
PSEUDO-VORONOI DIAGRAMS FOR MULTICATEGORY
EXPONENTIAL REPRESENTATIONS

JAN DE LEEUW

A. Generalizations of the planar Voronoi diagram for exponen-
tial distance and inner product models with or without bias parameters
are discussed.

1. I

In several recent pre-publications, for example De Leeuw [2004, 2006b],
we have generalized the logistic PCA approach of De Leeuw [2006a] to
multicategory data. The basic data are m indicator matrices Y j with n rows
and k j columns, as in Gifi [1990]. Thus Y j is binary, and its rows add up
to one (unless there are missing data, in which case they add up to zero).
Indicator Y j corresponds with a variable that takes on k j different values.

The n objects and the
∑m

j=1 k j levels of all variables are represented as points
in Rp, where more often than not p = 2. Coordinates for the objects are in
the n × p matrix A, while those for the levels of variable j are in the k j × p
matrix B j.

We choose a combination rule φ on Rp ⊗ Rp, such that φ(ai, b j`) quantifies
how similar or close object i and category ` of variable j are. The most
common combination rules are the inner product φ(ai, b j`) = a′ib j`, the neg-
ative distance φ(ai, b j`) = −‖ai − b j`‖, and the negative squared distance
φ(ai, b j`) = −‖ai − b j`‖
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The general idea is to minimize the deviance

(1) D(A, B) = −2
n∑

i=1

m∑
j=1

k j∑
`=1

yi j` log
β j` exp(φ(ai, b j`))∑k j

ν=1 β jν exp(φ(ai, b j`))

over the configurations A and B, and possibly over the bias vectors β j. The
bias vectors are the response probabilities of the levels if φ(ai, b j`) = 0.
They are chosen to be positive, and within each variable they add up to one.
They correspond with the marginal effect of the levels in a log-linear model.

The deviance has a likelihood interpretation, but that interpretation is rather
far-fetched. A geometrical interpretation is much more natural [De Leeuw,
in press]. Consider the inequalities

(2) yi j`(β j` exp(φ(ai, b j`)) − β jν exp(φ(ai, b jν)) > 0.

Or, equivalently, if yi jl = 1 then β j` exp(φ(ai, b j`)) must be the largest of
the β jν exp(φ(ai, b jν)) for all ν. In the case in which there is no bias and we
use the negative distance, or the negative squared distance, this says that
each object i must be closest to the category of the variable that this object i
scores in. Or, if we make a Voronoi plot [Okabe et al., 2000] of the k j levels
of variable j, and plot the n objects on top, then each object must be in the
correct Voronoi cell. If a variable is binary (k j = 2, then the Voronoi cell
is a half-space, and there is an hyperplane separating the objects in the first
category from those in the second category. This special case explains the
popularity of the binary version of the technique in political science [Clin-
ton et al., 2004] and item response theory [Reckase, 1997].

In general, of course, we cannot expect to find A and B that satisfy the
inequalities (2) precisely. That is why we need a badness-of-fit measure
such as the deviance to minimize. What we can show, however, is that if (2)
is solvable, then infA,BD(A, B) = 0. Thus we can get arbitrarily close to
perfect fit, basically by letting some or all points diverge to infinity in the
appropriate direction.
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2. P

The problem we study in this note is to draw a plot, for each variable, that
shows in how far inequalities (2) are satisfied by a solution we have com-
puted. In the unbiased case with negative distances or squared distances, the
problem is basically solved. Drawing a Voronoi diagram is a much studied
problem, and can be done efficiently for a large number of points. There
is code in various R packages such as deldir that interfaces to efficient C
libraries. But our problem is more general, because we want to incorporate
the effect of bias, and we also want to be able to deal with the inner product
combination rule.

We shall produce a simple R program that draws these generalized Voronoi
plots. Since in our applications n will usually be very small, and p will
usually be 2, we do not really care about optimizing the order of the com-
putations, we just want computations that can be done conveniently in R.

Both for the inner product model and for the squared distance model the
inequalities (2) are linear. For the distance model, without the square, this
unfortunately is not the case, and we do not discuss that combination rule
here.

So the general structure of the problem we are trying to solve is as follows.
Suppose fi(x) = u′i x − vi are n linear functions on R2. We want to compute
and draw the n polygons

Mi = {x| fi(x) =
n

max
k=1

fk(x)},

which of course partition the plane. Without any real loss of generality we
assume that ui , u j if i , j.

3. A

The basic idea of the algorithm is to enumerate the line segments in the
diagram, and then to draw them. Only very elementary calculations are
needed.
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First define the lines

Li j = {x| fi(x) = f j(x)} = {x|(ui − u j)′x = vi − v j}.

Let

ei j = (vi − v j)
ui − u j

(ui − u j)′(ui − u j)

so that (ui − u j)′ei j = vi − v j, and let

fi j =

u j2 − ui2

ui2 − u j2


so that (ui − u j)′ fi j = 0. The line Li j consists of all points ei j + λ fi j, with
−∞ < λ < +∞.

All segments in the diagram will be on these lines. Now look for the interval
[λmin, λmax] such that for all k , i, j we have

u′i(ei j + λ fi j) − vi ≥ u′k(ei j + λ fi j) − vk

Remember that for all λ we have u′i(ei j + λ fi j) − vi = u′j(ei j + λ fi j) − v j.

