
CHAPTER 7

CORRESPONDENCE ANALYSIS
OF ARCHEOLOGICAL ABUNDANCE MATRICES

Abstract. In this chapter we discuss the Correspondence Anal-

ysis (CA) techniques used in other chapters of this book. CA is

presented as a multivariate exploratory technique, as a proxim-

ity analysis technique based on Benzécri distances, as a tech-

nique to decompose the total chi-square of frequency matrices,

and as a least squares method to fit association or ordination

models.

Date: January 2, 2008.
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1. Introduction

Correspondence Analysis (CA from now on) is a technique to an-

alyze data matrices of non-negative numbers. CA is related to

principal component analysis (PCA) and multidimensional scaling

(MDS), i.e. it is a form of proximity analysis. CA is most frequently

applied to rectangular tables of frequencies, also known as cross

tables or contingency tables, alhough applications to binary inci-

dence or presence-absence matrices are also quite common.

The most often used statistical technique for analyzing cross ta-

bles computes and tests some measure of independence or homo-

geneity, such as Chi-square. In the analysis of independence we

investigate if the body of the table is the product of the marginals.

Or, if one prefers an asymmetric formulation, if the rows of the

table differ only because they have different row-totals (and the

columns only differ because they have different column-totals).

Pearson’s Chi-square and related measures quantify how differ-

ent the observed table is from the expected table, computed from

the row and column totals. Pearson-residuals are used to investi-

gate deviations from independence. CA supplements this classical
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Chi-square analysis, because it makes both a decomposition and a

graphical representation of the deviations from independence.

1.1. History. CA has a complicated history, both in statistics and

in archeology. The prehistory of CA, starting with work by Pear-

son around 1900 and ending with the reinvention of the technique

by Fisher and Guttman around 1940, is discussed by De Leeuw

[1983]. Subsequently the technique was re-reinvented under many

different names, in many different countries, and in many scientific

disciplines. New reincarnations still continue to appear, although

at a slower pace than before, in the data mining and data analy-

sis literature. Beh [2004] is a recent comprehensive bibliographic

review.

The history of CA in archeology is discussed by Baxter [1994, p.

133-139]. Although there were some earlier applications to arche-

ological examples in the CA literature, the credit for the introduc-

tion of the technique to archeologists usually goes to Bølviken et al.

[1982]. Early applications almost without exception came from

archeologists in continental Europe, under the influence, no doubt,

of the French Analyse des Données school, under the leadership of
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Benzécri [1973a; 1973b]. A good overview of these various conti-

nental archeological applications of CA is, for example, Müller and

Zimmerman [1997].

It is clear from Baxter’s discussion that archeologists in continental

Europe were ahead of archeologists in Great Britain, who came on

board around 1990. Clive Orton, one of the deans of quantitative

archeology in Britain, argued that CA was the most important tech-

nique introduced into archeology in the 1980’s [Orton, 1999, p. 32].

From Britain archeological CA migrated to the United States where

it arrived shortly before to 2000. Duff [1996, p. 90] indicated, in

an influential article from the mid 1990’s, that CA was “not well es-

tablished in Americanist literature”. And, very recently, Smith and

Neiman concurred: “CA has a long history of use by archeologists

in continental Europe but its use by Americanist archeologists is

both more recent and rare.” [Smith and Neiman, 2007, p. 55].

There are several possible reasons why CA did not rapidly become

popular in archeology in Britain and the United States. Most im-

portantly, perhaps, archeological methodologists tend to look at

statisticians for guidance, and in statistics CA was not really known

until about 1980, despite the work of Hill [1974]. Except in France,
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of course, but French statistics was relatively isolated from main-

stream statistics. The dominant multivariate techniques applied

in archeology were MDS and PCA (sometimes in the disguise of

factor analysis). The most influential work in the area in the sev-

enties was Hodson et al. [1971], which concentrated on the MDS

techniques of Boneva, Kendall, and Kruskal. These are all forms of

proximity analysis, but they differ from CA various ways.

LeBlanc [1975, p. 22] predicted, in a pioneering article: “Proximity

analysis seems to hold a great deal of promise and will in all prob-

ability supplant all other seriation methods.” If we interpret this

prediction narrowly, in terms of the method that were available

in 1975, it turned out to be incorrect, for reasons which are quite

obvious in hindsight. Data, in archeology and elsewhere, come in

many different forms. Sometimes we deal with cross tables, some-

times with incidence matrices, and sometimes with multivariate

data that describe archeological objects in terms of a number of

qualitative or quantitative variables. There is no reason to expect

that a technique which is designed for one particular type of data

will also work, or even be appropriate, for another type of data.

A data analysis technique must obviously take the nature of the

data into account, and forcing all data into a common “proximity”
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format may not be an optimal strategy. But the basic advantages

of proximity analysis mentioned by LeBlanc [1975, p. 22] are still

right very much on target. “In the past, the basic goal of seriation

has been to order a series of cultural units on the basis of an as-

sumed single underlying variable, usually time. It is now possible

to seriate units according to two or more variables by using a form

of proximity analysis or MDS. This increases the power of seriation

greatly, and among other advantages, it gives a much better idea of

the fit of data to one variable (e.g. time alone) than have previous

methods.”

Because CA was rediscovered and reintroduced in different coun-

tries at different times, most archeological authors feel obliged to

give some sort of introduction to the technique. These is even true

for recent articles such as Poblome and Groenen [2003] and Smith

and Neiman [2007]. Our discussion of CA differs in some respects

from the ones traditionally encountered in archeology. In other re-

spects it is quite standard. First, and this is actually quite common,

we do not present the technique exclusively as a seriation method.

