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1. Introduction

Principal component analysis (PCA) is one of the most frequently

used multivariate data analysis techniques. It has been extended in

many different ways to deal with data structures more general than

the usual rectangular table of numbers. Functional PCA or FPCA,

which is the PCA of a finite set of curves or functions, has been dis-

cussed extensively over the last ten years, and several variations

have been proposed. Excellent summaries are in Ramsay and Sil-

verman [2002, 2005]; Ferraty and Vieu [2006].

Since curves are generally elements of infinite-dimensional linear

spaces the mathematics and statistics of FPCA can easily become

quite complicated. Some representative recent papers with much

more mathematical detail are [Silverman, 1996; Ocana et al., 1999;

Hall and Hosseini-Nasab, 2006; Hall et al., 2006]. The formulas and

computations can be kept quite simple, however, by concentrating

on the fact that in practice there is only a finite number of curves.

As a consequence we can work in finite-dimensional space, use

basic matrix algebra, and rapidly get into computational methods.

1.1. Inner Product of Curves. Consider the situation in which we

have curves fi (i = 1, · · · , n) at a finite number of sites. Curves are

elements of a real inner product space F , i.e. a real linear space in

which a real-valued inner product 〈f , g〉 is defined for each pair of

elements. For reference, an inner product 〈•,•〉 is a function on

F ⊗F with the properties

(1) For all f ∈ F the function 〈f , g〉 is linear in g.

(2) For all g ∈ F the function 〈f , g〉 is linear in f .

(3) For all f , g ∈ F 〈f , g〉 = 〈g, f 〉.
(4) 〈f , f 〉 ≥ 0 for all f ∈ F .

If 〈f , g〉 = 0 we say that f and g are orthogonal.
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Observe that the inner product is a purely algebraic concept. We

do not assume any topology, and thus no separability or complete-

ness, and we do not assume any probability structure. We use the

words “curves” for the elements of F , because one of the most

common interpretations is that the data are n functions of, say,

time. Since we are dealing with a number of different curves, we

will say they are defined at different “sites”, although for some ex-

amples “occasions” or “replications” or “individuals” may be more

appropriate.

Of course our developments also cover the finite-dimensional case

in which the “curves” are just vectors of m numbers, with the in-

ner product 〈f , g〉 = f ′Wg for some positive semi-definite W . An

equally important special case, however, is the L2 case of real-

valued functions on an interval T , often interpreted as time. We

assume a non-negative weight function ω on T , and we consider

curves f for which
∫
T ω(t)f 2(t)dt <∞, with inner product

〈f , g〉 =
∫
T
ω(t)f(t)g(t)dt.

Both both these special cases the inner product space is actually

separable and complete, i.e. it is a separable Hilbert space. But do

observe that “curves” are not necessarily real valued functions on

the real line, they can be functions from any linear space to any

other linear space, as long as the target space has an inner product

defined.

1.2. Reproducing Kernel Hilbert Spaces.

1.3. Handling Real Data. What we have discussed so far is a rela-

tively straightforward generalization of PCA in which the variables

can be curves, i.e. take on a possibly infinite number of values. Of

course there is no such thing in real data analysis as an observed

curve. Data are always discrete and finite, because it is impossible
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to collect an infinite number of observations and to measure with

infinite precision. So why is FPCA needed at all ?

In general, using the approach of Ramsay and Silverman [2002],

FPCA has two phases. In the first phase we produce curves from

the (finite and discrete) data. We use a finite number of basis func-

tions to smooth the data. In the second phase we do the PCA on

the curves, which amounts to doing a PCA on the coefficients of the

basis functions. The first phase, which obviously determines the

outcome of the second phase, can be thought of as preprocessing

or data handling. It also extends to dealing with missing data, and

with transforming existing curves in various way.

It may sound somewhat counter-intuitive to blow up finite dimen-

sional data to infinite-dimensional curves first, and then do a PCA

to make them basically finite-dimensional again. But in construct-

ing the curves that are the input for the PCA we take into account

notions of smoothness and dependency which will generally make

points on the curve depend on neighboring data points, or even

on all data points. To use an expression from another area of sta-

tistics, in our smoothing of data into curves we are "borrowing

strength" by using information from adjacent points (as well as

various mathematical modeling notions). Thus it clearly is wrong

to think of the first phase as “merely” preprocessing or data han-

dling, it is an essential and critical part of the actual data analysis.

In FPCA what the French data analysts call “codage” is of even more

importance as in other areas of statistics. In the first partr of this

paper, however, there are no data and we assume that curves are

given in analytical form.
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2. Distances between Curves

2.1. Distances from Inner Products. With each pair fi and fk we

associate the inner product

(1a) cik
∆=〈fi, fk〉.

The cik can be collected in an n × n positive semi-definite matrix

C . The matrix C is often called the Gram matrix of the curves.

The inner product defines a pseudo-norm in the usual way, by

(1b) ‖fi‖ ∆=√〈fi, fi〉,
and the norm defines a pseudo-distance by

(1c) δik
∆=‖fi − fk‖.

We will call δik the curve-distance between sites. They will be col-

lected in the curve distance matrix ∆.

If the pseudo-norm is actually a norm, i.e. if ‖f‖ = 0 if and only if

f = 0, then of course the pseudo-distance is a distance. Even with

proper norms, however, the matrix C can still be singular if the fi
are linearly dependent.

Expanding the squared distance gives

(2a) δ2
ik = 〈fi − fk, fi − fk〉 =

‖fi‖2 + ‖fk‖2 − 2〈fi, fk〉 = cii + ckk − 2cik.

If we use the unit vectors ei (i.e. vectors of which only element i is

non-zero and equal to one) then

(2b) δ2
ik = (ei − ej)′C(ei − ej).

Obviously the curve-distances do not change if we replace the curves

fi by curves in deviation from the mean curve, i.e. by

f̃i
∆=fi − f•
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with

f•
∆= 1
n

n∑
i=1

fi.

In fact any translation of the curves will lead to the same distances.

The matrix C̃ with elements 〈f̃i, f̃k〉 is doubly-centered, i.e. its rows

and columns add up to zero. Let u be a vector with all elements

equal to one, and let J = I − uu′
u′u be the centering operator. The

number of elements of u and J will be clear from the context. Then

(3a) C̃ = JCJ,

and, more surprisingly perhaps,

(3b) C̃ = −1
2
J∆(2)J,

where ∆(2) is the matrix with the squared curve-distances. Thus

we see that the doubly-centered Gram matrix can be computed by

doubly-centering the Gram matrix, but also by doubly-centering

the squared curve distances. In classical multidimensional scaling

(MDS) the transformation (3b) is usually attributed to Torgerson

[1958].

2.2. Approximation from Below. In this section we introduce FPCA

by extending the approach to PCA discussed by De Leeuw and

Meulman [1985, 1986]. This treats PCA as a special case of met-

ric MDS..

Suppose W is a weight matrix of order n. We suppose that W
is non-negative, symmetric, and hollow (i.e. has a zero diagonal).

Also define

V ∆=
n∑
i=1

n∑
j=1

wijAij,

where

Aij
∆=(ei − ek)(ei − ek)′.

The matricesAij are doubly centered, with elements (i, i) and (j, j)
equal to +1, and elements (i, j) and (j, i) equal to −1. All other
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elements are equal to zero. Thus V is also doubly centered, with

non-positive off-diagonal elements. In addition V is singular and

positive semi-definite with rank(V) ≤ n− 1. If all wij are positive

then V actually has rank equal to n − 1, with only the vector u in

the null-space.

The problem we want to solve is to find an n × n matrix X such

that X′VX is diagonal and

(4) d2
ik(X)

∆=(ei − ek)′XX′(ei − ek) = δ2
ik.

Thus the curve-distances δik between fi and fk must be equal to

the Euclidean distances dik(X) between the rows xi and xk.

The problem of finding X such that C = XX′ and X′VX is diag-

onal is solved in Appendix B. The minimal solution X, i.e. the

solution with minimum rank, is X = KΛL′. Here K and Λ come

from the spectral decomposition C = KΛ2K′, in other words K
and Λ2 come from the symmetric eigenvalue problem CK = KΛ2.

The orthonormal matrix L is defined by the spectral decomposi-

tion ΛK′VKΛ = L′Ω2L, i.e. from solving the symmetric eigenvalue

problem K′VKL = LΩ2. Alternatively, we can define X and Ω2 di-

rectly by solving the symmetric eigenvalue problem

V 1/2CV 1/2X̃ = X̃Ω2

with X̃′X̃ = I, and then defining X = V 1/2X̃. Observe that if all

weights are equal then L = I and Ω2 = Λ2.

Suppose ω2
1 ≥ · · · ≥ ω2

r , and define Xp to be the first p columns

of X, those associated with the p largest eigenvalues. Then

(5) d2
ik(X1) ≤ d2

ik(X2) ≤ · · · ≤ d2
ik(Xr ) = δ2

ik.

Moreover
n∑
i=1

n∑
k=1

wijd2
ik(Xp) = tr X′pVXp =

p∑
s=1

ω2
s ,
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and thus
n∑
i=1

n∑
k=1

wij(δ2
ik − d2

ik(Xp)) =
r∑

s=p+1

ω2
s .

We see that we approximate the squared curve-distances δ2
ik from

below by squared Euclidean distances d2
ik(Xp), and that using ad-

ditional components of the spectral decomposition will always im-

prove the fit. Approximation is always from below because we

project the curves on the hyperplane spanned by the first p prin-

cipal components, and the distance between the projections is al-

ways smaller than the distance between the original points.
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3. Principal Curves

3.1. Decomposition. Assume we have a minimal X satisfying rank(X) =
rank(C) = r as well as XX′ = C and X′VX = Ω2. Set Y ∆=X(X′X)−1.

If X = KΛL′ is defined by spectral decompositions, as in the previ-

ous section, then Y = KΛ−1L′. Observe that CY = X and Y ′CY =
Y ′X = I.

The principal curves are

ψs
∆=

r∑
i=1

yisfi.

Principal curves are orthogonal, since

〈ψs ,ψt〉 = {Y ′CY}st =

1 if s = t,
0 if s 6= t.

Principal loadings are defined as the inner products of the original

curves and the principal curves. Thus

〈fi,ψs〉 = {CY}is = xis .

Using the loadings and principal curves we can define curve de-

compositions

(6) f̂i
∆=

r∑
s=1

xisψs ,

and we see that

〈f̂i, f̂k〉 =
r∑
s=1

r∑
t=1

xisxkt〈ψs ,ψt〉 =
r∑
s=1

xisxks = cik.

Moreover ‖fi − f̂i‖2 = 0, because ‖fi‖ = ‖f̂i‖ = cii, and also

〈fi, f̂i〉 =
r∑
s=1

xis〈fi,ψs〉 =
r∑
s=1

x2
is = cii.

Thus if the inner product actually defines a norm (and not a pseudo-

norm) then fi = f̂i and (6) gives us the singular value decomposi-

tion (or the Karhunen-Loève expansion) of our set of curves. If fact,
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we have shown that

(7) fi =
r∑
s=1

xisψs .

Observe this expansion is always defined, but the one we actually

compute depends both on the inner product and on the weight

matrix V . A different choice of weights and inner products will

lead to a different decomposition.

3.2. Truncation. In practice we will not use all eigenvalues, but we

will truncate the expansion. Suppose Xp
∆=KpΛpL′, where Kp andΛp corrresponds with the p largest eigenvalues. Again L is chosen

by diagonalizing ΛpK′pVKpΛp. Let Yp
∆=KpΛ−1

p L′ and Cp
∆=XpX′p,

with elements cpik. Then CYp = Xp and thus Y ′pCpYp = I, as before.

The p principal curves computed with Yp are just the first p “dom-

inant” principal curves of the original r principal curves. Define

the curve approximations by

f̂ pi =
p∑
s=1

xisψs .

Then

(8a) ‖fi − f̂
p
i ‖2 = cii − c

p
ii,

and consequently

(8b)
n∑
i=1

‖fi − f̂ pi ‖2 = tr (C − Cp) =
r∑

s=p+1

λ2
s .

Again we see from (8a) that the approximation is from below, and

that approximations with different dimensionalities are nested.

