫

f (y, z)dz
≤ −
∫

f (y, z) log f (x,z)
f (y,z) dz

∫
f (y, z)dz

.

Letting

we derive the majorization scheme

Thus in step k +1 of the algorithm we minimize 

the majorization function by minimizing

40

f (z|y) =
f (y, z)∫
f (y, z)dz

ψ(x|y) = φ(y) −
∫

f (z|y) log f (x, z)dz+

+

∫
f (z|y) log f (y, z)dz

−
∫

f (z|x(k)) log f (x, z)dz.



Second trick: Majorizations schemes can be 

derived from convexity considerations.

This says that concave functions are majorized by 

their tangents.

41

If φ is concave then

ψ(x|y) = φ(y) + z′(x − y)

with z ∈ ∂φ(y) any subgradient of φ at y is a
(linear) majorization scheme.

The next two results are due to Lange and De 

Pierro. They apply the definition of convexity to 

obtain separable majorizations.
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Suppose γ : R1 → R1 is convex, w ≥ 0,
and Ω is the positive orthant. Define φ(x) =
γ(w′x). Then

ψ(x|y) =
1

w′y

n∑

i=1

wiyiγ(w′y
xi

yi
)

defines a majorization scheme for φ.
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Suppose γ : R1 → R1 is convex. Define
φ(x) = γ(w′x). Then any choice of v in the
unit simplex

ψ(x|y) =
n∑

i=1

viγ{
wi

vi
(xi − yi) + w′y}

defines a majorization scheme for φ.

Third trick: Majorization schemes can be derived 

from Taylor's Theorem.

This is known as Uniform Quadratic Majorization 

or UQM. Of course not all functions have bounded 

second derivatives.
44

If φ is twice-diffentiable and there is a matrix
H such that D2φ(x) ≤ H, then

ψ(x|y) = φ(y)+(x−y)′Dφ(y)+
1
2

(x−y)′H(x−y)

defines a majorization scheme.



Thus algorithms based on UQM lead to solving a 

sequence of weighted least squares problems.
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For UQM the algorithmic map is defined by

x(k+1) = argmin
x∈Ω

(x − z(x(k)))′H(x − z(x(k))),

where the target z(k) is defined by

z(x(k)) = x(k) − H−1Dφ(x(k)).

Often the easiest (although not necessarily the 

best) way to bound the second derivatives is to 

use a scalar bound

where it is sufficient to choose k equal to any 

upper bound for the largest eigenvalue of the 

Hessian.

UQM is the most common way Taylor's Theorem 

is used in majorization. There are some (rare) 

cases where bounding the cubic term makes 

practical sense.
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D2φ(x) ≤ kI,

Best Quadratic Majorization

Uniform quadratic majorization (UQM), where 

the bound on the Hessian does not depend on y, 

can often be improved.

The trick is to explicitly take y into account and 

to compute the best quadratic approximation at 

this location.
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A quadratic

ψ(x) = φ(y) + (x − y)′Dφ(y)+

+
1
2

(x − y)′A(x − y)

majorizes φ at y if and only if

1
2

(x − y)′A(x − y) ≥

≥ φ(x) − φ(y) − (x − y)′Dφ(y)

for all x.



This defines an infinite set of linear inequalities that 

A must satisfy, and thus a convex set that A must be 

in. For best quadratic majorization (BQM) we want 

the smallest A in the convex set. 

There are various ways to define "small" for a 

matrix, but the most common definition uses the 

Loewner ordering, where A " B if A - B is positive 

semi-definite.

Multivariate BQM has not really been explored 

yet, and offers an interesting research area.
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Finding the BQM is easier if we restrict A to be 

scalar, and BQM's for the one-dimensional case 

have been investigated recently for various 

functions that are important in statistics (Van 

Ruitenbeek, Groenen, De Leeuw, Lange). 

The important thing to realize is that in general 

the BQM bound will depend on y, and it will 

always be as least as good as a uniform bound for 

the second derivative. So BQM will generally 

improve UQM.
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Over-relaxation

Both UQM and BQM can be over-relaxed. 

Consider the example below.
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The function (in blue) is majorized at y =1 by the 

quadratic in red. The quadratic has its minimum 

at x = -1.92 and the usual majorization step 

would be to take that as the next iteration. 