There can be many different reasons why archeological sites are

similar or dissimilar and, to quote Kruskal [1971], “Time is not the

only dimension.” Most CA plots are, of course, two-dimensional
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maps in the plane, which already suggests more than one dimen-

sion may be relevant. Second, we discuss CA both as an exploratory

technique and as a method of fitting a particular statistical model.

And finally, we relate the least squares fitting of the CA model to

the maximum likelihood fitting of the Exponential Distance (ED)

model. Both ED and ordinary CA can be considered to be alterna-

tive, and closely related, forms of correspondence analysis.

1.2. Types and Attributes. LeBlanc [1975] compares type seriation

and attribute seriation. See also Duff [1996]. We can discuss this

comparison by distinguishing the different types of data that CA

can be applied to. In a CA context attribute seriation corresponds

to multiple correspondence analysis (MCA), treated in Gifi [1990,

Chapter 3], and type seriation corresponds to simple CA, treated

in Gifi [1990, Chapter 8]. Or, to translate this into software, at-

tribute seriation corresponds with the R package homals [De Leeuw

and Mair, 2008a], while type seriation corresponds with the pack-

age anacor [De Leeuw and Mair, 2008b].

LeBlanc [1975, p. 24] carefully distinguishes the terms “attribute”,

“type”, “variable”, and “dimension”. Actuallly, he uses “variable”

and “dimension” interchangeably, but is a probably a good idea to
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reserve “dimension” for the axes in multidimensional representa-

tions in the data. A “variable” is then a formally defined aspect

of the group of objects in the study. Each variable is measured in

terms of a scale, and the mutually exclusive characteristics of the

scale are called “attributes”. In the book by Gifi [1990], a variable is

defined similarly as a mapping of the objects in the study into the

categories of a variable. Defining a number of variables on a set

of objects creates, in the terminology of the R software system [R

Development Core Team, 2007], a “data frame”. More specific for

archeology is the notion of a “type”, which Leblanc defines as “the

existence of a non-random association between the attributes of

two or more dimensions” [LeBlanc, 1975, p. 24]. Thus types are ag-

gregations of attributes over different variables, and consequently

they can be counted more easily, and are more susceptible to be

treated with frequency-based techniques.

This discussion also makes it possible to compare CA with MDS

and PCA. In MDS the first step is usually to derive some symmetric

matrix of similarities between the sites, assemblages, proveniences,

or cultural units. There are many ways to define similarities, and in
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many cases the choice of a particular similarity measure is some-

what arbitrary. Moreover, instead of computing similarities be-

tween sites, we could also decide to compute similarities between

the variables describing the artifacts found in the sites. A com-

monly used similarity measure between variables is the correlation

coefficient. It is unclear how the MDS analysis of the sites and the

MDS analysis of the variables are related. In PCA we usually start

with a correlation matrix between variables, and then derive com-

ponent loadings to describe the variables and component scores

to describe the sites. This means PCA can be used to make a joint

plot, a.k.a. a biplot [Gower and Hand, 1996]. Biplots are compelling

ways to visualize multidimensional information, and as such they

go beyond simple seriation.

One disadvantage of PCA that is often mentioned is that it assumes

linear relations between the variables. This, however, is no longer

true for modern non-linear versions of PCA, reviewed for example

in De Leeuw [2006]. Moreover there is a close relationship between

non-linear PCA and MCA, so close that in fact non-linear PCA can

be carried out with the MCA package homals [De Leeuw and Mair,

2008a].
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The correspondence analysis framework of Gifi [1990] gives one

single class of techniques to analyse attribute matrices of artifacts

by variables, frequency matrices of types by sites, and incidence

matrices of types by sites. It is basically, to use a term from Ben-

zécri’s Analyse des Données, all a matter of “codage”. One can code

both types and sites as attributes of artifacts, and then the type by

site frequency table is just the bivariate cross-table of those two

variables.

One important advantage of CA and MCA over MDS and PCA is

that they stay as close as possible to the original data, no matter if

the data are frequencies or incidences or variables with attributes.

There is no need to first choose a measure of similarity or corre-

lation, and there is not need to aggregate data into correlation or

product matrices. It is true that CA can be presented in terms of a

particular measure of dissimilarity, the Benzécri distance. We will

give such a presentation in this pape. But it is only one interpre-

tation of the technique, and the Benzécri distances have a close

connections with the familiar chi-squares that can be computed

from the frequencies.
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1.3. Typical Archeological Applications. We discuss some of the

typical applications of CA in archeology in more detail, to illustrate

where the technique may be appropriate and what archeologists

look at.

In Bølviken et al. [1982] three data sets from the Stone Age in

Northern Norway are used. The first one, from Iversfjord, uses

thirty-seven lithic types in fourteen house site assemblages. Be-

cause of interpretational difficulties the analysis was repeated after

grouping the thirty-seven types into nine tool categories. The joint

plot in two dimensions of the house sites and tool categories is

interpreted in terms of economic orientation and settlement per-

manence. The second example is for the Early Stone Age in the

Varanger fjord area. The data counts frequencies of 16 functional

tool types in 43 sites. Two-dimensional plots give a refinement in-

terpreted in terms of earlier qualitative archeological hypotheses.

The analysis was repeated grouping the tools into seven classes,

yielding less informative results. In the third example CA was used

to establish a chronology. Data came from a farm mount on the is-

land of Helgøy in Troms. There are nineteen classes of artifacts
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distributed over 15 excavation layers, carbon-dated from the four-

teenth to the nineteenth centuries A.D. The analysis shows the lay-

ers mapped on a two-dimensional horseshoe curve. Projections on

the curve can be used to reorder the rows and columns of the data

matrix, producing a seriation closely corresponding with the one

based on carbon-dating.

The article by Duff [1996] on micro-seriation compares attribute

and type seriation, following LeBlanc [1975]. But whereas LeBlanc

used multidimensional scaling for the type seriation, Duff used CA.