3.3. Rank Approximation. There is another, more direct. way to

arrive at principal curves. It does not use the notion of curve-

distance, it just finds some basis functions which are optimal in

the least squares sense. We use the notation and results from Ap-

pendix A. Thus we first compute the Gram-Schmidt basis {f̆t}rt=1

for the {fi}ni=1. Here r is the rank of the fi.
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Theorem 3.1 (Rank Approximation). Suppose we want to minimize

σ(X,Ψ) ∆= n∑
i=1

‖fi −
p∑
s=1

xisψs‖2

over all n×pmatrices X and over all curvesψs such that 〈ψs ,ψt〉 =
δst. The solution is given by the principal curves and principal load-

ings associated with the p largest eigenvalues of C .

Proof. We write fi =
∑r
t=1 zitf̆t, where Z isn×r , andψs =

∑r
t=1ytsf̆t+

ηs , where Y is r × p, and 〈f̆t, ηs〉 = 0 for all s and t. Then

σ(X,Ψ) = n∑
i=1

‖
r∑
t=1

(zit −
p∑
s=1

xisyts)f̆t‖2 +
n∑
i=1

‖
r∑
t=1

xisηs‖2 =

=
n∑
i=1

r∑
t=1

(zit −
p∑
s=1

xisyts)2 +
n∑
i=1

‖
r∑
t=1

xisηs‖2.

This is easy to minimize this over the ηs , because we can just set

them equal to zero. The loss function must still be minimized over

all X and over all Y such that Y ′Y = I. As Appendix C shows, this

means we must choose Y = LpT , where Lp are the eigenvectors of

Z′Z corresponding with the p largest eigenvalues Λ2
p, and T is an

arbitrary rotation matrix of order p. This implies that the optimal

X is X = ZY = ZLpT = KpΛpT , where Kp are the eigenvectors

of C = ZZ′ corresponding with the p largest eigenvalues Λ2
p. The

minimum value of the loss function is
∑r
s=p+1 λ2

s . �

We can identify T , as before, by requiring that X′VX = I for some

weight matrix V . Or, as suggested by Ramsay and Silverman [2005],

we can apply a rotation method such as varimax. The default will

usually be to simply take T = I, in which case we have X′X = Λ2
p.

3.3.1. Choice of Basis. If one does not want to use the Gram-Schmidt

basis {f̆t}rt=1 for the fi, but one prefers to use the {fi}ni=1 them-

selves as a basis (or at least as a spanning set), then the problem
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of minimizing

(9a) σ(X,Y) ∆= tr (Z −XY ′)(Z −XY ′)′

over X and Y such that Y ′Y = I becomes the problem of minimiz-

ing

(9b) σ(X,Y) ∆= tr (I −XY ′)C(I −XY ′)′

over X and Y such that Y ′CY = I.

Observe that at the optimum we must have X = CY and thus

X′Y = I. It follows that XY ′ is the orthogonal projector Πp ∆=K′pK′p
of rank p. The approximation problem in this section can also be

formulated quite simply as the problem of finding an orthogonal

projector Π of rank p such that ρ(Π) ∆= tr CΠ is maximized. No

matter which particular basis one chooses, one either has to cal-

culate the dominant eigenvalues and corresponding eigenvectors

of C or the dominant singular values and corresponding singular

vectors of Z .

3.3.2. Using Site-Weights. A relatively straightforward generaliza-

tion is weighted rank approximation, where we minimize

σΓ (X,Ψ) ∆= n∑
i=1

n∑
k=1

γik〈fi −
p∑
s=1

xisψs , fk −
p∑
s=1

xksψs〉,

where Γ = {γik} is a positive semi-definite matrix of site-weights.

We call this a straightforward generalization because we can use

the spectral decomposition Γ = QΞ2Q′ to reduce the weighted

problem to the unweighted problem. Just define

f̈i =
n∑
k=1

ξkqikfk,

ẍis =
n∑
k=1

ξkqikxks ,

then

σΓ (X,Ψ) = n∑
i=1

‖f̈i −
p∑
s=1

ẍisψs‖2,
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which is an unweighted problem.
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4. Some Theoretical Examples

4.1. 27 Normal Densities. We use 27 different versions of the nor-

mal density

φµ,σ (x) =
1

σ
√

2π
exp{−1

2
(x − µ)2
σ 2

}

defined on (−∞,+∞). There is no special reason to choose den-

sities for our first example, we merely use them because they are

familiar and lead to fairly easy calculations.

The first nine curves have standard deviation 0.5, the next nine

curves have standard deviation 1, and the last nine curves have

standard deviation 2. All three groups of nine curves have means

µ = −4(1)4.

Consider the inner product

〈f , g〉L =
∫ +∞
−∞
f(x)g(x)dx.

Result 4.1.

〈φµ1,σ1 ,φµ2,σ2〉L =
1

σ
√

2π
exp

{
−1

2

(
µ1 − µ2

σ

)2
}
,

where

σ 2 ∆=σ 2
1 + σ 2

2 .

Proof. Take f = φµ1,σ1 and h = φ−µ2,σ2 .The convolution of f and

h is

(f ? h)(z) =
∫ +∞
−∞
f(x)h(z − x)dx,

and we know that the convolution is the density of the sum of two

independent random variables with densities f and h, i.e. it is

φµ1−µ2,σ . Taking z = 0 gives∫ +∞
−∞
f(x)h(−x)dx = 1

σ
√

2π
exp

{
−1

2

(
µ1 − µ2

σ

)2
}
,

but of course h(−x) = g(x). �
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We now do the functiional PCA, with unit site weights. All the anal-

ysis in this section and the next are done on the doubly centered

C , i.e. on curves in deviations from the average curve. As Table 1

shows, the first two eigenvalues account for only 53% of the total

inertia, which means the two principal curves do not approximate

the normal densities very well. We also see that

Insert Table 1 about here

Figure 1(a) plots the two columns of the loadings X, which give

the inner products of the observed curves fi and the two principal

curves ψ1 and ψ2. Points corresponding with curves of the same

standard deviation have been connected by colored lines, which

creates three nested “horseshoes” in the plot. Points correspond-

ing with curves having the same mean are also connected, thus

connected a warped grid. In all two-dimensional loadings plots at-

tention must be paid to the scale of the two axes. Remember that

X′X = Λ2I, which often means the vertical axis is much less “im-

portant”. One can make a case for using the same scaling or range

for the two axes [Gower and Hand, 1996], but we have chosen to

use the default scaling of the plot function in R.

Another way of looking at the loadings is in Figure 2, where the

loadings of the first component are plotted against the means and

the loadings of the second component against the standard devia-

tions.

Insert Figure 2 about here

Insert Figure 1(a) about here

The quality of the approximation of the squared curve-distances

by the squared Euclidean distances is illustrated in Figure 1(b). We

call such plots Benzécri plots, because they have been used mostly

in Correspondence Analysis. As we have shown, approximation is
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from below, so all points are below the 45-degree line. The approx-

imation is obviously not very good, mostly because some of the

larger curve-distances are seriously underestimated .

Insert Figure 1(b) about here

Finally Figure 3 gives the average curve f• and the two principal

curves ψ1 and ψ2.

Insert Figure 3 about here

Interpreting principal curves is perhaps best done by using a tool

suggested by Ramsay and Silverman [2005]. We dynamically plot

the curves f•+αψ1+βψ2 by letting α and β vary in a circle around

the origin. This can be done by some type of Grand Tour, but it

is probably better to use a two-dimensional slider, or to capture

mouse clicks in the plane to define α and β, and then produce the

corresponding curve. For the time being we show 25 perturbation

of the average curve in the direction of the first and second princi-

pal curve in Figure 4.

Insert Figure 4 about here

4.2. Gauss-Hermite. We use the same example to illustrate numer-

ical integration. In Gauss-Hermite K−point integration for this ex-

ample we use the approximation

∫ +∞
−∞
φµ1(x)φµ2(x)dx ≈

K∑
k=1

w(xk) exp(x2
k)φµ1,σ1(xk)φµ2,σ2(xk),

where the xk are the quadrature points and the w(xk) are the cor-

responding weights. Quadrature points and weights have been ex-

tensively tabulated, and they can be easily computed for any K.

Although we usually think of the Gauss-Hermite quadrature sums

as an approximation to the integral, we can also think of them as

alternative inner products.
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In Table 2 we give first 11 eigenvalues for K = 1, · · · ,20. The

remaining are all zero, or very close to zero. We see they converge

quite rapidly to the values for the continuous inner product, in the

last row (which were already given in Table 1).

Insert Table 2 about here

4.3. A Truncated Inner Product. Now consider the inner product

〈φµ1,σ1 ,φµ2,σ2〉p =
∫∞

0
φµ1,σ1(x)φµ2,σ2(x)dx

If both means are positive and large this will be approximately

equal to the previous inner product. But if one of the means is

negative and large then the inner product will be small, and if both

of them are negative and large it will be very small. By large we

mean, of course, large relative to the standard deviation.

We start with a simple computational result for the product of two

normal densities. This could also have been used to give an alter-

native proof of Result 4.1.

Result 4.2.

φµ1,σ1(x)φµ2,σ2(x) = φµ,σ (x)φµ1−µ2,σ (0),

where

µ = σ
2
1µ2 + σ 2

2µ1

σ 2
1 + σ 2

2

,

σ =
√
σ 2

1 + σ 2
2 ,

σ = σ1σ2

σ

It follows that the inner product is

〈φµ1,σ1 ,φµ2,σ2〉p = φµ1−µ2,σ (0)(1− Φ(− µσ )),
where Φ is the standard normal distribution function.

Eigenvalues for this inner product of our 27 normal densities are

in Table 3.
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Insert Table 3 about here

The plot of the loadings is in Figure 7(a). We see that, indeed,

points corresponding to negative means tend to be close together,

no matter what the standard deviation is. Thus the three horse-

shoes are “warped” to start at a common origin.

Insert Figure 7(a) about here

The plot of squared curve-distances and squared Euclidean dis-

tances is in Figure 7(b).

Insert Figure 7(b) about here

Finally, the principal curves corresponding with the first two eigen-

values are in Figure 8.

Insert Figure 8 about here

4.4. Nine Rationals. Consider the functions, defined on [0,+∞),

fa(x) =
a

x + a
where a > 0 is a parameter. Curves for a = 1(1)9 are drawn in

Figure 9.

Insert Figure 9 about here

We use the usual L2 inner product. In this case it is

〈fa, fb〉L =
∫ +∞

0
fa(x)fb(x)dx =

= ab
∫ +∞

0

1
x + a

1
x + bdx =

ab
a− b log

a
b
.

Loadings and Benzécri plot are in Figure 10. The eigenvalues of

C are in Table 4. Since 99% of the inertia is captured by the first

dimension, we obviously have a very good representation using

only that single dimension.
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Insert Table 4 about here

Insert Figure 10 about here

Finally Figure 11 gives the average curve f• and the two principal

curves ψ1 and ψ2.

Insert Figure 11 about here
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5. Approximation sans Inner Product

In Section 2 we computed C from the inner products, doubly-

centered using (3a), and then computed ∆ from C . We subse-

quently approximated ∆ from below, using the spectral decompo-

sition of C̃ .

If we start with ∆, computed in some way or another, then we can

use (3b) to compute a double-centered C , and use its spectral de-

composition to compute X and the principal curves. The major

problem with this is that matrices C constructed in the way do not

need to be positive semi-definite. In fact positive semi-definiteness

of C is guaranteed if and only if ∆ is a squared distance based on

an inner product. Nevertheless, as in classical metric MDS [Torg-

erson, 1958], we can do the computations as long as the negative

eigenvalues of C are small. Observe that at long as our approxima-

tion uses only the positive eigenvalues of C we can still compute

the principal curves and the theory of Section 3 remains correct.

5.1. KL Distance between Nine Normals. The (asymmetric) Kullback-

Leibler divergence between f and g is

δ2
KL(f |g) =

∫ +∞
−∞
f(x) log

f(x)
g(x)

dx.

To get rid of the asymmetry we also define

δ2
KL(f , g) = δ2

KL(f |g)+ δ2
KL(g|f) =

=
∫ +∞
−∞
(f (x)− g(x)) log

f(x)
g(x)

dx.

Although this divergence measure is both non-negative and sym-

metric, it generally does not satisfy the triangle inequality and does

not derive from an inner product.

If f = φµ1,σ1 and g = φµ2,σ2 , then

δ2
KL(f |g) =

1
2

{
log
σ 2

2

σ 2
1

+ σ
2
1 + (µ1 − µ2)2

σ 2
2

− 1

}
,
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and thus

δ2
KL(f , g) =

1
2

{
σ 2

1 + (µ1 − µ2)2

σ 2
2

+ σ
2
2 + (µ1 − µ2)2

σ 2
1

− 2

}
.

