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ABSTRACT. The paper discusses iterative methods for linear systems and var-

ious ways to accelerate their convergence. The results are then applied to non-

linear fixed point iterations, in particular to multidimensional scaling. The pur-

pose of the paper is didactic and it contains absolutely nothing that is original.

In fact, it closely follows Sidi [2008]. We do provide code in R.

1. INTRODUCTION

In this paper we are interested in accelerating the convergence of the general non-
linear fixed point iteration

(1) x(k+1) = F(x(k)).

The iteration (1) can be linearized in the neighborhood of a fixed point x?. This
gives

x(k+1) = F(x(k)) = F(x? +(x(k)− x?))≈ x? +F ′(x?)(x(k)− x?),

which can be written as

x(k+1) ≈ F ′(x?)x(k) +(I−F ′(x?))x?.

This shows that in the neighborhood of a fixed point the non-linear iteration be-
haves approximately like the linear iteration

(2) x(k+1) = T x(k) +b.

This suggest that if we have methods to accelerate (2), then these can be extended
at least locally to the general non-linear iteration (1). So we start by studying the
linear iterations 2.
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2. MATRICES

Suppose T is a real n×n matrix. We suppose T is semi-simple, i.e. there is an n×n
real nonsingular matrix S and a real diagonal matrix Λ such that T = SΛS−1. The
elements of Λ are the eigenvalues of T , while the columns of S are the eigenvectors.
Thus a semi-simple matrix has n linearly independent eigenvectors.

The results in this note can be extended, with some effort, to general matrices that
are not semi-simple [Sidi and Bridger, 1988]. In that case we have to use the
Jordan or Schur canonical form. Extending the results to semi-simple matrices
with complex eigenvalues and eigenvectors is easy.

We create an example by using the code in B.1.

1 > set.seed(12345)

2 > print(s<-matrix(rnorm(16),4,4))

3 [,1] [,2] [,3] [,4]

4 [1,] 0.5855288 0.6058875 -0.2841597 0.3706279

5 [2,] 0.7094660 -1.8179560 -0.9193220 0.5202165

6 [3,] -0.1093033 0.6300986 -0.1162478 -0.7505320

7 [4,] -0.4534972 -0.2761841 1.8173120 0.8168998

8 > print(t<-s%*%diag(c(.9,.5,.5,.1))%*%solve(s))

9 [,1] [,2] [,3] [,4]

10 [1,] 0.84056482 0.413111525 1.0076204 0.3266863

11 [2,] 0.41141976 1.021384862 1.2886200 0.4105122

12 [3,] -0.05178042 -0.276632049 -0.3366922 -0.2015567

13 [4,] -0.28288032 0.003306532 0.2704800 0.4747425

14 > print(eval<-eigen(t)$values)

15 [1] 0.9 0.5 0.5 0.1

As the example shows, the n eigenvalues λi are not necessarily distinct. Suppose
there are d(T ) ≤ n distinct eigenvalues, which we will write as λ 1 < λ 2 < · · · <
λ d(T ). Each λ s has a multiplicity ns, with the ns adding up to n.

The characteristic polynomial of T is the monic polynomial 1 of degree n

πT (z) =
n

∏
i=1

(x−λi) =
d(T )

∏
s=1

(z−λ s)
ns .

1A monic polynomial has its leading coefficient equal to one.
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The minimal polynomial of T is the monic polynomial of degree d(T ) defined by

πT (z) =
d(T )

∏
s=1

(z−λ s).

Clearly the minimal polynomial divides the characteristic polynomial. Also πT (λi)=
πT (λi) = 0 for all i. The characteristic and minimal polynomials of our example
can be computed by the code B.2.