Data are counts of six ceramic types in 40 proveniences in Pueblo

de las Muertas, in the Zuni (Cibola) region of New Mexico, from the

thirteenth to the fourteenth century A.D.. The two-dimensional CA

solution exhibits a weak horseshoe, with lots of scatter around it,

but produces essential the same ordering of the units as the MDS

analysis of Leblanc.

An early application of CA to Americanist materials is Clouse [1999],

who used CA to analyze artifacts found in excavations at the mili-

tary settlement in Fort Snelling, Minnesota. Sites are eight defense

buildings, eleven support buildings, and eight habitation build-

ings. At all sites artifacts are counted and classified in fourteen
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groups, such as culinary, armament, commerce, furniture. Sepa-

rate abundance matrices are given for defense, support, and habi-

tation buildings and separate CA’s are computed. Both joint plots,

showing units and artifact groups in two dimensions, and unit-

plots, which only show the units, are presented. Groupings of the

units conform to what is expected on the basis of the Military Site

Model, but provide more detailed information. Clouse [1999, p.

105] argues that CA makes expected and unusual features more

clearly visible than the numerical summary given by the table.

The excellent paper by Smith and Neiman [2007] aims to compare

frequency seriation, in the tradition of Ford [1952], with CA. They

use two cases studies. In the first case study Gulf Coast area, near

the Chattahoochee and Apalachicola Rivers, in Alabama, Georgia,

and Florida. Data are from the Middle and Late Woodland periods

(100 B.C. to A.D. 900). Ceramic data were collected at many sites,

of which 29 were selected, because they had more than 80 painted

sherds. The 29 sites were subdivided into 84 assemblages and the

sherds were classified into 18 pottery types. Obviously it will be

important for the eventual outcome of the technique how the arti-

facts and proveniences are grouped into rows and columns of the

table. The CA of the 84 assemblages shows a very clear horseshoe
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pattern, with a clear grouping of sites along the curve. “The CA

results confirm what the clean seriation solution suggests: there

is no significant source of variation in type frequencies other than

time.” [Smith and Neiman, 2007, p. 61] The analysis was repeated

after removing some of the later assemblages. This smaller CA

was validated (as a seriation method) by plotting CA scores against

radiocarbon dates for selected sites.

The second case study in the Smith and Neiman article is from

Kolomoki, a well-researched multimount site in southwestern Geor-

gia. This is an intrasite analysis, not an analysis with multiple sites.

The CA uses 20 assemblages and nine pottery types. Separate two-

dimensional plots for assemblages and types shows no horseshoe,

but a significant and interpretable second dimension. The CA so-

lution shows effect, for example spatial ones, not detectable by

the inherently one-dimensional frequency seriation. The first CA

dimension is again validated as time, using radiocarbon data. We

will use the same Kolomoki data set as one of our illustrative ex-

amples in this chapter.
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2. Seriation

There is an interesting parallel historical development of what could

broadly be called “seriation methods” in psychometrics, ecology,

and archeology. The main steps in these development occur in the

same order, but at different moments in time, not unlike archeo-

logical artifacts in different sites. Let’s look at psychometrics first.

2.1. Psychometrics. In the 1940’s, at the war department, Guttman

[1944] discovered scalogram analysis, a method to simultaneously

order attitude or achievement items (columns) and respondents

(rows), with data in a binary data matrix. Initially scales were con-

structed by trial-and-error methods, in which row and columns

of the binary data matrix were permuted to create the “consec-

utive ones” propety. More precisely, we look to order rows and

columns in such a way that all ones are next to each other. This

was done manually, using various ingineous devices. At the same

time, the theory for principal components based computations was

already available Guttman [1941, 1950]. In fact Guttman [1941]

is the very first paper that rigorously defines MCA, and Guttman

[1950] proves rigorously that the first MCA dimension provides

the consecutive-one ordering for error-free data. The monumental
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book by Coombs [1964] gave a systematic presentation of these

heuristic pencil-and-paper techniques, applied to the various data

matrices in proximity analysis. Although Coombs’ conceptual frame-

work is still relevant, the techniques were already superseded at

the time of publication by computerized methods at the time the

book appeared.

2.2. Archeology. Guttman’s methods were published around 1950,

almost simultaneously with Robinson [1951]. To discuss this work,

we borrow some terminology from Kendall [1969]. An incidence

matrix of, say, sites by types, is a Petrie matrix or P-matrix if in

each column all ones occur consecutively. A non-negative symmet-

ric matrix is a Robinson matrix or R-matrix if rows and columns

are unimodal and attain their maximal values on the diagonal. By

unimodal we mean that entries increase to a maximum and then

decrease again. Similarities between sites whose incidence matrix

is a P-matrix often form an R-matrix. Again, there is an interesting

connection with psychometrics here. In the original definition of

the Spearman model for general intelligence, dating back to 1904,

a battery of tests satisfied the model if their correlation matrix was

an R-matrix.
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The notion of a P-matrix can be generalized to abundance matrices,

i.e. to any matrix with no-negative entries. An abundance matrix

is a Q-matrix if its columns are unimodal. That is the same as say-

ing that the columns of the abundance matrix can be represented

as a series of battleship plots, similar to the ones in Ford [1952]

or Smith and Neiman [2007]. Many of the original archeological

seriation techniques proposed by Petrie, Robinson, Ford, Hole and

Shaw, and others take an incidence or abundance matrix and per-

mute the sites in such a way that that it becomes a P-matrix or

a Q-matrix. The permutation that is found then order the sites

in time, i.e. it is a seriation. Ultimately, however, especially for

large matrices finding optimal permutations is what is known in

computer science as NP-hard, which basically means that the opti-

mization problem, although finite, cannot be solved in a practical

amount of time, even by the fastest computers Arlif [1995].