Observe that in the special case σ1 = σ2 we have

δ2
KL(f , g) =

(µ1 − µ2)2

σ 2
,

which is of course derived from the inner product 〈f , g〉 = µ1µ2/σ 2.

If we have shifted normals with the same variance then our KL anal-

ysis will just yield a single dimension, equal to the centered µi/σ .

Four our 27 shifted and scaled normals the doubly-centered matrix

of squared curve-distances has two large positive and two smaller

negative eigenvalues. The remaining eigenvalues are practically

zero.

Insert Table 5 about here

The plot is in Figure 5(a), and it shows nice separation of the three

horseshoes.

Insert Figure 5(a) about here

The plot of squared curve-distances and squared Euclidean dis-

tances is in Figure 5(b). The most remarkable characteristic is

that all distances are over-estimated, and we seem to approximate

curve-distances from above. This has a simple explanation. We

use the two positive eigenvalues, so only negative eigenvalues are

left. Thus additional dimensions will actually subtract from the

two-dimensional distances until we arrive at the curve-distance.

Insert Figure 5(b) about here

Finally, the principal curves corresponding with the positive eigen-

values are in Figure 6.

Insert Figure 6 about here



FUNCTIONAL PCA 27

5.2. Sup-norm for Rationals. For the nine simple rational func-

tions we can define the distance

δ(fa, fb) =max
x≥0

|fa(x)− fb(x)|.

After some computation we find the maximum is attained at x =√
ab and it is equal to

δ(fa, fb) =
∣∣∣∣∣
√
a−

√
b√

a+
√
b

∣∣∣∣∣ .
In this case, although the curve-distances are not derived from an

inner product, it turns out that the matrix C derived from them is

positive semi-definite anyway. This follows quite simply from

δ2(fa, fb) =
( √

a√
a+

√
b
−

√
b√

a+
√
b

)2

,

which gives

−1
2
(δ2(fa, fb)− δ2(fa, f0)− δ2(fa, f0)) =

√
ab

(
√
a+

√
b)2
,

which is the Hadamard product [Styan, 1973] of two positive-semidefinite

matrices, and is consequently positive semi-definite.

Loadings and Benzécri plot are in Figure 12. The eigenvalues of C
are in Table 6. The solution is very similar to the L2 solution for

the rationals, with again a very good one-dimensional fit.

Insert Table 6 about here

Insert Figure 12 about here

Finally Figure 13 gives the average curve f• and the two principal

curves ψ1 and ψ2.

Insert Figure 13 about here
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5.3. Two-sided Approximation. If we start with curve-distances

which are not necessarily derived from an inner product, and thus

with a matrix C that may not be positive semi-definite, then there

is no clear reason any more for approximating squared distances

from below. As De Leeuw and Meulman [1985, 1986] argue we

might as well minimize

(10) σ(X) =
m∑
i=1

m∑
j=1

wij(δij − dij(X))2

over X, and which optimizes approximation from both sides. Some

curve-distances will be under-estimated, some will be over-estimated.

At the minimum we have

n∑
i=1

n∑
j=1

dij(X)(δij − dij(X)) = 0,

so there are both positive and negative residuals.

The loss function (10), commonly called stress, can be minimized

by the usual MDS methods [Borg and Groenen, 2005]. This gives

us X. We then bring X in the form X = KΛL′ to ensure that C =
XX′ and X′VX = I. Principal curves can still be calculated using

the calculations in Subsection 3.1, although they will not have the

direct least squares properties of Subsection 3.3.

As an example, suppose we use the Kullback-Leibler distance be-

tween the twenty seven normals differing in location and scale.

Minimizing stress takes does not change the configuration much,

but the Benzécri plot in Figure 14(b) is quite different. It shows

the usual least squares characteristics: small distances are over-

estimated and large distances are under-estimated. The principal

curves are in Figure 15.

Insert Figure 14 about here

Insert Figure 15 about here
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Although we will not actually makes these calculations, it would be

simple to go to non-metric MDS from here. This will take us even

further from the direct least squares approximation of the curves,

but which will improve the approximation of the curve distances

(or the transformed curve distances). The interesting part is that

we can continue to plot the “principal curves” corresponding with

the MDS solutions.
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6. Constraints

In this section we study, again, the problem of minimizing

(11) σ(X,Ψ) ∆= n∑
i=1

‖fi −
p∑
s=1

xisψs‖2,

but now with various constraints on the loadings in X and/or the

curves in Ψ .

6.1. Constraints on the Loadings.

6.1.1. To Center or Not To Center. Suppose we require the first

column of X to be equal to +1. Thus

σ(X,ψ1,ψ2, · · · .ψp) =
n∑
i=1

‖fi −ψ1 −
p∑
s=2

xisψs‖2.

The conditional minimum 1 over ψ1 is attained at

ψ1 = f• −
p∑
s=1

x•sψs ,

and is equal to

σ(X,?,ψ2, · · · .ψp) =
n∑
i=1

‖f̃i −
p∑
s=2

x̃isψs‖2,

where both fi and xis have been replaced by their deviations from

the mean over sites. Thus a PCA of centered curves is equivalent to

an uncentered PCA with loadings on the first component restricted

to be +1. And this, in its turn, is equivalent to an eigenvalue anal-

ysis of the doubly-centered C̃ = JCJ of Equation 3a.

In some cases we may actually prefer the stronger centering con-

straints in which we require both xi1 = 1 for all i and 〈f•,ψs〉 = 0

for s = 2, · · · , p. Thus the principal curves must be orthogonal

to the average curve, as well as being orthogonal to each other.

Making the usual transformations this means we have to maximize

1The conditional minimum of f(x,y) over y is g(x) =miny f(x,y).
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tr X′C̃Y over X and Y such that Y ′C̃Y = I as well as Y ′h = 0. Here

C̃ is the Gram matrix of the {f̃i}ni=1 and h has elements hi = 〈f•, f̃i〉.

6.1.2. Simple Linear Constraints. The centering result, using condi-

tional minima, can be generalized to more complicated linear con-

straints on the loadings. Consider the case in which X =
[
X1 X2 X3

]
where X1 is known, X2 = GA with the n×q matrix G known, satis-

fying G′X1 = 0, and X3 is free.

with the n × q matrix G completely known. The basic loss func-

tion, using the least squares norm on the space of n× r matrices,

becomes

‖Z −XY ′‖2 = ‖Z −X1Y1 −GAY ′2 −X3Y3‖2,

which means that we must maximize

tr Y ′Z′G(G′G)+G′ZY

over Y ′Y = I, a simple eigenvalue problem.

6.1.3. More General Constraints. In the case of more general con-

straints on X, say X ∈ X, we can write the loss function in the

form

‖Z −XY ′‖2 = ‖Z − X̂Y ′‖2 + ‖X − X̂‖2,

where X̂ = ZY . This suggest a simple alternating least squares

(ALS) algorithm. We alternate minimization over X ∈ X for given

Y and minimization of Y with Y ′Y = I for for given X.

The first subproblem has the solution X = PX(X̂), the projection of

X̂ on X, i.e. the minimizer over X ∈ X of ‖X − X̂‖2.

The second subproblem is a so-called Orthogonal Procrustus Prob-

lem. If Z′X has singular value decomposition Z′X = KΛL′, then

the optimal Y for given X is Y = KL′.
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6.2. Constraints on the Curves. Now consider the problem, again,

of minimizing

σ(X,Ψ) ∆= n∑
i=1

‖fi −
p∑
s=1

xisψs‖2,

but now some of the curves, say the first q < p ones, are supposed

to be known. Without loss of generality we can assume they are

orthogonal to each other, and we require the remaining unknown

p − q curves to be orthogonal to the first q known ones. Rewrite

the loss function as

σ(X,Ψ) = n∑
i=1

‖fi −
q∑
s=1

xisψs −
p∑

s=q+1

xisψs‖2.

Now clearly the solution for xis with s ≤ q is x̂is = 〈fi,ψs〉. Define

f̃i = fi −
q∑
s=1

〈fi,ψs〉ψs ,

which means we still have to minimize

σ(X,Ψ) = n∑
i=1

‖f̃i −
p∑

s=q+1

xisψs‖2,

which is of the familiar form. This can be used, for example, to

remove the mean level of each curve, to remove a linear or poly-

nomial trend, or to remove periodic components representing sea-

sonality. The PCA is then done on the residuals, and these resid-

uals are orthogonal to each of the curves we have removed. Of

course if one removes too much, there will not be enough left for

the PCA to be interesting.

A different type of constraint on the curves would be that
∑q
s=1ytsψs =

ηt, where the ηt are known curves.

ψs =
∑
ystηt
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7. Transformations and Missing Values

7.1. Missing Values. There are various ways to deal with missing

values, i.e. cases where the curves are not defined on the same

interval. We could handle missing data in the first phase of FPCA,

where we are constructing the curves to be entered into the PCA.

But even then we have choices. We can use imputations to make

the discrete data complete, or we estimate the curve by using the

available data only.

A different alternative is to handle the missing data in the PCA, i.e.

in the second phase. This can be done with optimal scaling (OS),

using the alternating least squares (ALS) ideas of nonlinear PCA [De

Leeuw, 2006a]. We minimize

(12) σ(X,Ψ , F) = n∑
i=1

‖fi −
p∑
s=1

xisψs‖2

over Ψ and X, as usual, but in addition over F = {f1, · · · , fn}. But

the fi are constrained to be equal to the observed curves in all

points where the observed curves are defined.

The ALS algorithm alternates two steps in each iteration. We start

with curves that have been made complete in some arbitrary way.

Then, in the first step, we do the PCA, which leads to approxima-

tions f̂i. We then make new curves as the second step. The new

curves are equal to the observed value of fi if that is available and

to the value of f̂i otherwise. These new curves are then fed into

PCA again, and so on, until convergence. It is not necessary to do

a complete PCA in the first step, just improving the PCA approxi-

mation to the current set of curves is sufficient.

In the special case of the L2 norm, and observations missing out-

side an interval, the problem can be formulated as minimization

σ(X,Ψ) = n∑
i=1

∫ βi
αi
(fi(t)−

p∑
s=1

xisψs(t))2,
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or, equivalently, using a weight function wi that is equal to one on

(αi, βi) and equal to zero elsewhere,

σ(X,Ψ) = n∑
i=1

∫ +∞
−∞
wi(t)(fi(t)−

p∑
s=1

xisψs(t))2.

7.2. Projection. A more general problem is minimization of (12)

over X,Ψ and over all fi ∈ Fi, whereFi is a convex set. We suppose

our inner-product space is complete, and our convex set is closed.

Appendix D shows the that projection on F exists and is uniquely

defined, so we can actually carry out the same ALS algorithm as

the one we used for missing data. In fact the missing data case is

the special case in which Fi is the set of all curves that agree with

the observed curve in all points where it has been observed (and is

arbitrary everywhere else).

If Fi is a closed convex cone we have to solve a different problem.

Minimizing (12) is too easy, because we can always set fi = 0 and

find a perfect, but trivial, solution. In that case, in the non-metric

MDS tradition, we require fi ∈ F ∩ S, where S is the set of all

curves with unit norm, i.e. ‖fi‖2 = 1. Or, alternatively, we require

that ‖f̂i‖2 = 1, where f̂i =
∑p
s=1xisψs . Thus ‖f̂i‖2 =

∑p
s=1x2

is ,
which defines a simple restriction on the loadings.

It does not matter if we normalize f or f̂ in the case of convex

cones. This follows from a simple general result. Suppose f and g
are arbitrary curves. Define f̃ ∆= ‖g‖

‖f‖f and g̃ ∆= ‖f‖
‖g‖g. Then ‖f−g‖2 =

‖f̃ − g̃‖2.

7.3. Transforming the Domain. f = g ◦ fExample

〈f1, f2〉 =
∫ +∞
−∞
g1(f1x))g2(f2(x))dx

where g1 and g2 are restricted to be monotone increasing.

f = f ◦ g Example:

〈f1, f2〉 =
∫ +∞
−∞
f(α1 + β1x)f2(α2 + β2x)dx,
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7.4. Use of Majorization. We know that the minimum value of the

loss function (12) is equal to the sum of the n − p smallest eigen-

values of C , with cik = 〈fi, fk〉. Now suppose C is not fixed but

depends on transformations of the curves (or, to put it differently,

suppose the curves depend on a number of parameters). Ther are

many examples: curves can depend a a smoothing parameter, or

on knot placement, or on monotone tranformations. We can apply

the theory in De Leeuw [1988, 1990].