But we  decrease the majorization function by 

taking any update of the form                      , 

where    is the minimizer of the quadratic and                   

     

The over-relaxed update, proposed by De Leeuw 

and Heiser (1980), takes

52

λx̂ + (1 − λ)y
x̂

0 < λ < 2.

λ = 2 and update 2x̂ − y.



This changes the convergence rate from    to

              If     is close to one, then                            

and convergence is twice as fast (at no cost).

Over-relaxation works in all cases where            

This is usually the case. More sophisticated 

accelerations that aim to make

are sometimes also worth studying. We have some 

recent research that will make the majorization 

algorithm for MDS about ten times faster.
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|2κ − 1|. |2κ − 1| ≈ κ2,
κ

κ

κ >
1
3
.

|λκ + (1 − λ)| = 0

Intermezzo: Speeding up MDS

Suppose the iterations                          converge 

to       Suppose in addition that the eigenvalues 

of               are between zero and one, with the 

smallest one     equal to zero and the largest one

    strictly less than one. Suppose moreover that A 

is self-scaling, in the sense that A(  x) = A(x) for 

all x and all real   .

Then, by Ostrowski, the convergence rate is 

54

x(k+1) = A(x(k))
x∞.
DA(x∞)

κi

κn
κ1

θ
θ

κ1.

The convergence rate of the relaxed iterate 

is

And the optimum rate in the relaxed family is

In MDS this is attained at                   where it is 

equal to             . 
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λA(x(k)) + (1 − λ)x(k)

ν(λ) =
n

max
i=1
|λκi + (1 − λ)|.

min
λ
ν(λ).

λ =
2

2 − κ1κ1
2 − κ1
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Unfortunately the relaxed update, while 

monotone, is not self-scaling. To fix this we now 

look at 

which is self-scaling. And therefore gives the 

same iterates as the family
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If κ1 = 1 − ε, with ε small, then the optimal λ
is approximately 2 − 2ε and the optimal rate
is approximately (1 − ε)2 = κ21.

λA(A(x(k))) + (1 − λ)A(x(k))

A(A(x(k))) + µA(x(k))

Now the optimal rate is

This is attained for

and (for this i) it is equal to

We do not really want to compute this.
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min
µ

n
max

i=1
|κ2i + µκi|.

µ = − n
max

i=1

κ21 + κ
2
i

κ1 + κi
,

κ1κi
κ1 − κi
κ1 + κi

.
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But we can use                 for which we find the 

rate 

This is an enormous speed-up, especially for 

slow convergence. 

With rate .99 we need 230 iterations for an 

additional decimal of precision, with rate 0.25 

only 1.67 iterations.
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µ = −κ1,

n
max

i=1
|κ2i − κiκ1| = κ21

n
max

i=1

κi
κ1

(1 − κi
κ1

) ≤ 1
4
κ21.



The algorithm is still pretty simple. In one 

iteration we start with x(k) and compute 

y(k)=A(x(k)) and z(k)=A(y(k)). We then compute

and 

61

λ(k) =
‖z(k) − y(k)‖
‖y(k) − x(k)‖

x(k+1) = z(k) − λ(k)y(k).
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dim diss eps non rel two
10 250 1e-6 515 118 31

10 250 1e-10 879 300 43

3 500 1e-10 455 261 9

3 500 1e-10 774 432 16

3 500 1e-16 1697 885 23

15 45 1e-6 115 63 15

15 45 1e-10 214 114 22

15 45 1e-10 236 137 22

60 1000 1e-6 390 445 64

Part III: Logits, Probits,

Tobits

63

In this section we apply the basic majorization 

results to likelihood functions containing logits, 

probits and tobits. 

We limit ourselves, for the moment, to regression

with a binary outcome -- simple from the 

algorithmic point of view but extremely 

important from the practical point of view.

Regression with ordered or unordered 

multicategory outcomes is next.

64



Define

Then

where

is the logistic cdf.
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f (x) = log(1 + exp(x)).

f ′(x) =
exp(x)

1 + exp(x)
= Ψ(x),

Ψ(x) =
1

1 + exp(−x)
,

Also

from which we see that

and thus

66

f ′′(x) = Ψ(x)(1 − Ψ(x)),

0 < f ′′(x) ≤ 1
4
,

f (x) ≤ f (y) + Ψ(y)(x − y) +
1
8

(x − y)2.