One way around the impractical computations involved with per-

mutations is to use other related definitions of optimality. As

we noted above, Guttman already proved in 1950 that CA can be

used to find the optimal permutation to a P-matrix in the error-

free case. For abundance matrices, see also Gifi [1990, Chapter 9],

or Schriever [1983]. In fact, these papers prove more. They also
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show that in the erro-free case the second dimension of the CA

will be a quadratic function of the first, i.e. plotting the sites in the

plane will show a quadratic curve.

Kendall [1971] and others later developed the well-know HORSHU

program which applies MDS to smiliarties derived from abundance

matrices, and then derives the order from the projection of the

sites on the horseshoe or curvilinear arch. “We view the arch as

a relatively benign indicator that the underlying data do, in fact,

contain battleship-shaped curves.” [Smith and Neiman, 2007, p.

60]

2.3. Ecology. In ecology the key concept is that of a “gradient”.

The emphasis in the data analysis is not on time, as in archeology,

but on environmental characteristics. What is called “seriation”

in archeology is called “ordination” in ecology [Gauch, Jr., 1982].

Plant or animal species do well under certain circumstances, and

do best, for example, at some optimum level of wetness or altitude.

Different species need different altitudes and/or different degrees

of wetness. In ecology, of course, we have the major advantage

that environmental gradients such as altitude can be directly mea-

sured. This is unlike psychometrics, where aptitude and attitude
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are theoretical constructs, and unlike archeology, where direct in-

formation about the origin in time of an artifact is usually missing.

So ecology has Direct Gradient Analysis, where we plot frequencies

of species as a function of the gradient. In many cases we observe

unimodal distributions, i.e. the abundance matrix is a Q-matrix.

Initially, same as in psychometrics and in archeology, ordination

techniques used pencil-and-paper methods to reorder the rows and

columns of the abundance matrix, or of derived similarity matrices

with an Robinson structure [Whittaker, 1978]. This changed with

the advent of the computer, and as in archeology and psychomet-

rics, the ecologists turned to PCA and MDS for ordination, and to a

host of measure of resemblance or similarity.

CA was introduced in ecology by Hill [1974] as “reciprocal averag-

ing”. Ter Braak [1985] showed how CA was related to the unimodal

response model, without going into precise mathematical detail.

Ecologists initially were worried about the horseshoe, because they

considered it an artifact, without any empirical significance. We

now know more precisely where the arched structures come from,

and we know that they indicate strong unidimensional effects. See
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in particular Schriever [1985] or Van Rijckevorsel [1987]. We conse-

quently tend to be pleased if we see a strong horseshoe, especially

in archeology, where we have more reason perhaps to expect uni-

dimensionality.

We will discuss the relationship between unimodal response mod-

els, in particular the Gaussian model of Ihm and van Groenewoud

[1975], in more detail in Section 7 on the Exponential Distance

Model.

3. Abundance Matrices

We now formalize some of the concepts we have mentioned in the

introduction. Consider an r × c table N with counts. Rows corre-

spond with r sites, columns with c types. Frequency nij indicates

how often type j was found in site i. Such a matrix with counts

N is called an abundance matrix. We also define the row sums ni•

and column sums n•j of the table. The grand total n•• is the sum

of all the counts in the table, which we will also abbreviate simply

as n.

It should perhaps be mentioned that presence-absence matrices

or incidence matrices are a special case of abundance matrices,
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in which all entries of the table are either zero or one. An en-

try merely indicates if a type is present in a site or not. This

means our discussion of abundance matrices also covers presence-

absence matrices.

There is a more general type of data matrix, which is also quite

common in archeology. Suppose the observation unit is an arti-

fact such as a pottery sherd, a piece of obsidian, or maybe a fish

bone. The units can be described in terms of a number of variables

which can be either qualitative (categorical) or quantitative (numer-

ical). The abundance matrix is a very special case of this, in which

there are only two categorical variables used to describe the units,

namely site and type.

The abundance data N can be coded as an n×2 matrix, where n is

the grand total of the table, and where the first column is site and

the second type. The table N is then the cross-table, or the con-

tingency table, of the two variables. But clearly in a more general

case variables such as size, color, weight, or composition could be

used as well. For these more general multivariate data we need a

technique such as MCA, also known as homogeneity analysis, [Gifi,

1990; Greenacre and Blasius, 2006]. Since the data analyzed in this



26 CORRESPONDENCE ANALYSIS

book are all of the simpler bivariate contingency table format, we

shall not discuss MCA any further. As we mentioned in the intro-

duction, it is the perfect technique for attribute-based seriation in

the sense of LeBlanc [1975], in which we do not aggregate our data

to types and assemblages, and to counts in a cross table.

3.1. Examples. Throughout the chapter we shall use two examples

to illustrate the concepts of CA. The first example of an abundance

matrix comes from a much larger matrix of sherd counts for sites

by pottery types. All samples are from surface collections made

ca. 1940 in Jalisco, Mexico by Kelley [1945].

This example is not a realistic application of CA because it is too

small and too simple. The results of CA do not really add anything

to what we can easily see by just looking at the table, but this

very fact makes the example useful as an illustration of the basic

concepts and calculations.

Insert Table 1 about here

The codes for the types, used as column headers, are

• AutPol: Autlan Polychrome;

• MiReBr: Miscellaneous Red on Brown, Buff;
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• AuWhRe: Autlan White on Red;

• AltRed: Altillos Red Ware.

The sites are

• Site 21, Cofradia No. 1, and Site 34, Hacienda Nueva, are

included in the Cofradia Complex (early);

• Site 23, Cofradia No. 3, and Site 37, Amilpa, are included in

the Mylpa Complex (intermediate);

• Site 7, Mezquitlan, and Site 9, Altillos, are included in the

Autlan Complex (late).