Theorem 7.1. `n−p(C), the sum of the n − p smallest eigenvalues,

is a concave function of C .

Proof. `n−p(C) =minK tr K′CK, where K varies over the n×(n−p)
orthonormal matrices. Thus `n−p is the pointwise minimum of a

family of linear functions, and it is thus concave. �

If K̃ is any set of eigenvectors corresponding with then−p smallest

eigenvalues of C̃ then for any C we have `n−p(C) ≤ tr K̃′CK̃. It

follows that if we can find a C̆ such that

tr K̃′C̆K̃ < tr K̃′C̃K̃ = `n−p(C̃)

then `n−p(C̆) < `n−p(C̃).

7.5. Singular Spectrum Analysis of Time Series.

7.6. Application to Count Data. FPCA techniques seem not directly

applicable to count data, because counts typically take place in

temporal intervals or spatial regions. The counting itself already

takes the continuity out of the process, and leads to essentially dis-

crete data. Thus counts are more naturally modeled as integrals of

intensity curves over intervals or regions. But we can of course use

a PCA-type specification of this intensity curve.

If we assume a non-homogeneous Poisson process in time, for ex-

ample, then the counts nij at site i in interval j are independent
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Poisson’s with expected values

λij = αi
∫ ξj+1

ξj
β(t) exp{

p∑
s=1

xisψs(t)}dt.

A simple-minded approximation using the Mean Value Theorem

gives

λij ≈ αiβj exp{
p∑
s=1

xisyjs},

which is the Goodman-Haberman RC model. This can be fitted by

minimizing the Poission Deviance

D(α,β,X, Y) ∆=
n∑
i=1

m∑
j=1

λij −nij logλij,

for instance by the iterated singular value decomposition methods

of De Leeuw [2006b].

A further first-order power series approximation, valid for small

interaction terms, gives

λij ≈ αiβj{1+
p∑
s=1

xisyjs},

which is the model used in Correspondence Analysis. The usual

loss function for Correspondence analysis is

S ∆=(α,β,X, Y) ∆=
n∑
i=1

m∑
j=1

(nij − λij)2
nI•n•j

,

which we can minimize by computing the singular value decompo-

sition of the matrix of Pearson residuals.
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8. The Lebec Data

8.1. Data. The California Air Resources Board (CARB) collected data

on hourly ozone and PM-2.5 levels (in parts per million) over ap-

proximately one year (February 2006-February 2007) in the town-

ship of Lebec, Kern County, California. The data (in the form of R

data frames) can be obtained from

http://idisk.mac.com/jdeleeuw-Public/curves/lebec.

The directory

http://idisk.mac.com/jdeleeuw-Public/curves/.

actually has LATEX code and all the figures and tables for this paper.

To download a file using your webserver or ftp client (supporting

WebDAV), just add the file name to the URL.

For ozone we have measurements on 372 consecutive days, and

thus a data matrix of order 372 × 24. The matrix has 8415 non-

mising element, out of a possible 8928, i.e. about 5.7% of the mea-

surements are missing. There are nine days for which we have no

measurements at all. The total sum of squares of the non-missing

elements is 13.499. Data for ozone are plotted in Figure 16.

Insert Figure 16 about here

It should be emphasized that the “codage” we have chosen is, to

some extent, arbitrary. Instead of a 372× 24 matrix we could have

interpreted the data as a 1×8928 matrix, with a single long time se-

ries, or we could have included the PM-2.5 to make a 2×8928 mul-

tiple time series. These alternative codings would have suggested

alternative techniques, which are not necessarily of the FPCA type.

Our data format suggests we think of days as replications, and we

ignore the dependence between days. This is most clearly illus-

trated by the fact that we would get identical results of we were to

permute the 372 rows of the matrix.

http://idisk.mac.com/jdeleeuw-Public/curves/lebec
http://idisk.mac.com/jdeleeuw-Public/curves/
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8.2. Discrete PCA. The first analysis we try is a simple PCA on the

data matrix. This means using the inner product

〈fi, fk〉 =
T∑
t=0

fitfkt

with T = 23. If we want to put this into the L2 framework we can

think of the curves as step functions, constant on each one-hour

interval. For our software we need an SVD routine that can handle

missing data. The R-code is given in Appendix H.2. We use three

components, leading to a residual sum of squares of 0.4139.

Alternatively, we can also remove the mean curve first and then ex-

tract two components. As we saw in Section 6.1 this amounts to a

restricted form of PCA with three components, with all loadings on

the first component equal to one. In Table 7 we show the 24 eigen-

values of C , where C is the Gram matrix of the imputed data. The

first column has the SVD of the imputed data, the second column

has the SVD of the matrix of deviations from the mean curve. As

we see the average explains about 78.5% of the total inertia, while

the dominant principal curve in the uncentered analysis explains

about 92.5%. In the uncentered analysis the additional principal

curves have small contributions, which decrease slowly. In the cen-

tered analysis the second principal curve contributes 14.5%, which

is still quite substantial. On the basis of this we could decide that

we prefer the centered analysis, with the average and one principal

curve, to the uncentered analysis with three principal curves.

If we look more carefully at Table 7, and we compare Figures ??

and ??, then it looks as if the first principal curve of the uncen-

tered analysis is split into the average curve and the first principal

curve in the centered analysis. The second and the third principal

curves in the centered analysis are very similar to the second and

the third principal curves in the uncentered analysis. So it looks as

if the centered analysis gives more detail, and a somewhat easier

interpretation (since one of the components is the average).
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Insert Figure ?? about here

Insert Figure ?? about here

As a final alternative in this section we can use Correspondence

Analysis. See Section 7.6 for a possible justification.

8.3. Removing Main Effects.

zij ≈ µ +αi + fj +
p∑
s=1

xisyjs ,

zij ≈ µ +αmonth(i) + γweekday(i) + fj +
p∑
s=1

xisyjs ,

zij ≈ µ + fj +
p∑
s=1

(xmonth(i)s + xweekday(i)s)yjs ,

8.4. Using a Smoother. One simple way to smooth our data is to

rely on the lowess() function in R. The theory for lowess() is

given in Cleveland [1979, 1981]. Code for smoothing a matrix with

curves (and missing data) is in Appendix H.3. The results of the

smoothing are plotted in Figure 22. The total sum of squares of

the non-missing elements is 12.177

Insert Figure 22 about here

Again, the first principal curve of the uncentered analysis is split

into the average curve and the first principal curve of the centered

analysis. The second and the third principal curves in the centered

analysis are again very similar to the second and the third principal

curves in the uncentered analysis.

8.5. Using a Fourier Basis. The basic loss function we will use is,

not surprisingly,

σ() =
n∑
i=1

∫ T
0
(fi(t)−

p∑
s=1

xisψs(t))2dt
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where time-points zero and T both correspond to midnight.

We smooth the curves by using the Fourier coefficients. This will

make them of the form

fi(t) = µi +
v∑
u=1

{
αiu sin(2π

ut
T
)+ βiu cos(2π

ut
T
)
}
.

As a consequence

cik = µiµk +
v∑
u=1

{αiuαku + βiuβku},

and thus rank(C) ≤ 2v + 1.

In first Lebec example we will fit the Fourier series for v = 2 by

simple least squares, iteratively imputing the missing data on the

way. We start the iterations by replacing all missing data by zeroes,

with sum of squares of the residuals equal to 13.50. The ALS itera-

tions for imputation then decrease the residual sum of squares to

0.3416.

In Figure 26 we see the observed and fitted data. Note that the

fitted curves are continuous, they are not just drawn in the 24 data

points. They are, of course, also smoothed. They do not really

get rid of the major outliers, which correspond with curves have a

relatively large number of missing data. This is basically because

each curve is fit separately.

Insert Figure 25 about here

Figure 26 gives the scatterplot of the non-missing observed and

fitted values. Clearly the fit is good, and there seem to be no sys-

tematic deviations from the line of perfect fit.

Insert Figure 26 about here

We now do the PCA on the fitted curves. As we have seen, this

amounts to doing an SVD on the least squares Fourier coefficients.
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The eigenvalues for this analysis are in Table 8. The dominant prin-

cipal curve fits about 95% of the inertia (of the smoothed curves,

obviously, not of the raw data).

Insert Table 8 about here

The first three principal curves are in Figure 27 and the loadings

on the first principal curve are plotted in Figure 28.

Insert Figure 27 about here

Insert Figure 28 about here

The “sites” in this study are really “days”, and days are character-

ized by being a particular weekday in a particular month. It may be

a good idea to take this information into account. We can account

for months and days in different ways. It can be done in the first

phase, in which we use least squares to smooth the curves by

fit = µi + γd(i) + δm(i) +
v∑
u=1

{
αiu sin(2π

ut
T
)+ βiu cos(2π

ut
T
)
}
,

where m(i) is the month of day i and d(i) is the weekday. Or,

alternatively, we can restrict the component loadings in the PCA,

for example by

xis = µs + βd(i)s + γm(i)s .
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Appendix A. Gram-Schmidt for Curves

Suppose we have n curves fi. Apply the following Gram-Schmidt

(or GS) algorithm:

Start: i = 1, r = 0.
Test: if i > n then go to Stop.

Ortho: f̃i = fi −
∑r
k=1〈fi, f̆k〉f̆k.

Skip: If ‖f̃i‖ = 0 then i← i+ 1 and go to Test.

Norm: f̆r = f̃r/‖f̃r‖.
Count: r ← r + 1, i← i+ 1 and go to Test.

Stop: Return (f̆1, · · · , f̆r ).

We define the rank of the n curves fi as the number of f̆i generated

by the GS algorithm.

Theorem A.1 (Gram-Schmidt). Suppose fi aren curves and f̆1, · · · , f̆r
are the curves produced by the GS algorithm. Then for all i 6= k we

have 〈f̆i, f̆k〉 = 0 and for all i we have ‖f̆i‖ = 1 .

Proof. Use induction on i. �

Suppose F ∆=L(f1, · · · , fn) is the subspace spanned by the fi, or,

equivalently, the subspace spanned by the f̆s . We define the pro-

jection of any curve g on F as

PF(g) ∆=
r∑
s=1

〈g, f̆s〉f̆s

and we define the anti-projection or residual byRF(g) ∆=g−PF(g).
Theorem A.2 (Least Squares). Let F = L(f1, · · · , fn). For all f ∈ F
we have PF(f ) = f , and thus RF(f ) = 0. More generally, for any

curve g decomposed as g = PF(g)+RF(g) we have 〈f ,RF(g)〉 = 0

for all f ∈ F .

Proof. �
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The theorems in this Appendix can be used to solve various re-

gression problems for curves. We only discuss two simple ones,

but there are many possible univariate and multivariate general-

izations.

First, consider the situation in which yi are n numbers and we look

for a curve g such that

σ(g) =
n∑
i=1

(〈fi, g〉 −yi)2

is minimized. The solution is g =
∑r
s=1 βsf̆s , where βs = (H′H)−1H′y

and H has elements his
∆=〈fi, f̆s〉.

Second, look for n numbers βi such that

σ(β) = ‖
n∑
i=1

βifi − g‖2

is minimized. At the solution, by definition, we must have
∑n
i=1 βifi =

PF(g). This works out to β = H(H′H)−1γ, where his = 〈fi, f̆s〉 as

before, and γs
∆=〈g, f̆s〉.
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Appendix B. Factoring Positive Semi-definite Matrices

Theorem B.1. Suppose A is a positive semi-definite n×n matrix of

rank r with eigen-decomposition

A =
[
K
n×r

| K⊥
n×(n−r)

] Λ2
r×r

∅
r×(n−r)

∅
(n−r)×r

∅
(n−r)×(n−r)


 K′

r×n
K′⊥

(n−r)×n

 .
Then the n×p matrix X is a solution of the quadratic matrix equa-

tion A = XX′ if and only if X = KΛL′, where L is any p × r matrix

such that L′L = I.