But we can do better using BQM theory.

67

Theorem (Jaakola-Jordan).

f (x) ≤ f (y) + Ψ(y)(x − y) +
1
2

A(y)(x − y)2,

where
A(y) =

2Ψ(y) − 1
2y

.

The BQM bound in the logistic case is plotted 

below. There is no improvement for y = 0, but a 

great deal of improvement in the tails.
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UQM (red) and BQM (green) in the logistic case.

Observe that the BQM majorizations have two 

support points: one at y and one at -y.
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Now apply this to logistic regression. The 

negative log-likelihood with regressors xi and 

binary responses yi is

where

70

∆(β) =
n∑

i=1

log(1 + exp(x̃′iβ)),

x̃i =




xi if yi = 0,
−xi if yi = 1.

Quadratic majorizers are of the form

where                          and         is diagonal with 

elements either equal to 1/4 for UQM or equal to

           for BQM. 

Alternative we can also use a scalar UQM bound 

equal to the largest eigenvalue of             This is 

usually, of course, a rather poor approximation.

71

ψ(β|β̃) = ∆(β̃) + g(β̃)′X(β − β̃)+

+
1
2

(β − β̃)′X′V(β̃)X(β − β̃),
V(β̃)

A(x̃′i β̃)

gi(β̃) = Ψ(x̃′i β̃)

X′X/4.

The majorization algorithm is

and the convergence rate is the largest eigenvalue 

of

where W is                                 evaluated at the 

solution.

UQM means less work per iteration, BQM means 

fewer iterations.
72

β(k+1) = β(k) − (X′V(β(k))X)−1X′g(β(k)),

M = I − (X′V(β(k))X)−1X′WX,

Ψ(x̃′iβ)(1 − Ψ(x̃′iβ))



Example: Maxwell's percentage of inveterate 

liars in five age groups.
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bound # iterations rate

BQM <10 .0810

UQM <10 .1192

UQM - scalar >2000 .9917

Example: Lee's Cancer Remission data, 6 

predictors, 27 patients. Un-safeguarded Newton 

does not converge from most starting points. We 

start with all regression coefficients equal to one.
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bound # iterations rate

BQM 275 .9600

UQM 1475 .9929

UQM - scalar >100,000 1.0000

BQM-overrelaxed 115 .9200

UQM-overrelaxed 731 .9858

Probit Regression

For binary probit regression we use the basic 

result that for                             , with    the 

normal cdf, we have 0 # f''(x) # 1. This provides 

the constant for UQM, and it turns out that in this 

case UQM does provide the BQM as well.

For the negative log-likelihood we find

75

f (x) = − logΦ(x) Φ

∆(β) = −
n∑

i=1

logΦ(x̃′iβ).

The majorization algorithm is

where now g is the Mills Ratio

As we said, no BQM acceleration is available for 

probit regression.

76

β(k+1) = β(k) − (X′X)−1X′g(β(k)),

gi(β) = −
φ(x̃′iβ)
Φ(x̃′iβ)

.



Tobit Regression

The tobit negative log-likelihood in the simplest 

case is of the form

Clearly the same majorizations as for the probit 

case can be applied to the second term, and a 

simple unweighted iterative least squares 

algorithm is the result.

77

∆(β) =
1
2

∑

i∈I1

(yi − x′iβ)
2 −
∑

i∈I2

Φ(x′iβ).

Multicategory (Polytomous) Probits

Probit regression models for polytomous 

(ordered) data have a negative log-likelihood of 

the form

where                                                                    

are the thresholds and Y={yij} is the indicator.

78

−∞ = α0 < α1 < · · · < αm−1 < αm = +∞

∆(α, β) =

= −
m∑

i=1

m∑

j=1

yi j log[Φ(α j + x′iβ) − Φ(α j−1 + x′iβ)],

Majorization theory is dictated here by two 

results.

79

Theorem. Suppose −∞ ≤ α < β ≤ +∞ and

f (x) = − log[Φ(β + x) − Φ(α + x)]

Then 0 < f ′′(x) < 1.