1 > library(polynom)

2 > p1<-polynomial(c(-.9,1))

3 > p2<-polynomial(c(-.5,1))

4 > p3<-polynomial(c(-.5,1))

5 > p4<-polynomial(c(-.1,1))

6 > print(cpol<-p1*p2*p3*p4)

7 0.0225 - 0.34*x + 1.34*x^2 - 2*x^3 + x^4

8 > print(mpol<-p1*p2*p4)

9 -0.045 + 0.59*x - 1.5*x^2 + x^3
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FIGURE 1. Characteristic and Minimal Polynomial

We define matrix functions from scalar functions as

f (T ) = S f (Λ)S−1,

where f (Λ) is diagonal with elements f (λi). Thus if π(z) = c0 + c1x + · · ·+ crzr

then π(T ) = c0I + c1T + · · ·+ crT r. The Cayley-Hamilton Theorem says that
π(T ) = π(T ) = 0. This follows easily from π(T ) = Sπ(Λ)S−1 and π(Λ) = 0.
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3. EQUATIONS

Now b is an n vector and suppose x = T x + b or, equivalently, (I − T )x = b is
solvable. If x̃ = S−1x and b̃ = S−1b then (I− T )x = b is solvable if and only if
(I−Λ)x̃ = b̃ is solvable. And this last system is solvable if and only if for all i with
λi = 1 we have b̃i = 0. The general solution is

x? =
n

∑
i=1

θisi,

with

θi =

 b̃i
1−λi

if λi 6= 1,

arbitrary if λi = 1 and b̃i = 0.

The solution is unique if and only if λi 6= 1 for all i. In our example, using the code
in B.3, we see

1 > print(b<-rnorm(4))

2 [1] 0.7796219 1.4557851 -0.6443284 -1.5531374

3 > print(xstar<-solve(diag(4)-t,b))

4 [1] -0.80218719 -0.03206138 -0.05898958 -2.55546279

4. ITERATIONS

Start the iterations with x(0) ∈ Rn, and define

(3) x(k+1) = T x(k) +b.

Assume that all λi 6= 1. Suppose x? is the unique solution of x = T x+b, and define
e(k) ∆=x(k)− x?. Then e(k+1) = Te(k) and thus e(k) = T ke(0). Let ẽ(k) = S−1e(k) =
Λkẽ(0). Thus x(k)→ x? if and only if ẽ(k)→ 0, which happens for any e(0) if and
only if Λk→ 0, i.e. if and only if maxn

i=1 |λi|= maxd(T )
s=1 |λ s|< 1. The iteration (3)

converges globally (from any starting point) if and only if the spectral radius, i.e.
the largest eigenvalue in modulus, satisfies ‖T‖∞ < 1.

For convergent sequences it is fairly simply to study convergence speed. Note that
‖e(k)‖2 = {ẽ(0)}′Λ2kẽ(0) = Σ

d(T )
s=1 λ

2k
s σs, where the σs are the sum of squares of the

elements of ẽ(0) corresponding to the ns eigenvalues equal to λ s. Suppose, without
loss of generality, that 0 < ‖T‖∞ = |λ 1|< 1. Then, if σ1 > 0,

‖e(k)‖2 = σ1λ
2k
1

{
1+

d(T )

∑
s=2

(
λ s

λ 1

)2k
σs

σ1

}
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and thus

(4)
‖e(k+1)‖
‖e(k)‖

≈ |λ 1|

{
1+

1
2

d(T )

∑
s=2

(
λ s

λ 1

)2(k+1)
σs

σ1

}{
1− 1

2

d(T )

∑
s=2

(
λ s

λ 1

)2k
σs

σ1

}
≈

≈ |λ 1|

(
1+

1
2

d(T )

∑
s=2

[(
λ s

λ 1

)2(k+1)

−
(

λ s

λ 1

)2k
]

σs

σ1

)
≈ |λ 1|.

If we happen to stumble onto an initial estimate for which σ1 = 0 then (at least in
exact arithmetic) the next largest eigenvalue takes over. The code in B.4 does 100
iterations, and then plots of the elements of e(k) and the ratio in (4).

Note that the expansion in (4) of the ratio of successive errors remains valid if
|λ 1| = 1. In that case ẽ(k) converges (in exact arithmetic) to the vector ẽ? with
elements

ẽ?
i = lim

k→∞

ẽ(k)
i =

0 if λi < 1,

ẽ(0)
i if λi = 1,

and thus xk converges to x? +Sẽ?.