Proof. Write X in the form

X =
[
K
n×r

| K⊥
n×(n−r)

] S
r×p

T
(n−r)×p


It follows that we must have Λ2

r×r
∅

r×(n−r)

∅
(n−r)×r

∅
(n−r)×(n−r)

 =
 SS′

r×r
ST ′

r×(n−r)
TS′

(n−r)×r
TT ′

(n−r)×(n−r)

 .
This means T = ∅ and SS′ = Λ2, which implies the statement in

the theorem. �

It follows that X can only be a solution if p ≥ r and that the rank

of any solution X is equal to r . This makes it possible to call X a

minimal solution of A = XX′ if rank(X) = rank(A). Theorem B.1

then implies that X = KΛL, for some L′L = LL′ = I.

Corollary B.2. Suppose A and V are positive semi-definite n × n
matrices. Then there is a minimal solution X of A = XX′ such thatΩ2 ∆=X′VX is diagonal.

Proof. We know from Theorem B.1 that X = KΛL′ for some L such

that L′L = LL′ = I. Thus X′VX = LΛK′VKΛL′ and thus L must

be chosen as a complete set of eigenvectors of H ∆=ΛK′VKΛ. This

makes Ω2 equal to the eigenvalues of H. �
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Appendix C. Singular Value Decomposition

The Gram-Schmidt process is one way to compute the QR-decom-

position of an n×mmatrix X of rank r . It gives us an n×r matrix

K with K′K = I and an r × r non-singular upper-triangular matrix

S such that X = KS. The Singular Value Decomposition (SVD) gives

us a different, but closely related, decomposition X = KΛL′, where

K is a before, but now Λ is diagonal and L′L = I. For the proof we

need two basic lemmas.

Lemma C.1. If rank(X) = r then both X′X and XX′ are positive

semi-definite of rank r .

Proof. If Xa = 0 then X′Xa = 0. Conversely, if X′Xa = 0 then

a′X′Xa = 0 and thus Xa = 0. Same reasoning for XX′. �

Lemma C.2. X′X and XX′ have the same non-zero eigenvalues.

Proof. If X′Xa = λa with λ > 0 then XX′(Xa) = λ(Xa). Thus

either Xa = 0 or λ is an eigenvalue of XX′ corresponding to eigen-

vector Xa. And, similarly, if XX′b = µb with µ > 0 then either

X′b = 0 or µ is an eigenvalue of X′X corresponding with eigenvec-

tor X′b. �

Now we can state and prove the theorem.

Theorem C.3. Suppose X is an n×m matrix of rank r . Then X can

be written as

X
n×m

= K
n×r

Λ
r×r

L′
r×m

.

where K′K = L′L = I and Λ is a diagonal matrix with positive diag-

onal elements.

Proof. We use Lemma C.1, and take L equal to the orthonormal

eigenvectors corresponding with the r non-zero eigenvalues Λ2 of

X′X. Define K = XLΛ−1. Then K′K = I and KΛL′ = XLL′. But
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LL′ = I−L⊥L′⊥, where L⊥ is an orthonormal basis for the null.space

of X. Thus XLL′ = X(I − L⊥L′⊥) = X. �

Remark . The decomposition can obviously also be written as

X =
[
K
n×r

| K⊥
n×(n−r)

] Λ
r×r

∅
r×(m−r)

∅
(n−r)×r

∅
(n−r)×(m−r)


 L′

r×m
L′⊥

(m−r)×m

 ,
where both

[
K | K⊥

]
and

[
L | L⊥

]
are square and orthonor-

mal.

C.1. Rank Approximation. Suppose X is an n×mmatrix of rank r
with singular value decomposition X = KΛL′. The p-truncated SVD

is Xp = KpΛpL′p, with the left singular vectors Kp, the right singular

vectors Lp, and the p singular values Λp, all corresponding with

the p largest singular values. Of course the p-truncated SVD is not

necessarily unique, because we can have λp = λp+1. Also Xp = X if

and only if p ≥ r .

Theorem C.4. If X is an n×m matrix of rank r the minimum of

σ(Y) = tr (X − Y)′(X − Y)

over all n×mmatrices Y of rank p is attained at a p-truncated SVD

of X and

min
rank(Y)=p

tr (X − Y)′(X − Y) =
r∑

s=p+1

λ2
s .

Generalizations to minimization of ‖A(X − Y)B‖2 are discussed,

for example, in De Leeuw [1984]; Zha [1991].

C.2. Orthogonal Procrustus.

Theorem C.5. If X is an n×m matrix of rank r the minimum of

σ(Y) = tr (X − Y)′(X − Y)
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over all n×m orthonormal matrices Y is attained at the Procrustus

transformation of X and

min
Y ′Y=I

tr (X − Y)′(X − Y) =
p∑
s=1

λs .
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Appendix D. Projection Theorems

We do not prove the results in this section. For proofs we refer to

the Hilbert space literature, for instance Schwartz [1979]; Halmos

[1957] or Rudin [1970, Chapter 4].

Definition D.1. A set X in a linear spaceH is

• convex if x,y ∈ X and 0 ≤ λ ≤ 1 implies λx+(1−λ)y ∈ X.

• a cone if x ∈ X and λ ≥ 0 implies λx ∈ X.

• affine if x,y ∈ X implies λx + (1− λ)y ∈ X for all λ.

• a convex cone if X is convex and is a cone.

• a subspace is X is affine and is a cone.

We now study the problem of finding the closest point to a point

y in the set X ⊆ H , where H is an inner product space with the

associated norm. Such a point, if it exists, is the projection of y on

X, and we write it as PX(y). If the projection does not exist, then

PX(y) is the empty set. If the projection exists, but is not unique,

then PX(y) is a non-singleton convex subset of X.

Theorem D.1. If X is a closed convex set in a Hilbert spaceH then

PX(y) exists and is unique.

For the next theorem we define the polar cone X◦ of a cone X as

the set of all y such that 〈y,x〉 ≤ 0 for all x ∈ X. We define the

orthogonal complement X⊥ of a subspaceX as the set of all y such

that 〈y,x〉 = 0 for all x ∈ X.

Theorem D.2. Suppose z ∈ PX(y).

• If X is convex then 〈y − z,x − z〉 ≥ 0 for all x ∈ X.

• If X is affine then 〈y − z,x − z〉 = 0 for all x ∈ X.

• IfX is a cone then 〈y − z, z〉 = 0 and ‖y‖2 = ‖z‖2+‖y−z‖2.

• If X is a convex cone then y − z = PX◦(y).
• If X is a subspace then y − z = PX⊥(y).
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Appendix E. Imputation by Alternating Least Squares

Consider the problem of minimizing

(13) σ(X,Y) = tr(X − Y)′(X − Y)

over X ∈ X and Y ∈ Y, where both X and Y are subsets Rn×m.

The problem is a missing data problem if X is defined by a set of

cells K and the constraints xij = zij for all (i, j) ∈ K. Thus some

elements of X are fixed and known, the others are unknown, and

must be imputed.

Alternating least squares algorithms can conveniently be employed

if it is relatively easy to minimize (13) over Y when X is fixed at

some known value. The algorithm iterates by cycling over two

steps. Suppose we start with some X(0) ∈ X, i.e. some matrix in

which we have imputed the missing values in some way or another.

Set s = 0. Then

Y (s) = argmin
Y∈Y

‖X(s) − Y‖2,(14a)

X(s+1) = argmin
X∈X

‖X − Y (s)‖2.(14b)

Using PS for least squares projection on S we can write

Y (s) = PY(X(s)) = PY(PX(Y (s−1))),(15a)

X(s+1) = PX(Y (s)) = PX(PY(X(s))).(15b)

In the missing data case ALS is attractive because projection on

X is very simple. For (i, j) ∈ K we always set x(s)ij = zij and

for (i, j) 6∈ K we set x(s)ij = y
(s−1)
ij . This means, of course, that

PX is a very simple linear projector, which requires virtually no

computation.

Clearly the iterative process produces a non-increasing sequences

of loss function values, because

σ(X(s+1), Y (s)) ≤ σ(X(s), Y (s)) ≤ σ(X(s), Y (s−1)),
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where the inequalities will usually be strict (if they are not, we just

stop, and we are done). Since loss function values are bounded

below by zero, they converge. Convergence will generally be linear,

with convergence speed equal to the spectral radius

ρ ∆=‖∂(PX ◦ PY)
∂X

‖ = ‖∂(PY ◦ PX)
∂Y

‖

at the solution.
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Appendix F. Figures
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(b) Benzécri Plot for 27 Normals

Figure 1. Results for 27 Normals (L2)
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Figure 3. Principal Curves for 27 Normals (L2)
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(b) Benzécri Plot for 27 Normals

Figure 5. Results for 27 Normals (KL)
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(b) Benzécri Plot for 27 Normals

Figure 7. Results for 27 Normals (TR)
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Figure 8. Principal Curves for 27 Normals (TR)
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(b) Benzécri Plot for 9 Rationals

Figure 10. Results for 9 Rationals (LS)
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Figure 11. Principal Curves for 9 Rationals (LS)
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Figure 12. Results for 9 Rationals (SP)
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Figure 13. Principal Curves for 9 Rationals (SP)
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(b) Benzécri Plot for 27 Normals

Figure 14. Results for 27 Normals Two Sided
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Figure 17. Principal Curves for Lebec
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Figure 18. Principal Curves for Lebec as Perturbations
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(b) Second Principal Curve
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(c) Third Principal Curve

Figure 20. Loadings Principal Curves Lebec Against Time
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Figure 21. Principal Curves Lebec Against Average Curve
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Figure 22. Lebec Lowess
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Figure 23. Principal Curves for Lebec Lowess Uncentered
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Figure 24. Principal Curves for Lebec Lowess Centered
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Figure 25. Lebec Fourier
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Figure 26. Scatterplot Lebec Fit
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Figure 27. Principal Curves for Lebec (LS)
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Figure 28. Scatterplot Lebec Loadings, First PC
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Appendix G. Tables

Table 1. Eigenvalues for 27 Normals (L2)

Eigenvalue Percentage Cumulative

1 1.94 0.31 0.31

2 1.41 0.22 0.53

3 0.94 0.15 0.68

4 0.68 0.11 0.78

5 0.47 0.07 0.86

6 0.34 0.05 0.91

7 0.24 0.04 0.95

8 0.19 0.03 0.98

9 0.07 0.01 0.99

10 0.05 0.01 1.00

11 0.01 0.00 1.00

12 0.00 0.00 1.00

13 0.00 0.00 1.00

14 0.00 0.00 1.00

15 0.00 0.00 1.00

16 0.00 0.00 1.00

17 0.00 0.00 1.00

18 0.00 0.00 1.00

19 0.00 0.00 1.00

20 0.00 0.00 1.00

21 0.00 0.00 1.00

22 0.00 0.00 1.00

23 0.00 0.00 1.00

24 0.00 0.00 1.00

25 0.00 0.00 1.00

26 0.00 0.00 1.00

27 0.00 0.00 1.00
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Table 2. Eigenvalues for 27 Normals (GH)

1 2 3 4 5 6 7 8 9 10 11

1 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 1.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 1.11 1.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 1.20 0.88 0.46 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1.47 1.02 0.58 0.56 0.36 0.00 0.00 0.00 0.00 0.00 0.00

6 1.48 1.01 0.46 0.43 0.19 0.01 0.00 0.00 0.00 0.00 0.00

7 1.58 1.11 0.59 0.43 0.26 0.17 0.13 0.00 0.00 0.00 0.00

8 1.72 1.21 0.75 0.52 0.34 0.27 0.21 0.00 0.00 0.00 0.00

9 1.76 1.25 0.77 0.53 0.31 0.22 0.16 0.00 0.00 0.00 0.00

10 1.79 1.28 0.79 0.55 0.33 0.23 0.11 0.04 0.01 0.00 0.00

11 1.84 1.33 0.85 0.61 0.39 0.27 0.18 0.17 0.03 0.00 0.00

12 1.90 1.39 0.93 0.68 0.48 0.35 0.25 0.19 0.04 0.00 0.00

13 1.92 1.41 0.95 0.70 0.49 0.35 0.25 0.19 0.03 0.00 0.00

14 1.92 1.40 0.94 0.68 0.47 0.33 0.24 0.19 0.03 0.00 0.00

15 1.93 1.40 0.93 0.67 0.46 0.33 0.24 0.19 0.03 0.01 0.00

16 1.93 1.40 0.94 0.68 0.47 0.34 0.24 0.19 0.04 0.03 0.00

17 1.93 1.40 0.94 0.68 0.47 0.34 0.24 0.19 0.05 0.04 0.00

18 1.94 1.41 0.94 0.68 0.47 0.34 0.24 0.19 0.06 0.04 0.00

19 1.94 1.40 0.94 0.68 0.47 0.34 0.24 0.19 0.06 0.04 0.00

20 1.94 1.40 0.94 0.68 0.47 0.34 0.24 0.19 0.06 0.04 0.00

∞ 1.94 1.40 0.94 0.68 0.47 0.34 0.24 0.19 0.07 0.05 0.01
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Table 3. Eigenvalues for 27 Normals (TR)