The second example are pottery data from the Kolomoki burial

mounts in Georgia [Sears, 1956; Pluckhahn, 2003], analyzed previ-

ously with CA by Smith and Neiman [2007]. We already discussed

these data in the introduction. There are 20 assemblages and 9

pottery types in the data.

4. Associated Matrices

With the abundance matrix we can associate several other matri-

ces. In the first place there is the matrix P of proportions, whose

elements are defined by

pij =
nij
n••
.
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The matrix with proportions shows more clearly how the counts

are distributed over the cells. Again the row marginals are pi• and

the column marginals are p•j .

Insert Table 2 about here

4.1. Independence. We say the row variable (site) and the column

variable (type) are independent if pij = pi•p•j . Independence can

be interpreted to mean that the body of the table does not give

additional information, in fact all the information is contained in

the marginals. If we know the relative frequencies of the sites and

the types, then we can predict perfectly how many of each type

there will be in each site.

We measure independence by what is called inertia in CA, borrow-

ing a term from physics. Define the table Z of Pearson residuals

with

zij =
pij − pi•p•j√pi•p•j

.

The elements of Z show the deviation between the observed pro-

portion and the expected proportion on the hypothesis of indepen-

dence (corrected for the standard error of the proportion). Positive

elements indicate that we see more in the corresponding cell than

we expect, negative elements mean that we see less. The inertia is
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defined simply as

X2 =
r∑
i=1

c∑
j=1

z2
ij.

In the Kelley example the inertia is 0.9338, and the Pearson resid-

uals are in Table 3.

Insert Table 3 about here

If the data are a random sample, and if types and sites are inde-

pendent, then nX2 is distributed as a chi-square random variable

with (r − 1)(c − 1) = 15 degrees of freedom. In our example nX2

is 1207.508. Moreover each of the
√
nzij is approximately stan-

dard normal, i.e. it is what is commonly known as a z-score, and it

can be tested for significance in the usual way. The z-scores are in

Table 4.

Insert Table 4 about here

Clearly in the Kelley example the total inertia is far too big, the

z-scores are mostly hugely significant, and the two variables site

and type are very far from being independent. Of course in most

archeological applications data very far from being a random sam-

ple, because we generally enumerate and classify all the artifacts
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found in the site. Nevertheless we can still take inertia as a guide-

line to indicate how much structure there is in the data., or, more

precisely, how much structure there is in the data that cannot be

predicted from the marginals.

4.2. Conditioning on Rows and Columns. In archeological stud-

ies the hypothesis of independence is not the most natural way to

look at abundance matrices. Independence is the appropriate con-

cept if the contingency table results from a random sample from a

discrete bivariate distribution, that is if we sample both sites and

types. Usually, however, sites are not sampled. They are fixed ei-

ther by design or by geographical circumstances.

What interests us really is to compare the distribution of types in

the different sites that we have selected. Thus we are mainly in-

terested in comparing the rows of the abundance matrix, because

each row defines a distribution over types. Fortunately, the hy-

pothesis of homogeneity of rows is mathematically equivalent to

the hypothesis of independence. We can most easily see this by

normalizing the rows, dividing each row by its row sum.
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To keep our treatment symmetric, we also consider the case (less

common in archeology) in which it may be interesting or appro-

priate to also compare the columns. Using the row and column

sums, we can normalize the frequency table (or equivalently the

table with proportions) by dividing the entries of the table by their

row or column marginals. This defines two new tables, the first

one conditioned by rows, the second conditioned by columns. The

elements are defined by

pj|i =
nij
ni•

= pij
pi•
,

pi|j =
nij
n•j

= pij
p•j
.

The hypothesis of independence pij = pi•p•j can now be written

in the two equivalent forms

pj|i = p•j,

pi|j = pi•,

which we can call homogeneity of rows and homogeneity of columns.

Homogeneity of rows says that the probability distribution of types

is the same for all sites. Homogeneity of columns says that the

probability distribution of sites is the same for all types, which in
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our context seems a less natural way of expressing the same basic

mathematical fact.

Table 5 shows the distribution of types over each of the sites, with

in the last row the distribution of types over all sites, i.e. the p•j .

We have homogeneity if and only if all rows of the table, including

the last row, are the same. Table 6 shows the distribution of sites

over each of the types, with in the last column the distribution of

sites over all types, i.e. the pi•. We have homogeneity if and only if

all columns of the table, including the last column, are the same.

We can define appropriate measures of homogeneity of the rows

and columns. These are again called inertias in CA. Thus there

now is one inertia for each row, and one for each column. They are

defined by

X2
i• =

c∑
j=1

(pj|i − p•j)2
p•j

,

X2
•j =

r∑
i=1

(pi|j − pi•)2
pi•

.

Rows with a large inertia differ from the average row, i.e. the vector

p•j of column marginal proportions. And columns with a large

inertia differ from the average column pi•.
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Previously, we have defined the total inertia. Because of the simple

relationship

X2 =
r∑
i=1

c∑
j=1

(pij − pi•p•j)2
pi•p•j

=

=
r∑
i=1

pi•X
2
i• =

c∑
j=1

p•jX
2
•j

the total inertia is the weighted sum of the row and column iner-

tias.

Insert Table 5 about here

Insert Table 6 about here

Under the hypothesis of random sampling from sites and homo-

geneity of rows, the nX2
i• are distributed as chi-squares with c − 1

degrees of freedom. If we have random sampling and homogene-

ity of columns, the nX2
•j are distributed as chi-squares with r − 1

degrees of freedom

5. Exploratory Correspondence Analysis

The basic purpose of exploratory CA is to make a map of the types

and a map of the sites. By a “map” we mean a low-dimensional

geometric representation. If we choose dimensionality equal to

two, for instance, a map of the types consists of c points in the
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plane, with one point corresponding with each type. If we choose

dimensionality three, then a map of the sites consists of r points

in three-dimensional space. Sometimes a one-dimensional map,

which puts all sites on a straight line, is already enough to present

the essential information in the table.