Theorem. Suppose x is fixed and define

h(α, β) = − log[Φ(β + x) − Φ(α + x)]

Then for all α < β we have 0 < D2h(α, β) < ∞.

This says that if we are minimizing over the 

regression coefficients, then we can use UQM

(which is also BQM), as in the binary probit 

model.

But unfortunately there is no upper bound for the 

second derivatives of the loss function as a 

function of the thresholds. If thresholds get close 

to each other, the second derivatives go to 

infinity. Fortunately the loss function is convex in 

the thresholds.

80



This strongly suggests the use of block relaxation

with two blocks of parameters.

We alternate improving the regression 

coefficients for fixed thresholds using quadratic 

majorization and improving the thresholds for 

fixed regression coefficients using some 

safeguarded version of Newton's method.

So far, this is easier said than done.

81

Multicategory (Polytomous) Logits

There are various ways to define logit regression 

models for polytomous data.

For ordered data we can use 

In IRT this is known as the Graded Response 

Model.
82

∆(α, β) =

= −
m∑

i=1

m∑

j=1

yi j log[Ψ(α j + x′iβ) − Ψ(α j−1 + x′iβ)].

This model has not been analyzed yet in terms of 

majorization theory. It will be interesting to study 

UQM and BQM, and to establish how second 

derivatives with respect to the thresholds behave.

For unordered polytomous data we can define 

logistic regression by

UQM is based on the following result.

83

∆(β) = −
m∑

i=1

m∑

j=1

yi j log
exp(x′i jβ)∑m
"=1 exp(x′i"β)

.

84

Theorem. Suppose

π j(x) =
exp(x j)∑m
"=1 exp(x")

,

f (x) = −
m∑

j=1

y j log π j(x),

then

0 ≤ D2 f (x) = Π(x) − π(x)π(x)′ ≤ 1
2

I



Some Geometry

Interpreting our optimization problems as 

maximum likelihood estimation methods is 

correct, but possibly misleading. It is generally 

more natural to think of the algorithm as finding 

approximate solutions to large inconsistent 

systems of linear inequalities. 

If we can find     such that              for all           

then we can make loss equal to zero by using

      with               Both for binary logit and probit.

85

β x′iβ > 0 yi = 1

λβ λ→ ∞.

For ordered polytomous logits and probits we 

want the probability of the kth interval to be the 

largest whenever yik = 1. This has no obvious 

interpretation in terms of linear inequalities, but 

for unordered logits we want                           for 

all j if yik = 1.

Thus perfect solutions are defined by systems of 

inequalities. They correspond with zero loss and 

with parameter estimates wandering off to 

infinity. The inconsistency of the systems for real 

data keep the solutions away from infinity.

86

(xik − xi j)′β > 0

Part IV: Logit and Probit 

Component and Factor Analysis

87

Distance Association Models

Suppose Y={yij} is an n x m table of observed 

frequencies. We are interested in models of the 

form

where     and    are the row and column effects

(a.k.a. the main effects) and where X and Y are 

configurations of points in        The combination 

rule    specifies, in some form, the similarity 

between row object i and column object j.

88

E(y
i j

) = αiβ j exp(η(xi, y j)),

α β

Rp.
η



We now look at a class of models that generalize 

simple and multiple correspondence analysis, but 

also the RC model and quasi-symmetry models 

for cross tables, the Rasch model for item 

analysis, and various forms of logit and probit 

component and factor analysis.

The various versions of these models can all be 

handled by UQM methods, reducing them to 

sequences of least squares problems of various 

types.

89

Different combination rules lead to different 

forms of the association model. So far we have 

studied

These are the inner product, negative squared 

distance, and negative distance rules.

90

η(xi, y j) = x′i y j,

η(xi, y j) = −‖xi − y j‖2,
η(xi, y j) = −‖xi − y j‖.

It should be emphasized that

which means the inner product rule with row and 

column effects is equivalent to the negative 

squared distance rule with row and column effects. 

This equivalence is no longer true, however, if we 

decide not to include one or both of the main 

effects in the model.