Eigenvalue Percentage Cumulative

1 1.18 0.37 0.37

2 0.98 0.31 0.68

3 0.51 0.16 0.84

4 0.29 0.09 0.93

5 0.16 0.05 0.98

6 0.05 0.02 1.00

7 0.00 0.00 1.00

8 0.00 0.00 1.00

9 0.00 0.00 1.00

10 0.00 0.00 1.00

11 0.00 0.00 1.00

12 0.00 0.00 1.00

13 0.00 0.00 1.00

14 0.00 0.00 1.00

15 0.00 0.00 1.00

16 0.00 0.00 1.00

17 0.00 0.00 1.00

18 0.00 0.00 1.00

19 0.00 0.00 1.00

20 0.00 0.00 1.00

21 0.00 0.00 1.00

22 0.00 0.00 1.00

23 0.00 0.00 1.00

24 0.00 0.00 1.00

25 0.00 0.00 1.00

26 0.00 0.00 1.00

27 0.00 0.00 1.00
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Table 4. Eigenvalues for Nine Rationals (LS)

Eigenvalue Percentage Cumulative

1 4.59 0.99 0.99

2 0.06 0.01 1.00

3 0.00 0.00 1.00

4 0.00 0.00 1.00

5 0.00 0.00 1.00

6 0.00 0.00 1.00

7 0.00 0.00 1.00

8 0.00 0.00 1.00

9 0.00 0.00 1.00
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Table 5. Eigenvalues for 27 Normals (KL)

Eigenvalue Percentage Cumulative

1 372.14 0.66 0.66

2 80.31 0.14 0.80

3 0.00 0.00 0.80

4 0.00 0.00 0.80

5 0.00 0.00 0.80

6 0.00 0.00 0.80

7 0.00 0.00 0.80

8 0.00 0.00 0.80

9 0.00 0.00 0.80

10 0.00 0.00 0.80

11 0.00 0.00 0.80

12 0.00 0.00 0.80

13 0.00 0.00 0.80

14 0.00 0.00 0.80

15 0.00 0.00 0.80

16 0.00 0.00 0.80

17 0.00 0.00 0.80

18 0.00 0.00 0.80

19 0.00 0.00 0.80

20 0.00 0.00 0.80

21 0.00 0.00 0.80

22 0.00 0.00 0.80

23 0.00 0.00 0.80

24 0.00 0.00 0.80

25 0.00 0.00 0.80

26 −52.46 0.09 0.90

27 −57.14 0.10 1.00
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Table 6. Eigenvalues for Nine Rationals (SP)

Eigenvalue Percentage Cumulative

1 0.22 0.95 0.95

2 0.01 0.05 1.00

3 0.00 0.00 1.00

4 0.00 0.00 1.00

5 0.00 0.00 1.00

6 0.00 0.00 1.00

7 0.00 0.00 1.00

8 0.00 0.00 1.00

9 0.00 0.00 1.00
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Table 7. Eigenvalues for Lebec

1 2 3 4

1 12.61 1.98 11.74 1.87

2 0.35 0.34 0.32 0.32

3 0.26 0.23 0.23 0.20

4 0.10 0.08 0.02 0.02

5 0.07 0.07 0.00 0.00

6 0.04 0.04 0.00 0.00

7 0.04 0.04 0.00 0.00

8 0.03 0.03 0.00 0.00

9 0.02 0.02 0.00 0.00

10 0.02 0.02 0.00 0.00

11 0.01 0.01 0.00 0.00

12 0.01 0.01 0.00 0.00

13 0.01 0.01 0.00 0.00

14 0.01 0.01 0.00 0.00

15 0.01 0.01 0.00 0.00

16 0.01 0.01 0.00 0.00

17 0.01 0.01 0.00 0.00

18 0.01 0.01 0.00 0.00

19 0.01 0.01 0.00 0.00

20 0.00 0.00 0.00 0.00

21 0.00 0.00 0.00 0.00

22 0.00 0.00 0.00 0.00

23 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.00

mean – 10.71 – 9.93

total 13.64 13.65 12.31 12.34

Column 1: SVD

Column 2: SVD Centered

Column 3: SVD Lowess

Column 4: SVD Lowess Centered
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Table 8. Eigenvalues for Lebec-Fourier

Eigenvalue Percentage Cumulative

1 12.625 0.946 0.946

2 0.337 0.025 0.971

3 0.248 0.019 0.990

4 0.072 0.005 0.995

5 0.068 0.005 1.000
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Appendix H. Code

H.1. FPCA.

1 source ( " . / ut i l .R" )

2

3 FPCA<−function ( x ,ndim, defunc , deprin , wghts=FALSE , npts=100) {

4 res<−defunc ( x ) ; cp<−res$cp ; de<−res$de ; n<−nrow ( x )

5 ea<−eigen ( cp ) ; ev<−ea$values

6 xv<− ( ea$vectors [ , 1 :ndim ] ) *outer ( rep (1 ,n ) , sqrt ( ev [ 1 :ndim ] ) )

7 yv<−xv/outer ( rep (1 ,n ) , colSums ( xv^2) )

8 di<−as . matrix ( dist ( xv ) )^2

9 pc<−matrix (0 , npts ,ndim)

10 for ( i in 1 :ndim) pc [ , i ]<−deprin ( yv [ , i ] , x , npts=npts )

11 result<− l i s t ( cp=cp , de=de , di=di , xv=xv , yv=yv , ev=ev , pc=pc )

12 class ( result ) <− " fpca "

13 return ( result )

14 }

15

16 plot . fpca<−function ( xfpca , plot . type , deprin=linC , intv=c (−3 ,3) , npts=100) {

17 xv<−xfpca$xv ; yv<−xfpca$yv ; de<−xfpca$de ; di<−xfpca$di ; pc<−xfpca$pc

18 ndim<−ncol ( pc ) ; n<−nrow ( x ) ; asr<−seq ( intv [1 ] , intv [2 ] , length=npts )

19 i f ( plot . type == "coord" )

20 plot ( xv , xlab="Dimension 1" , ylab="Dimension 2" )

21 i f ( plot . type == "benz" ) {

22 ma<−max( c (de , di ) )

23 plot ( matrix ( c (0 ,ma,0 ,ma) ,2 ,2) , type="n" , xlab="Squared Curve−
distances " , ylab="Squared Euclidean Distances " , axes=FALSE )

24 points (de , di )

25 abline (h=0)

26 abline ( v=0)

27 abline (0 ,1 , col="RED" )

28 for ( i in 1 : length (de ) )

29 l ines ( rbind ( c (de [ i ] , 0 ) ,c (de [ i ] , di [ i ] ) ) )

30 }

31 i f ( plot . type == "pc" )

32 for ( i in 1 :ndim) {

33 plot ( asr , deprin ( yv [ , i ] , x ) , type=" l " , xlab=" " , ylab=

paste ( " Principal Curve" , i ) )

34 }

35 i f ( plot . type == "ave " )

36 plot ( asr , deprin ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )
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37 }

38

39 LSNorm<−function ( x ) {

40 n<−nrow ( x ) ; ip<−matrix (0 ,n ,n )

41 for ( i in 1 :n) for ( j in 1 :n) {

42 sg<−sqrt ( ( x [ i ,2 ]^2) +(x [ j ,2 ]^2) )

43 ip [ i , j ]<−dnorm( x [ i ,1]−x [ j , 1 ] ,mean=0,sd=sg )

44 }

45 de<−matrix (0 ,n ,n )

46 for ( i in 1 :n) for ( j in 1 :n)

47 de [ i , j ]<−ip [ i , i ]+ ip [ j , j ]−2* ip [ i , j ]

48 cp<−doublyCenter ( ip )

49 return ( l i s t ( cp=cp , de=de ) )

50 }

51

52 TRNorm<−function ( x ) {

53 n<−nrow ( x ) ; ip<−matrix (0 ,n ,n )

54 for ( i in 1 :n) for ( j in 1 :n) {

55 sg<−sqrt ( ( x [ i ,2 ]^2) +(x [ j ,2 ]^2) )

56 sh<−x [ i , 2 ] *x [ j , 2 ] /sg

57 mh<− ( ( x [ i ,2 ]^2) *x [ j , 1 ]+ ( x [ j ,2 ]^2) *x [ i , 1 ] ) / ( ( x [ i ,2 ]^2) +(x [ j ,2 ]^2) )

58 ip [ i , j ]<−dnorm( x [ i ,1]−x [ j , 1 ] ,mean=0,sd=sg ) * (1−pnorm(−mh/sh ) )

59 }

60 de<−matrix (0 ,n ,n )

61 for ( i in 1 :n) for ( j in 1 :n)

62 de [ i , j ]<−ip [ i , i ]+ ip [ j , j ]−2* ip [ i , j ]

63 cp<−doublyCenter ( ip )

64 return ( l i s t ( cp=cp , de=de ) )

65 }

66

67 GHNorm<−function ( x ) {

68 n<−nrow ( x ) ; ip<−matrix (0 ,n ,n )

69 for ( i in 1 :n) for ( j in 1 :n) {

70 xx<−GH[ , 1 ] ; ww<−GH[ ,2 ]

71 d1<−dnorm( xx ,mean=x [ i , 1 ] , sd=x [ i , 2 ] )

72 d2<−dnorm( xx ,mean=x [ j , 1 ] , sd=x [ j , 2 ] )

73 ip [ i , j ]<−sum(ww*exp ( xx^2) *d1*d2)

74 }

75 de<−matrix (0 ,n ,n )

76 for ( i in 1 :n) for ( j in 1 :n)

77 de [ i , j ]<−ip [ i , i ]+ ip [ j , j ]−2* ip [ i , j ]

78 cp<−doublyCenter ( ip )

79 return ( l i s t ( cp=cp , de=de ) )



FUNCTIONAL PCA 91

80 }

81

82 KLNorm<−function ( x ) {

83 n<−nrow ( x ) ; de<−matrix (0 ,n ,n )

84 for ( i in 1 :n) for ( j in 1 :n) {

85 dm<− ( x [ i ,1]−x [ j , 1 ] ) ^2 ; s1<−x [ i , 2 ] ^ 2 ; s2<−x [ j ,2]^2

86 de [ i , j ]<− ( ( ( s1+dm) /s2 ) + ( ( s2+dm) /s1 )−2)/2

87 }

88 cp<−−0.5*doublyCenter (de )

89 return ( l i s t ( cp=cp , de=de ) )

90 }

91

92 LSRatio<−function ( x ) {

93 n<−nrow ( x ) ; ip<−matrix (0 ,n ,n )

94 for ( i in 1 :n) for ( j in 1 :n)

95 ip [ i , j ]<− ( x [ i ] *x [ j ] / ( x [ i ]−x [ j ] ) ) * log ( x [ i ] /x [ j ] )

96 for ( i in 1 :n) ip [ i , i ]<−x [ i ]

97 de<−matrix (0 ,n ,n )

98 for ( i in 1 :n) for ( j in 1 :n)

99 de [ i , j ]<−ip [ i , i ]+ ip [ j , j ]−2* ip [ i , j ]

100 cp<−doublyCenter ( ip )

101 return ( l i s t ( cp=cp , de=de ) )

102 }

103

104 SPRatio<−function ( x ) {

105 n<−nrow ( x ) ; de<−matrix (0 ,n ,n )

106 for ( i in 1 :n) for ( j in 1 :n)

107 de [ i , j ]<−abs ( ( sqrt ( x [ i ] )−sqrt ( x [ j ] ) ) / ( sqrt ( x [ i ] ) +sqrt ( x [ j ] ) ) )

108 de<−de^2

109 cp<−−0.5*doublyCenter (de )

110 return ( l i s t ( cp=cp , de=de ) )

111 }

112

113 linC<−function (b , x , intv=c (−3 ,3) , npts=100) {

114 p<−seq ( intv [1 ] , intv [2 ] , length=npts ) ; n<−nrow ( x )

115 q<−rep (0 , npts )

116 for ( i in 1 : length (b ) )

117 q<−q+b[ i ] *dnorm(p ,mean=x [ i , 1 ] , sd=x [ i , 2 ] )

118 return (q )

119 }

120

121 linR<−function (b , x , intv=c (0 ,10) , npts=100) {

122 p<−seq ( intv [1 ] , intv [2 ] , length=npts ) ; n<−nrow ( x )
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123 q<−rep (0 , npts )

124 for ( i in 1 : length (b ) )

125 q<−q+b[ i ] *x [ i ] / ( x [ i ]+p)

126 return (q )

127 }

H.2. Imputation.