The location of the points in the map is not arbitrary, of course. If

we make a two-dimensional map of the types, for example, we want

to distances between the c points in the plane to be approximately

equal to the distances between the c columns of the abundance

matrix N . And similar for the map of the sites and the rows of N .

Distance on the map is defined in the usual way “as the crow flies”.

In other words, it is ordinary Euclidean distance. But distance be-

tween columns of the abundance matrix uses weights that takes

the statistical stability of the cell counts into account. Specifi-

cally, in CA we use Benzécri distances (also known as chi-square

distances). The squared Benzécri distance between row i and row

k of table N is given by

δ2
ik =

m∑
j=1

(pj|i − pj|k)2
p•j

,
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and the squared Benzécri distance between column j and column

` of table N is

δ2
j` =

n∑
i=1

(pi|j − pi|`)2
pi•

.

We give the squared Benzécri distances for the rows and columns

in the Kelley example in Tables 7 and 8.

Insert Table 7 about here

Insert Table 8 about here

If we look more closely at Table 7 we can already predict what CA

will do. If we want a geometric representation in which the dis-

tances approximate the Benzécri distaces, then it is pretty clear

how such a representation would look. The Benzécri distances be-

tween sites 21 and 34 and between sites 23 and 37 are almost zero.

Thus in a map sites 21 and 34 will coincide, and sites 23 and 37

will also coincide. Sites 9 and 7 are close as well, and (21,34) is

about equally distant from the two groups (7,9) and (23,37). A

two-dimensional map will thus look like an isosceles triangle with

the three groups of sites at the edges. The shorter side is some-

where around
√

2 or
√

3, the two longer sides are around
√

6. We

also see that it will in general be impossible to map the distance in-

formation on a straight line, because in that case we would have to
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let (7,9) coincide with (23,37). In this small example we can eas-

ily see what a map would look like, but in a larger examples, such

as the Kolomoki one, this becomes much more complicated. That

is why we have CA, which approximates the Benzécri distances by

the Euclidean distances in the map in a precise way.

In CA we approximate Benzécri distances from below. Let us ex-

plain this concept. In any CA map of the sites, for instance, we

will always have dik ≤ δij , where dik is Euclidean distance between

points i and k on the map. More precisely, CA constructs a se-

quence of maps, the first one has only one dimension, the second

one has two, and so on. The final map has t = min(r − 1, c − 1)

dimensions, i.e. 3 in the Kelley example and 8 in the Kolomoki

example. The maps are nested, in the sense that the projections

on the first dimension of all the maps is identical to the one-

dimensional map, and the projection on the plane of the first two

dimensions for all maps with dimension at least two is equal to the

two-dimensional map. And so on. If d(s)ik are the distances is the

s-dimensional map, with 1 ≤ s ≤ t, then

d(1)ik ≤ d
(2)
ik ≤ · · · ≤ d

(t)
ik = δik.
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Thus the t-dimensional map has distances exactly equal to the Ben-

zécri distances. Maps in fewer dimensions approximate the dis-

tances, and the approximation becomes better, for each of the dis-

tances, when the dimensionality increases. Approximation is from

below, because map distances are always smaller than Benzécri

distances, no matter what the dimensionality of the map is. Of

course the same reasoning applies to Benzécri distances between

columns and the CA map for types.

The map does not only approximate Benzécri distances between

sites or types, it also approximates the inertias of the sites and the

types. In the sites map, for instance, the inertia is approximated

(from below, as usual) by the distance of the site to the origin of the

map. Or, equivalently, by the length of the vector corresponding

with the site. This means that a site that differs little from the

average site, and thus has a small inertia, will be close to the origin

of the map. And sites that are different from the others will be tend

to be in the periphery of the map. As a consequence it can happen

quite easily that the center of the map, the area near the origin, is

somewhat cluttered with sites that are similar to the average site.
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A CA program (we use De Leeuw and Mair [2008b]) typically takes

the abundance matrix and the desired dimensionality of the map

as its arguments. It then outputs coordinates for the maps of the

row objects (sites) and the column objects (types). In addition it

can provide a variety of plots, and it provides a decomposition of

the inertia. This type of decomposition is familiar from PCA. Con-

sider the weighted squared length of the projections of the site

points on the first dimension, on the second dimension, and so

on. This decomposes the total inertia of the vectors into a compo-

nent die to the first dimension, to the second dimension, and so

on. By dividing the components by the total, we can say that a cer-

tain percentage of the inertia is “explained” by the first dimension,

another, smaller, percentage by the second dimension, and so on.

Ultimately there are t = min(r − 1, c − 1) dimensions, and each

of them takes care of a certain decreasing percentage of the total

inertia.

CA can also make joint maps, or biplots, in which we basically

take the site plot and the type plot and put them on top of each

other. We then have a plot in which types will tend to be close

to sites in which they occur more frequently than one would ex-

pect on the basis of the marginals. We say “tend to”, because there
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is not Benzécri distance defined between a site and a type, and

thus there is no approximation in some well-defined mathematical

sense. The CA program basically lets the user make four choices

for the joint plot. The first one is to put the two Benzécri plots on

top of each other. Distances between sites, and distances between

types, approximate Benzécri distances, but distances between sites

and types have no simple relation to the data. The second option,

which is called Goodman scaling in the program, is to adjust the

length of the site and type vectors in such a way that their inner

product approximates the Pearson residual. Unfortunately this in-

validates the interpretation of site and type distances as approxi-

mations of Benzécri distances. The last two options use the cen-

troid principle. We can take the Benzécri map for the sites, and then

plot the types by taking weighted averages (centroids) of the sites,

using the frequencies of the types in those sites as weights. This

produces a joint plot in which site distances approximate Benzécri

distances. The locations of the types in the plot again only differ in

vector length from the locations in the Benzécri type plot. Type dis-

tances cannot be interpreted as approximating Benzécri distances

between types any more, but they do have a clear geometric inter-

pretation as weighted averages of site points. By symmetry there
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is a second centroid principle, in which we use the Benzécri type

plot and then plot the sites as weighted averages of types.