91

exp(−‖xi − y j‖2) =

= exp(−‖xi‖2) exp(−‖y j‖2) exp(2x′i y j),

The models also have a quasi-symmetric version 

in which X = Y (of course this is only relevant for 

square tables) and a symmetric version in which 

in addition also 

The symmetric and quasi-symmetric versions are 

often used for input-output, import-export, 

stimulus recognition, and confusion data in which 

underlying symmetry is masked by bias or size 

parameters.

92

α = β.



We now need a rule to measure the distance 

between an observed and an expected table. We 

use the Negative Poisson Log-Likelihood (or 

Deviance) for this purpose.

where

93

λi j = αiβ j exp(η(xi, y j)).

∆(Λ) =
n∑

i=1

m∑

j=1

(λi j − yi j log λi j),

As an aside: we do not say that the data come are 

realizations of independent Poisson variables and 

that we compute maximum likelihood estimates 

of the parameters. 

We just use the Poisson likelihood to measure 

distances between tables.

But in most cases I am familiar with the Poisson 

assumption does not make much sense. If it does, 

then, yes, we are computing maximum likelihood 

estimates.

94

First, in minimizing the deviance we use block 

relaxation combined with majorization. We can 

find optimal values for the marginal effects     

and     by the usual iterative proportional fitting 

methods. So the only thing we need majorization 

for is to improve                                  

There are three blocks: improve row-effects, 

improve column-effects, and improve the 

distance interactions. The blocks are alternated in 

the usual way.

95

α
β

ηi j(X,Y) = η(xi, y j).

In fact we discuss two different majorizations. 

Consider the situation where                       is non-

positive, as it is for the distance and squared 

distance rules. Then

because the second derivative is the exponent of 

a non-positive number and is thus never larger 

than one.

96

exp(ηi j) ≤ exp(η̃i j)+

+ exp(η̃i j)(ηi j − η̃i j) +
1
2

(ηi j − η̃i j)2

ηi j = η(xi, y j)



Now substitute this majorization, complete the 

square, and collect terms. Then in a majorization

step we have to minimize

where the target zij is defined by

97

σ(X,Y) =
n∑

i=1

m∑

j=1

αiβ j(η(xi, y j) − zi j)2,

zi j = η̃i j +
yi j − αiβ j exp(η̃i j)

αiβ j
.

But we know how to minimize (or decrease) this

least squares loss function. Both for the distance 

rule and for the squared distance rule we can use 

any number of existing iterative multidimensional 

scaling algorithms (some of which are again based 

on majorization).

Observe, however, that there is no guarantee that 

the target is non-positive. This means we need a 

multidimensional scaling algorithm that can cope 

with negative dissimilarities.

98

Rothkopf Morse Code Data
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Tocher Eye and Hair Color

                dist                                     dist2
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This algorithm cannot deal directly with the inner 

product rule, because it depends on non-

positivity.

We could fit the innner product model by fitting 

squared distances rules with bias, but there is a 

more direct way (which also makes it possible to 

fit inner product rules without bias).

102

The idea is to minimize                             The 

minimum is attained at

and it is equal (except for some irrelevant 

constants) to

103

min
α
∆(α, β, X,Y).

αi =
yi"∑m

j=1 β j exp(ηi j)

n∑

i=1

m∑

j=1

yi j
β j exp(ηi j)∑m
#=1 β# exp(ηi#)

.

But this is of the form we used in the case of 

unordered polytomous logit models. Using the 

basic majorization result for that case we find

where

104

σ(X,Y) =
n∑

i=1

yi"

m∑

j=1

(η(xi, y j) − zi j)2,

zi j = ηi j(X̃, Ỹ) + 2(p j|i − π j|i(X̃, Ỹ , β)),

and p j|i and π j|i are the row-normalized yi j and λi j.



Voronoi Models for Categorical PCA

The idea of removing the row effects is more 

generally applicable. Consider the situation in 

which we have m categorical variables, variable j 

has kj categories, and the data are coded as 

indicator matrices). Consider the Poisson 

deviance

with

105

∆(α, β, X,Y) =
n∑

i=1

m∑

j=1

k j∑

#=1

{λi j# − yi j# log λi j#},

λi j" = αi"β j" exp(η(xi, y j")).

Minimizing out the       gives the loss function

which can be majorized by our logistic methods. 