Collecting terms gives

λ(ui − uk)′ fi j ≥ (vi − vk) − (ui − uk)′ei j,

and thus

max
k∈K+

(vi − vk) − (ui − uk)′ei j

(ui − uk)′ fi j
≤ λ ≤ min

k∈K−

(vi − vk) − (ui − uk)′ei j

(ui − uk)′ fi j
.

Here K+ is the set of all k , i, j for which (ui − uk)′ fi j > 0 and K− is
the set of all k , i, j for which (ui − uk)′ fi j < 0. If (ui − uk)′ fi j = 0 and
(vi − vk) − (ui − uk)′ei j > 0, then the interval is empty and we go to the next
k. Because testing for zero is always tricky in floating point computations,
this is where we may have some numerical problems. If the interval is not
empty, we store it and/or draw the segment. After looping through all i < j
and all k , i, j we are done.
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4. E

We use a small artificial example. U has 5 points, and there is a bias vector
b. The bias gets transformed for the inner product rule to the inequality
right-hand side by v j = − log(b j), and for the squared distance rule to v j =
1
2 (
∑p

s=1 u2
js − log(b j)). This is the only difference between the two rules, as

far as the algorithm is concerned.

> u

[,1] [,2]

[1,] 1.6708897 2.3665436

[2,] -0.9439634 -0.6832961

[3,] -1.2893324 -1.6860028

[4,] 1.3200185 0.2748327

[5,] -0.3349960 -1.0912174

> b

[1] 0.06666667 0.13333333 0.20000000 0.26666667 0.33333333

We then call the function four times, with and without bias, and inner prod-
ucts or squared distances. The calling code is

pdf("ipbi.pdf")

drawEdges(u,b)

dev.off()

pdf("ipni.pdf")

drawEdges(u,b=rep(1,5))

dev.off()

pdf("sdbi.pdf")

drawEdges(u,b,fit="sd")

dev.off()

pdf("sdni.pdf")

drawEdges(u,b=rep(1,5),fit="sd")

dev.off()

The four plots show the diagrams. If there is no bias (on the right), then
the inner product rule (at the top) partitions the space into cones with apex
at the origin. And the squared distance rule (at the bottom) leads to the
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usual Voronoi diagram, in which the lines are all segments of perpendicular
bisectors.
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A A. C

makeEdges<− f u n c t i o n ( a , b , f i t =" i p " , v e r b o s e=FALSE) {

i f ( f i t ==" i p " ) c<−− l o g ( b ) e l s e c<−(− l o g ( b )+rowSums ( a ^2 ) ) / 2

n<− l e n g t h ( b ) ; l n s<−matrix ( 0 , 0 , 8 )

f o r ( i i n 1 : ( n−1) ) {

5 f o r ( j i n ( i +1) : n ) {

dd<−a [ i , ] − a [ j , ] ; dc<−c [ i ]− c [ j ] ; s s<−sum ( dd ^2 )

i f ( i s . n u l ( s s ) ) next ( )

ee<−dc *dd / s s ; f f<−c (−dd [ 2 ] , dd [ 1 ] )

xlw<−− I n f ; xup<− I n f
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10 f o r ( k i n ( 1 : n ) [− c ( i , j ) ] ) {

dd<−a [ i , ] − a [ k , ] ; dc<−c [ i ]− c [ k ]

mum<−sum ( dd* f f ) ; mom<−dc−sum ( dd* ee )

i f ( i s . n u l (mum) & ( mom > 0 ) ) {

xlw<− I n f ; xup<−− I n f

15 }

i f ( mum>0) xlw<−max ( xlw ,mom /mum)

i f ( mum<0) xup<−min ( xup ,mom /mum)

i f ( v e r b o s e ) {

c a t ( formatC ( i , d i g i t s =3 , wid th =3) ,

20 formatC ( j , d i g i t s =3 , wid th =3) ,

formatC ( k , d i g i t s =3 , wid th =3) ,

"mum� " , formatC (mum, d i g i t s =4 , wid th =8 , format=" f " ) ,

"mom� " , formatC (mom, d i g i t s =4 , wid th =8 , format=" f " ) ,

" xlw� " , formatC ( xlw , d i g i t s =4 , wid th =8 , format=" f " ) ,

25 " xup� " , formatC ( xup , d i g i t s =4 , wid th =8 , format=" f " ) ,

" \ n " )

}

}

i f ( xlw<xup ) l n s<−rbind ( l n s , c ( i , j , ee , f f , xlw , xup ) )

30 }

}

re turn ( l n s )

}

35 drawEdges<− f u n c t i o n ( a , b , f i t =" i p " , f a r =1000 , v e r b o s e=FALSE) {

l n s<−makeEdges ( a , b , f i t , v e r b o s e=v e r b o s e )

p<−dim ( l n s ) [ 1 ] ; n<−dim ( a ) [ 1 ]

p l o t ( a , t y p e=" n " ) ; t e x t ( a , as . c h a r a c t e r ( 1 : n ) )

f o r ( i i n 1 : p ) {

40 ee<− l n s [ i , 3 : 4 ] ; f f<− l n s [ i , 5 : 6 ]

xlw<− l n s [ i , 7 ] ; i f ( xlw == − I n f ) xlw<−− f a r

plw<−ee+xlw * f f

xup<− l n s [ i , 8 ] ; i f ( xup == I n f ) xup<− f a r

pup<−ee+xup * f f

45 l i n e s ( rbind ( plw , pup ) , c o l="RED" )

}

}

i s . n u l<− f u n c t i o n ( x ) {

50 re turn ( abs ( x )<1e−10)

}
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