5.1. Kelley. Let us illustrate exploratory CA with the small Kelley

example. The two-dimensional maps for sites and types from CA

are in Figure 1.

Insert Figure 1 about here

As expected, in the sites map, we see the three clusters of points

at the vertices of a triangle. As we know, the one-dimensional map

is simply the projection of all points on the horizontal axis.

Insert Figure 2 about here

In Figure 2(a) we see the approximation of the Benzécri distances

between sites in one dimension, and in Figure 2(b) in two dimen-

sions. Benzécri distances are on the horizontal axis, Euclidean map

distances on the vertical axis. Approximation from below means

that all points are below the 45 degree line of perfect fit. But, as we

can see, fit in two dimensions is already almost perfect. In one di-

mension some of the larger Benzécri distances, in particular those

between (21,34) and (23,37) are seriously underestimated.
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We finally show the chi-square decomposition for the Kelley exam-

ple. Not surprisingly, the two first dimensions account for 97% of

the total inertia, and the third dimension is of very little impor-

tance.

Insert Table 9 about here

5.2. Kolomoki. We now apply CA to the Kolomoki data,our more

realistic example. The chi-square decomposition is given Table 10.

Two dimensions account of 80% of the inertia, three dimensions

for almost 90%. The CA maps for the types in two and three

dimensions are given in Figure 3 and Figure 4. Again, the two-

dimensional map is just the projection of the three-dimensional

map on the horizontal plane (except for a possible rotation). Note

that the points in the two-dimensional maps are center of ellipses

of varying sizes. These ellipses are 95% confidence regions for

the points. Confidence region computations, which are done in De

Leeuw and Mair [2008b], are based on the assumption that the

abundnaces are a large random sample from a population. As with

chi-square, this assumption may not be appropriate in archeolog-

ical examples, but, also as with chi-square, the size of the ellipses
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does give a useful representation of variability. We see larger el-

lipses for outlying points, which generally correspond with smaller

abundances, and we see examples of overlapping ellipses for sites

or type that cannot really be distinguished.

Insert Figure 3 about here

For the interpretation of the two-dimensional Kolomoki results, we

refer to the experts Smith and Neiman [2007]. The third dimension

does not add much (only 9% of the total inertia), but it does allow

us to better approximate some of the larger Benzécri distances.

In particular the third dimensions emphasizes the differences be-

tween the outliers T9 and (T1,T18).

Insert Figure 4 about here

If we continue to add dimensions, we will probably see each new

dimension take care of a group of the large Benzécri distances,

which are still seriously underestimated in three dimensions.

Insert Figure 5 about here

Insert Table 10 about here
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6. Frequently Asked Questions

There are various variations of CA that naturally come to mind. We

have not applied them in our example, but we briefly mention them

for completeness. On can wonder, for example, if approximation

from below is such a good idea. It seems ovious that better ap-

proximation of the Benzécri distances is possible if we allow some

of the map distances to overestimate, and other to underestimate.

This idea is exploited in [De Leeuw and Meulman, 1986]. The idea,

basically, it to compute Benzécri distances first, and then apply

multidimensional scaling to these distances.

A second question is if there are suitable alternatives to the Ben-

zécri distances. Remember that Benzécri distances are used be-

cause we correct the proportions for their standard errors, on the

assumption of independence. Benzécri distances have a natural

connection to chi-square, to weighted sum of squares, and thus

to Euclidean distance. Alternative method to weight the propor-

tions are indeed possible, as in the spherical CA of Domingues and

Volle [1980], but generally the connection with Euclidean geometry

becomes less transparant.
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And finally, we can get away from the interpretation of abundance

matrices in terms of relative frequencies. Instead we can think of

them as compositional data. Each row is a vector of proportions,

adding up to one, but the proportions may come from a chemical

analysis of samples, and may not come from counts. Composi-

tional data are very common in chemometrics and the earth sci-

ences, and also quite common in archeology. Variations of princi-

pal component analysis for compositional data similar to, but not

identical with, CA are discussed in the monograph by Aitchison

[2003].

7. Exponential Distance Models

In ecology [Ihm and van Groenewoud, 1975; Ter Braak, 1985], and

to some extent in archeology, much attention has been paid to the

Gaussian Ordination Model (GOM). The model says that for site i

and species j the expected value of the abundance is

E(fij) = αiβj exp(−1
2

(
xi −yj
sj

)2

).

Thus sites and types can be scaled on a common one-dimensional

scale. Abundance fij is, except for the marginal row and column

effects αi and βj , related to the distance between the scale-value
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of site i and the scale-value of type j. More precisely, a type will

be abundant in sites whose scale value is close to the type’s scale

value, and it will be largest if type and site coincide on the scale.

Rows of the abundance matrix will be unimodal: they have a sin-

gle peak and then level off in both directions. Or, using Kendall’s

terminology, they are Q-matrices. Again, except for the marginal

effects, the same thing is true for the columns. Thus, if the model

fits, we can reorder the sites and types in such a way that both

rows and columns of the abundance matrix are unimodal.

Fitting. ML. RC model.

The GOM can be generalized easily to more than one dimension.

E(fij) = αiβj exp(−1
2

p∑
s=1

(xis −yjs)2).