This gives a basis for a far-reaching 

generalization of the non-linear multivariate 

analysis methods of Gifi (1990). We can handle 

the same data and restrictions, but choose 

combination rules.

106

αi"

−
n∑

i=1

m∑

j=1

k j∑

!=1

yi j! log
β j! exp(η(xi, y j!))

∑k j

ν=1 β jν exp(η(xi, y jν))

The geometry of these solutions can be discussed 

in the same way as we did in regression. We want

                             to be the largest where                

For no bias and the squared distance or distance 

rule thus means we want xi to be closest to the yjl 

of the category it is in, or we want xi to be in the 

correct Voronoi cell. For the inner product model 

without bias the cells are cones with apex at the 

origin and each xi should be in the correct cone.

For binary data the Voronoi cells are half spaces, 

which separate the "aye's" from the "nay's".
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β j" exp(η(xi, y j")) gi j! = 1.

Senate Data

108
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GALO Data
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Dentition Data
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dimension 1

d
im

e
n
s
io

n
 2

!2 !1 0 1 2

!
2

!
1

0
1

2

1

2

3

4

4

4

4

4

3

3

33

22

3

1

3

3
222222222222222 22

2 444 4
4

44

444

4

44

4

4

4444 44

2 4

3

3

1
11

1
11111

Voronoi mammals bottomincisors
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Voronoi mammals topcanines
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Voronoi mammals bottomcanines
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Voronoi mammals toppremolars
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Voronoi mammals bottompremolars
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Logit Models for Single-Peaked Data
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D(X,Y, ξ) = −2




∑

(i, j)∈I1

log
βi j(ξ) exp(φ(xi, y j))

1 + βi j(ξ) exp(φ(xi, y j))
+

+
∑

(i, j)∈I0

log
1

1 + βi j(ξ) exp(φ(xi, y j))




We also specify βi j(ξ) = exp(γi j(ξ)), with

γi j(ξ) =
p∑

s=1

zi jsξs.

Cars Data
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Voronoi plot for cars : driver.protection
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Voronoi plot for cars : passenger.protection
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Voronoi plot for cars : structural.integrity
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The geometry in this case is somewhat different 

from our previous geometry, where using 

distances leads to Voronoi cells.

In this cases using distances leads to inequalities 

which says that the ''aye's" are in a circle (sphere) 

around yj, while the ''nay's'' are outside the circle 

(sphere).

Of course the regression specification of the bias 

parameters also applies to our previous models, 

where we just did not explore this.
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Multivariate Probit Models

This does not introduce any new theory, but it has 

not been implemented in sufficient detail to 

produce examples.
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D(τ, θ) =

= −2
n∑

i=1

fi
m∑

j=1

k j∑

#=1

yi j# log
[
Φ(τ j,# + ηi j(θ)) − Φ(τ j,#−1 + ηi j(θ))

]
.

Part V: Marginal Maximum 

Likelihood
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The method so far uses parameters xi for objects.

Thus, in the classical statistical sense, they have 

incidental parameters, and this may lead to bias 

in the estimation of the structural parameters yj.

A common way out of this dilemma is to use 

random score models and marginal maximum 

likelihood estimation. Unfortunately this 

introduces multidimensional integrals into the 

loss function, and causes all kinds of Bayesian 

mischief.
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Instead of

we use
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−
n∑

i=1

m∑

j=1

k j∑

!=1

yi j! log
β j! exp(η(xi, y j!))

∑k j

ν=1 β jν exp(η(xi, y jν))

−
m∑

j=1

k j∑

!=1

y• j! log
∫

β j! exp(η(x, y j!))
∑k j

ν=1 β jν exp(η(x, y jν))
π(x)dx.

There are several ways to handle these loss 

functions. 

First: estimate the density non-parametrically. 

This means it becomes a step-function, and we 

can use EM (i.e. majorization) in a block-

relaxation process.

Second: approximate the known density by 

quadrature. This reduces to our previous 

algorithms, except now the X are known 

quadrature points.
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Third: apply MCMC to compute maximum 

posterior probability estimates. This is very much

             , but I'll leave it to others to explore this

 line of research.

Fourth: Use (quadratic majorization to find) 

variational approximations to the integrand and 

then integrate (assuming, for instance, a normal 

density).
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