1 imputeMat<−function (mat , fitme , eps=1e−6,niter =100,verbose=TRUE, pars=NULL) {

2 n<−nrow (mat ) ; m<−ncol (mat ) ; oloss<−Inf ; i t e r<−1

3 f i t ted<−matrix (0 ,n ,m) ; imputed<−mat

4 repeat {

5 for ( i in 1 :n) {

6 ind<−which ( is . na (mat [ i , ] ) )

7 imputed [ i , ind ]<−f i t ted [ i , ind ]

8 }

9 nloss<−sum ( ( imputed−f i t ted ) ^2)

10 motor<−fitme ( imputed , pars ) ; f i t ted<−motor$fi t ted ; extra<−motor$extra

11 i f ( verbose )

12 cat ( " I terat ion : " ,formatC ( i ter , d ig i ts =6 ,width=6) ,

13 " Loss: " ,formatC ( oloss , d ig i ts =6 ,width=12,format=

" f " ) ,

14 " ==>" ,formatC ( nloss , d ig i ts =6 ,width=12,format=" f " ) , " \

n" )

15 i f ( ( ( oloss−nloss ) < eps ) | | ( i t e r == niter ) ) break ( ) ;

16 oloss<−nloss ; i t e r<− i t e r+1

17 }

18 return ( l i s t ( i t e r=i ter , loss=nloss , f i t ted=fitted , extra=extra ) )

19 }

20

21 fitSVDRaw<−function (mat , pars ) {

22 sv<−svd (mat , nu=pars , nv=pars )

23 return ( l i s t ( i t ted=tcrossprod ( sv$u , ( sv$v )%*%diag ( sv$d[ 1 : pars ] ) ) , extra=

sv ) )

24 }

25

26 fitSVDCenter<−function (mat , pars ) {

27 n<−nrow (mat ) ; av<−as . vector ( apply (mat , 2 ,mean) ) ; mav<−outer ( rep (1 ,n ) ,

av )

28 sv<−svd (mat−mav,nu=pars , nv=pars )

29 return ( l i s t ( f i t ted=mav+tcrossprod ( sv$u , ( sv$v )%*%diag ( sv$d[ 1 : pars ] ) ) ,

extra= l i s t ( av , sv ) ) )

30 }
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31

32 fitSVDCentor<−function (mat , pars ) {

33 n<−nrow (mat ) ; av<−apply (mat , 2 ,mean) ; mav<−outer ( rep (1 ,n ) , av )

34 sv<−svd (mat−mav,nu=pars , nv=pars )

35 u<−cbind (1 , sv$u) ; v<−cbind ( av , ( sv$v )%*%diag ( sv$d[ 1 : pars ] ) )

36 s<−chol ( crossprod ( v ) ) ; ss<−s/diag ( s )

37 v<−v%*%solve ( ss ) ; u<−u%*%t ( ss )

38 return ( l i s t ( f i t ted=tcrossprod (u , v ) , extra= l i s t (u , v ) ) )

39 }

40

41 fitSVDDouble<−function (mat , pars ) {

42 n<−nrow (mat ) ; av<−apply (mat , 2 ,mean) ; mav<−outer ( rep (1 ,n ) , av )

43 sv<−svd (mat−mav,nu=pars , nv=pars )

44 yy<−cbind ( av , sv$v ) ; xx<−cbind ( 1 , ( sv$u)%*%diag ( sv$d[1 : pars ] ) )

45 cc<−crossprod ( yy ) ; ch<−chol ( cc ) ; ch<−ch/diag ( ch )

46 yy<−yy%*%solve ( ch ) ; xx<−tcrossprod ( xx , ch )

47 return ( l i s t ( f i t ted=tcrossprod ( xx , yy ) , extra= l i s t ( av , sv ) ) )

48 }

49

50 fitOrth<−function (mat , pars ) {

51 fcoef<−as . matrix (mat )%*%pars

52 return ( l i s t ( f i t ted=tcrossprod ( fcoef , pars ) , extra=fcoef ) )

53 }

H.3. Miscellaneous Utilities.

1 doublyCenter<−function ( x ) {

2 return ( x+mean( x )−outer ( apply ( x ,1 ,mean) ,apply ( x ,2 ,mean) , "+" ) )

3 }

4

5 lowessMe<−function (mat , x=1:ncol (mat ) ) {

6 n<−nrow (mat ) ; mlow<−mat

7 for ( i in 1 :n)

8 {

9 ind<−which ( ! is . na (mat [ i , ] ) )

10 i f ( length ( ind ) ==0) next ( )

11 lwa<−lowess ( x [ ind ] ,mat [ i , ind ] )

12 mlow[ i , ind ]<−lwa$y

13 }

14 return (mlow)

15 }
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H.4. Code for Figures.

H.4.1. Code for Figure 1.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 LSN<−FPCA( x ,ndim=2,defunc=LSNorm, deprin=linC )

4 pdf ( "LSNorm27coord . pdf " )

5 plot ( LSN , plot . type="coord" )

6 xv<−LSN$xv

7 l ines ( xv [ 1 : 9 , ] , col="RED" )

8 l ines ( xv [10 :18 , ] , col="BLUE" )

9 l ines ( xv [19 :27 , ] , col="GREEN" )

10 for ( i in 1 :9 ) l ines ( xv [ i+c (0 ,9 ,18) , ] )

11 dev . off ( )

12 pdf ( "LSNorm27benz . pdf " )

13 plot ( LSN , plot . type="benz" )

14 dev . off ( )

H.4.2. Code for Figure 2.

1 pdf ( "LSNormLoadParpc1 . pdf " )

2 plot ( x [ , 1 ] , xv [ , 1 ] , xlab="means" , ylab=" Loadings PC 1" )

3 l ines ( x [1 :9 ,1 ] , xv [1 :9 ,1 ] , col="RED" )

4 l ines ( x [10:18 ,1] , xv [10:18 ,1] , col="BLUE" )

5 l ines ( x [19:27 ,1] , xv [19:27 ,1] , col="GREEN" )

6 for ( i in 1 :9 ) l ines ( x [ i+c (0 ,9 ,18) ,1 ] , xv [ i+c (0 ,9 ,18) , 1 ] )

7 dev . off ( )

8 pdf ( "LSNormLoadParpc2 . pdf " )

9 plot ( x [ , 2 ] , xv [ , 2 ] , xlab=" standard deviations " , ylab=" Loadings PC 2" )

10 l ines ( x [1 :9 ,2 ] , xv [1 :9 ,2 ] , col="RED" )

11 l ines ( x [10:18 ,2] , xv [10:18 ,2] , col="BLUE" )

12 l ines ( x [19:27 ,2] , xv [19:27 ,2] , col="GREEN" )

13 for ( i in 1 :9 ) l ines ( x [ i+c (0 ,9 ,18) ,2 ] , xv [ i+c (0 ,9 ,18) , 2 ] )

14 dev . off ( )

H.4.3. Code for Figure 3.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 LSN<−FPCA( x ,ndim=2,defunc=LSNorm, deprin=linC )

4 yv<−LSN$yv ; pc<−LSN$pc ; n<−27

5 pdf ( "LSNorm27ave . pdf " )
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6 plot ( seq(−3 ,3 , length=100) , linC ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

7 dev . off ( )

8 pdf ( "LSNorm27pc1 . pdf " )

9 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

10 dev . off ( )

11 pdf ( "LSNorm27pc2 . pdf " )

12 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

13 dev . off ( )

H.4.4. Code for Figure 4.

1 pdf ( "LSNormPerturbpc1 . pdf " )

2 p<−seq(−3 ,3 , length=100) ; u<−rep (1/27 ,27) ; cc<−rainbow (25)

3 q<−linC (u , x )

4 plot (p ,q/sqrt (sum(q^2) ) , type=" l " , lwd=5,ylim=c ( .080 , .117) , xlab="x" , ylab="

Principal Curve 1" )

5 for ( i in 1 :25) {

6 q<−linC (u+ i * .001 *xv [ , 1 ] , x )

7 l ines (p ,q/sqrt (sum(q^2) ) , col=cc [ i ] )

8 }

9 dev . off ( )

10 pdf ( "LSNormPerturbpc2 . pdf " )

11 q<−linC (u , x )

12 plot (p ,q/sqrt (sum(q^2) ) , type=" l " , lwd=5,ylim=c ( .080 , .117) , xlab="x" , ylab="

Principal Curve 2" )

13 for ( i in 1 :25) {

14 q<−linC (u−i * .001 *xv [ , 2 ] , x )

15 l ines (p ,q/sqrt (sum(q^2) ) , col=cc [ i ] )

16 }

17 dev . off ( )

H.4.5. Code for Figure 5.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 KLN<−FPCA( x ,ndim=2,defunc=KLNorm, deprin=linC )

4 pdf ( "KLNorm27coord . pdf " )

5 plot (KLN, plot . type="coord" )

6 xv<−KLN$xv

7 l ines ( xv [ 1 : 9 , ] , col="RED" )
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8 l ines ( xv [10 :18 , ] , col="BLUE" )

9 l ines ( xv [19 :27 , ] , col="GREEN" )

10 for ( i in 1 :9 ) l ines ( xv [ i+c (0 ,9 ,18) , ] )

11 dev . off ( )

12 pdf ( "KLNorm27benz . pdf " )

13 plot (KLN, plot . type="benz" )

14 dev . off ( )

H.4.6. Code for Figure 6.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 KLN<−FPCA( x ,ndim=2,defunc=KLNorm, deprin=linC )

4 yv<−KLN$yv ; pc<−KLN$pc ; n<−27

5 pdf ( "KLNorm27ave . pdf " )

6 plot ( seq(−3 ,3 , length=100) , linC ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

7 dev . off ( )

8 pdf ( "KLNorm27pc1 . pdf " )

9 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

10 dev . off ( )

11 pdf ( "KLNorm27pc2 . pdf " )

12 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

13 dev . off ( )

H.4.7. Code for Figure 7.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 TRN<−FPCA( x ,ndim=2,defunc=TRNorm, deprin=linC )

4 pdf ( "TRNorm27coord . pdf " )

5 plot (TRN, plot . type="coord" )

6 xv<−TRN$xv

7 l ines ( xv [ 1 : 9 , ] , col="RED" )

8 l ines ( xv [10 :18 , ] , col="BLUE" )

9 l ines ( xv [19 :27 , ] , col="GREEN" )

10 for ( i in 1 :9 ) l ines ( xv [ i+c (0 ,9 ,18) , ] )

11 dev . off ( )

12 pdf ( "TRNorm27benz . pdf " )

13 plot (TRN, plot . type="benz" )

14 dev . off ( )
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H.4.8. Code for Figure 8.

1 x<−matrix (0 ,27 ,2)

2 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

3 TRN<−FPCA( x ,ndim=2,defunc=TRNorm, deprin=linC )

4 yv<−TRN$yv ; pc<−TRN$pc ; n<−27

5 pdf ( "TRNorm27ave . pdf " )

6 plot ( seq(−3 ,3 , length=100) , linC ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

7 dev . off ( )

8 pdf ( "TRNorm27pc1 . pdf " )

9 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

10 dev . off ( )

11 pdf ( "TRNorm27pc2 . pdf " )

12 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

13 dev . off ( )

H.4.9. Code for Figure 9.

1 cr<−rainbow ( 9 )

2 pdf ( " rat ionals . pdf " )

3 plot (0 :10 ,seq (0 ,1 , length=11) , type="n" , xlab="x" , ylab=" f ( x ) " )

4 x<−seq (0 ,10 , length=100)

5 for ( a in 1 :9 ) l ines ( x , a/ ( x+a ) , col=cr [ a ] )

6 dev . off ( )

H.4.10. Code for Figure 10.