This model is unimodal in a more general geometrical sense. The

response curves in the plane, if p = 2, have a single peak and level

off in all directions. There are many ways in which the GOM can

be fitted to abundance matrices. Nor surprisingly, there have been

contributions from both psychometrics and ecology. For a recently

proposed technique, and a good overview of earlier work, we refer

to De Rooij and Heiser [2005].
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We can simplify this, by expanding the square and collecting terms,

to the more simple but equivalent form

E(fij) = α̃iβ̃j exp(
p∑
s=1

xisyjs).

This shows we expand the abundances into marginal effects and

an interaction terms which is an inner product of row and column

effects. This is actually quite close to CA. For small arguments we

have exp(x) ≈ 1+ x, and consequently

E(fij) ≈ α̃iβ̃j

1+
p∑
s=1

xisyjs

 .

8. Discussion

This chapter could be called “the many faces of Correspondence

Analysis”. It tries to provide various interpretational frameworks

to look at CA plots, in terms of distances, centroids, association

models, and chi-square. It also shows how the same models and

techniques appear in many different disciplines, often under differ-

ent names, and that combining ideas from these disciplines gives

additional possibilities of interpretation.

We have also discussed the EDM model, in its various disguises as

the GOM or the RC-model. It can be used to embed a form of CA
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into a maximum likelihood framework and to shift the emphasis

from multivariate exploration to model testing.

Archeologists not familiar with CA can use this chapter to look

at previous examples in their discipline, and to think in a different

way about abundance and incidence matrices. We have tried to em-

phasize the continuity between CA and previous seriation methods

used in archeology.

As we have indicated, there are convenient free R packages avail-

able for CA. We mentioned hoamls and anacor, but in De Leeuw

and Mair [2008b] other available packages are discussed as well.

All standard statistical systems, such as SAS, SPSS, and Stata, also

have CA methods as either built-ins or add-ons.
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Table 1. Abundance Matrix from Kelley

Type

AutPol MiReBr AuWhRe AltRed

21 8 14 0 0 22

34 19 35 0 0 54

23 138 6 0 1 145

37 299 11 0 2 312

9 102 12 22 271 407

7 34 14 59 246 520

600 92 81 520 1293
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Table 2. Proportions Matrix Kelley

Type

AutPol MiReBr AuWhRe AltRed

21 0.006 0.011 0.000 0.000 0.017

34 0.015 0.027 0.000 0.000 0.041

23 0.107 0.005 0.000 0.001 0.112

37 0.231 0.009 0.000 0.002 0.241

9 0.079 0.009 0.017 0.210 0.315

7 0.026 0.011 0.046 0.190 0.273

0.464 0.071 0.063 0.402 1.000

Table 3. Pearson Residuals Kelley

Type

AutPol MiReBr AuWhRe AltRed

21 -0.02 +0.28 -0.03 -0.08

34 -0.03 +0.44 -0.05 -0.13

23 +0.24 -0.04 -0.08 -0.21

37 +0.35 -0.07 -0.12 -0.31

9 -0.18 -0.09 -0.02 +0.23

7 -0.28 -0.06 +0.22 +0.24
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Table 4. z-scores Kelley

Type

AutPol MiReBr AuWhRe AltRed

21 -0.69 +9.94 -1.17 -2.97

34 -1.21 +15.90 -1.83 -4.66

23 +8.62 -1.34 -3.01 -7.50

37 +12.81 -2.38 -4.42 -11.02

9 -6.32 -3.15 -0.69 +8.39

7 -10.14 -2.22 +7.84 +8.73

Table 5. Conditioning on the rows in Kelley

Type

site AutPol MiReBr AuWhRe AltRed X2
i•

21 0.36 0.64 0.00 0.00 4.98

34 0.35 0.65 0.00 0.00 0.04

23 0.95 0.04 0.00 0.01 0.11

37 0.96 0.03 0.00 0.01 0.24

9 0.25 0.03 0.05 0.52 0.31

7 0.10 0.04 0.17 0.47 0.27

p•j 0.46 0.07 0.06 0.40 0.93
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Table 6. Conditioning on the columns in Kelley

Type

site AutPol MiReBr AuWhRe AltRed pi•

21 0.01 0.15 0.00 0.00 0.02

34 0.03 0.38 0.00 0.00 0.04

23 0.23 0.07 0.00 0.00 0.11

37 0.50 0.12 0.00 0.00 0.24

9 0.17 0.13 0.27 0.52 0.31

7 0.06 0.15 0.73 0.47 0.27

X2
•j 0.64 4.06 1.18 0.68 0.93

Table 7. Squared Benzécri Distances Rows (Sites)

21 34 23 37 9 7

21 0.000

34 0.002 0.000

23 5.721 5.950 0.000

37 5.841 6.072 0.001 0.000

9 6.353 6.550 2.188 2.208 0.000

7 6.812 6.999 3.207 3.233 0.259 0.000
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Table 8. Squared Benzécri Distances Columns (Types)

AutPol MiReBr AuWhRe AltRed

AutPol 0.000

MiReBr 4.921 0.000

AuWhRe 3.221 6.203 0.000

AltRed 2.539 5.780 0.436 0.000

Table 9. Chi-square Decomposition Kelley

X2 % Cum %

1 787.9 0.65 0.65

2 390.0 0.32 0.97

3 29.6 0.03 1.00

Total 1207.5
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Table 10. Chi-square Decomposition Kolomoki

X2 % Cum %

1 1018.8 0.63 0.63

2 261.6 0.16 0.79

3 144.7 0.09 0.88

4 128.0 0.08 0.96

5 38.6 0.02 0.98

6 17.9 0.01 0.99

7 9.0 0.01 1.00

8 3.8 0.00 1.00

Total 1622.5
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Figure 1. Two-dimensional CA Map for Kelley
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Figure 5. Approximation of Benzécri Distances for Kolomoki
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