1 x<−matrix (0 ,9 ,1)

2 x [ , 1 ]<−1:9

3 LSR<−FPCA( x ,ndim=2,defunc=LSRatio , deprin=linR )

4 pdf ( " LSRatiocoord . pdf " )

5 plot ( LSR , plot . type="coord" )

6 xv<−LSR$xv

7 l ines ( xv [ 1 : 9 , ] , col="RED" )

8 dev . off ( )

9 pdf ( " LSRatiobenz . pdf " )

10 plot ( LSR , plot . type="benz" )

11 dev . off ( )
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H.4.11. Code for Figure 11.

1 x<−matrix (0 ,9 ,1)

2 x [ , 1 ]<−1:9

3 LSR<−FPCA( x ,ndim=2,defunc=LSRatio , deprin=linR )

4 yv<−LSR$yv ; pc<−LSR$pc ; n<−9

5 pdf ( " LSRatioave . pdf " )

6 plot ( seq (0 ,10 , length=100) , linR ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

7 dev . off ( )

8 pdf ( " LSRatiopc1 . pdf " )

9 plot ( seq (0 ,10 , length=100) , linR ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

10 dev . off ( )

11 pdf ( " LSRatiopc2 . pdf " )

12 plot ( seq (0 ,10 , length=100) , linR ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

13 dev . off ( )

H.4.12. Code for Figure 12.

1 x<−matrix (0 ,9 ,1)

2 x [ , 1 ]<−1:9

3 SPR<−FPCA( x ,ndim=2,defunc=SPRatio , deprin=linR )

4 pdf ( " SPRatiocoord . pdf " )

5 plot ( SPR , plot . type="coord" )

6 xv<−SPR$xv

7 l ines ( xv [ 1 : 9 , ] , col="RED" )

8 dev . off ( )

9 pdf ( " SPRatiobenz . pdf " )

10 plot ( SPR , plot . type="benz" )

11 dev . off ( )

H.4.13. Code for Figure 13.

1 x<−matrix (0 ,9 ,1)

2 x [ , 1 ]<−1:9

3 SPR<−FPCA( x ,ndim=2,defunc=SPRatio , deprin=linR )

4 yv<−SPR$yv ; pc<−SPR$pc ; n<−9

5 pdf ( " SPRatioave . pdf " )

6 plot ( seq (0 ,10 , length=100) , linR ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

7 dev . off ( )
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8 pdf ( " SPRatiopc1 . pdf " )

9 plot ( seq (0 ,10 , length=100) , linR ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

10 dev . off ( )

11 pdf ( " SPRatiopc2 . pdf " )

12 plot ( seq (0 ,10 , length=100) , linR ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

13 dev . off ( )

H.4.14. Code for Figure 14.

1 source ( " smacofPlain .R" )

2 source ( " fpca .R" )

3 x<−matrix (0 ,27 ,2)

4 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

5 KLN<−FPCA( x ,ndim=2,defunc=KLNorm, deprin=linC )

6 diss<−sqrt ( as . dist (KLN$de ) )

7 KLMDS<−smacofSym( diss )

8 xv<−KLMDS$x ; de<− ( as . vector (KLMDS$dhat ) ) ^2 ; di<− ( as . vector (KLMDS$d) )^2

9 pdf ( "KLMDS27coord . pdf " )

10 plot ( xv , xlab="Dimension 1" , ylab="Dimension 2" )

11 l ines ( xv [ 1 : 9 , ] , col="RED" )

12 l ines ( xv [10 :18 , ] , col="BLUE" )

13 l ines ( xv [19 :27 , ] , col="GREEN" )

14 for ( i in 1 :9 ) l ines ( xv [ i+c (0 ,9 ,18) , ] )

15 dev . off ( )

16 pdf ( "KLMDS27benz . pdf " )

17 mm<−max( c (de , di ) )

18 plot ( matrix ( c (0 ,mm,0 ,mm) ,2 ,2) , type="n" , xlab="Squared Curve−distances " , ylab="

Squared Euclidean Distances " , axes=FALSE )

19 points (de , di )

20 abline (h=0)

21 abline ( v=0)

22 abline (0 ,1 , col="RED" )

23 for ( i in 1 : length (de ) )

24 l ines ( rbind ( c (de [ i ] , 0 ) ,c (de [ i ] , di [ i ] ) ) )

25 dev . off ( )

H.4.15. Code for Figure 15.

1 source ( " smacofPlain .R" )

2 source ( " fpca .R" )

3 x<−matrix (0 ,27 ,2)
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4 x [ , 1 ]<−−4:4; x [ , 2 ]<−c ( rep ( . 5 , 9 ) , rep (1 ,9 ) , rep (2 ,9 ) )

5 KLN<−FPCA( x ,ndim=2,defunc=KLNorm, deprin=linC )

6 diss<−sqrt ( as . dist (KLN$de ) )

7 KLMDS<−smacofSym( diss )

8 xv<−KLMDS$x ; yv<−xv%*%solve ( crossprod ( xv ) )

9 pc<−KLN$pc ; n<−27

10 pdf ( "KLMDS27ave . pdf " )

11 plot ( seq(−3 ,3 , length=100) , linC ( rep (1/n ,n) ,x ) , xlab=" " , ylab="Average Curve" ,

type=" l " )

12 dev . off ( )

13 pdf ( "KLMDS27pc1 . pdf " )

14 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 1 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 1" )

15 dev . off ( )

16 pdf ( "KLMDS27pc2 . pdf " )

17 plot ( seq(−3 ,3 , length=100) , linC ( yv [ , 2 ] , x ) , type=" l " , xlab=" " , ylab=" Principal

Curve 2" )

18 dev . off ( )

H.4.16. Code for Figure 16.

1 pdf ( " lebec_data . pdf " )

2 plot (0 :23 ,seq (0 ,max( leboz , na .rm=TRUE) , length=24) , type="n" , xlab="Hour" , ylab="

Ozone ppm" )

3 for ( i in 1:372) l ines (0 :23 , leboz [ i , ] , col="BLUE" )

4 dev . off ( )

H.4.17. Code for Figure 17.

1 indx<−which ( apply ( leboz ,1 , function ( x ) length (which ( is . na ( x ) ) ) ) <5)

2 lebsvd<−imputeMat ( leboz [ indx , ] , fitSVDCenter , pars=3 , niter =500)

3 pdf ( " lebecSVDave . pdf " )

4 plot (0 :23 , lebsvd$extra [ [ 1 ] ] , type=" l " , col="BLUE" , xlab="Hour" , ylab="Ozone ppm" )

5 dev . off ( )

6 pdf ( " lebecSVDpc1 . pdf " )

7 plot (0 :23 , lebsvd$extra [ [ 2 ] ] $v [ , 1 ] , type=" l " , col="BLUE" , xlab="Hour" , ylab="Ozone

ppm" )

8 dev . off ( )

9 pdf ( " lebecSVDpc2 . pdf " )

10 plot (0 :23 , lebsvd$extra [ [ 2 ] ] $v [ , 2 ] , type=" l " , col="BLUE" , xlab="Hour" , ylab="Ozone

ppm" )

11 dev . off ( )

12 pdf ( " lebecSVDpc3 . pdf " )
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13 plot (0 :23 , lebsvd$extra [ [ 2 ] ] $v [ , 3 ] , type=" l " , col="BLUE" , xlab="Hour" , ylab="Ozone

ppm" )

14 dev . off ( )

H.4.18. Code for Figure 18.

1 indx<−which ( apply ( leboz ,1 , function ( x ) length (which ( is . na ( x ) ) ) ) <5)

2 lebsvd<−imputeMat ( leboz [ indx , ] , fitSVDCenter , pars=3 , niter =500)

3 cc<−rainbow (25)

4 pdf ( " lebecSVDPerturbpc1 . pdf " )

5 p<−lebsvd$extra [ [ 1 ] ]

6 q<−lebsvd$extra [ [ 2 ] ] $v [ , 1 ]

7 plot (0 :23 ,p/sqrt (sum(p^2) ) , type=" l " , lwd=5,ylim=c (− .05 , .35) , xlab="Hour" , ylab="

Principal Curve 1" )

8 for ( i in seq(−24,24,by=2) ) {

9 r<−p+.005 * i *q

10 l ines (0 :23 , r/sqrt (sum( r^2) ) , col=cc [ i ] )

11 }

12 dev . off ( )

13 pdf ( " lebecSVDPerturbpc2 . pdf " )

14 p<−lebsvd$extra [ [ 1 ] ]

15 q<−lebsvd$extra [ [ 2 ] ] $v [ , 2 ]

16 plot (0 :23 ,p/sqrt (sum(p^2) ) , type=" l " , lwd=5,ylim=c (− .05 , .35) , xlab="Hour" , ylab="

Principal Curve 2" )

17 for ( i in seq(−24,24,by=2) ) {

18 r<−p+.005 * i *q

19 l ines (0 :23 , r/sqrt (sum( r^2) ) , col=cc [ i ] )

20 }

21 dev . off ( )

22 pdf ( " lebecSVDPerturbpc3 . pdf " )

23 p<−lebsvd$extra [ [ 1 ] ]

24 q<−lebsvd$extra [ [ 2 ] ] $v [ , 3 ]

25 plot (0 :23 ,p/sqrt (sum(p^2) ) , type=" l " , lwd=5,ylim=c (− .05 , .35) , xlab="Hour" , ylab="

Principal Curve 3" )

26 for ( i in seq(−24,24,by=2) ) {

27 r<−p+.005 * i *q

28 l ines (0 :23 , r/sqrt (sum( r^2) ) , col=cc [ i ] )

29 }

30 dev . off ( )

H.4.19. Code for Figure 19.
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1 indx<−which ( apply ( leboz ,1 , function ( x ) length (which ( is . na ( x ) ) ) ) <5)

2 lebsvd<−imputeMat ( leboz [ indx , ] , fitSVDCenter , pars=3 , niter =500)

3 pdf ( " lebec_ f i t ted . pdf " )

4 plot (0 :23 ,seq (0 , .10 , length=24) , type="n" , xlab="Hour" , ylab="Ozone ppm" )

5 for ( i in 1 : length ( indx ) ) l ines (0 :23 , lebsvd$fi t ted [ i , ] , col="BLUE" )

6 dev . off ( )

H.4.20. Code for Figure 20.

1 indx<−which ( apply ( leboz ,1 , function ( x ) length (which ( is . na ( x ) ) ) ) <5)

2 lebsvd<−imputeMat ( leboz [ indx , ] , fitSVDCenter , pars=3 , niter =500)

3 pdf ( " lebecSVDloads1 . pdf " )

4 plot ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u[ , 1 ] , ylab=

" Loadings Principal Curve 1" )

5 l ines ( lowess ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u

[ , 1 ] ) , col="RED" , lwd=3)

6 dev . off ( )

7 pdf ( " lebecSVDloads2 . pdf " )

8 plot ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u[ , 2 ] , ylab=

" Loadings Principal Curve 2" )

9 l ines ( lowess ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u

[ , 2 ] ) , col="RED" , lwd=3)

10 dev . off ( )

11 pdf ( " lebecSVDloads3 . pdf " )

12 plot ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u[ , 3 ] , ylab=

" Loadings Principal Curve 3" )

13 l ines ( lowess ( as . Date (rownames ( leboz [ indx , ] ) , "%m−%d−%y" ) , lebsvd$extra [ [ 2 ] ] $u

[ , 3 ] ) , col="RED" , lwd=3)

14 dev . off ( )

H.4.21. Code for Figure 21.

1 indx<−which ( apply ( leboz ,1 , function ( x ) length (which ( is . na ( x ) ) ) ) <5)

2 lebsvd<−imputeMat ( leboz [ indx , ] , fitSVDCenter , pars=3 , niter =500)

3 pdf ( " lebecSVDphase1 . pdf " )

4 plot ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 1 ] , type=" l " , xlab="Average " , ylab="

Principal Curve 1" , col="RED" )

5 text ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 1 ] , as . character (0 :23) )

6 dev . off ( )

7 pdf ( " lebecSVDphase2 . pdf " )

8 plot ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 2 ] , type=" l " , xlab="Average " , ylab="

Principal Curve 2" , col="RED" )

9 text ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 2 ] , as . character (0 :23) )
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10 dev . off ( )

11 pdf ( " lebecSVDphase3 . pdf " )

12 plot ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 3 ] , type=" l " , xlab="Average " , ylab="

Principal Curve 3" , col="RED" )

13 text ( lebsvd$extra [ [ 1 ] ] , lebsvd$extra [ [ 2 ] ] $v [ , 3 ] , as . character (0 :23) )

14 dev . off ( )

H.5. Code for Tables.
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