5. SOLUTION FROM ITERATIONS

Define the minimal polynomial of T with respect to a vector y. It is the monic
polynomial π of lowest degree for which π(T )y = 0. Again using ỹ = S−1y we see
that we must have π(Λ)ỹ = 0. This means that

πT,y(z) = ∏
s∈I(y)

(z−λ s),

where I(y) is the index set for which τs > 0, and where the τs are the sum of squares
of the elements of ỹ corresponding with the ns eigenvalues equal to λ s.

Thus the minimal polynomial of T with repect to y is unique and divides the mini-
mal polynomial of T . Its degree is less than or equal to d(T ). If π is another monic
polynomial for which π(T )y = 0 then deg(π) > deg(πT,y) and πT,y divides π .

Now consider the minimal polynomial of T with respect to e(0) = x(0)− x?, and

suppose it has degree d(T,e(0)). Suppose πT,e(0)(z) = ∑
d(T,e(0))
s=0 cszs, with cd(T,e(0)) =

1 and d(T,e(0))≤ d(T ). By definition πT,e(0)(T )e(0) = 0, which means

d(T,e(0))

∑
s=0

csT s(x(0)− x?) =
d(T,e(0))

∑
s=0

cs(x(s)− x?) = 0,
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FIGURE 2. Convergence and Convergence Speed

or

(5) x? =
∑

d(T,e(0))
s=0 csx(s)

∑
d(T,e(0))
s=0 cs

.

Note ∑
d(T,e(0))
s=0 cs = πT,e(0)(1) 6= 0, because πT,e(0) divides the characteristic polyno-

mial πT , and T does not have an eigenvalue equal to one. Result (5) shows we can
find x? by a suitable weighted average of the iterates x(k), provided we know πT,e(0) .
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Let us illustrate and verify (5) for our example by the chunk in B.5. Remember
that the degree of the minimal polynomial π(T ) is 3, so we use 4 iterations.

1 > print(c<-as.vector(mpol))

2 [1] -0.045 0.590 -1.500 1.000

3 > print(sol<-colSums(c*xx[1:4,])/sum(c))

4 [1] -0.80218719 -0.03206138 -0.05898958 -2.55546279

5 > print(xstar)

6 [1] -0.80218719 -0.03206138 -0.05898958 -2.55546279

Since πT,e(0) depends on x?, the result (5) does not seem to be very useful. By a
simple trick, however, we can actually make it ready for computation. Define

u(k) ∆=∆x(k) = x(k+1)− x(k),

and now consider πT,u(0) . Note that u(k) = T ku(0), and thus the speed of convergence
of u(k) to zero is equal to that of e(k), i.e. it is |λ 1|.

It can (and will) be shown that the polynomials πT,u(0) and πT,e(0) are identical.
Assuming this for the moment, it follows that

(6)
d(T,u(0))

∑
s=0

csT su(0) =
d(T,u(0))

∑
s=0

csu(s) = 0.

But this implies

(7) Uc =−ud(T,u(0)),

where

U =
[
u(0) | u(1) | · · · | u(d(T,u(0))−1)

]
.

This means we can solve (7) for c, and then use (5) to compute x?. See code
chunk B.6. Note that U is 4×3 and we use the Moore-Penrose inverse to solve (7).

1 > print(ulft<-t(uu[1:3,]))

2 [,1] [,2] [,3]

3 [1,] 2.010802 0.32653082 -0.01391910

4 [2,] 2.650832 0.39877135 -0.02571096

5 [3,] -2.064965 0.09108946 0.17830499

6 [4,] -1.157277 -1.66799165 -0.85827927

7 > print(urgt<--uu[4,])

8 [1] 0.1230457 0.1545541 -0.1207913 0.3553813

9 > print(uinv<-ginv(ulft))
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10 [,1] [,2] [,3] [,4]

11 [1,] -0.4435363 -0.3552426 -1.238054 -0.2393672

12 [2,] 3.7458212 3.4252807 7.287715 1.3506446

13 [3,] -6.6909106 -6.1698379 -12.492658 -3.4670993

14 > print(cc<-c(drop(uinv%*%urgt),1))

15 [1] -0.045 0.590 -1.500 1.000

It remains to be shown that πT,u(0) ≡ πT,e(0) . We follow Sidi [2008, Theorem 3.3].
Because πT,e(0)e(0) = 0 and u(k) = (T − I)e(k) we have

0 = (T − I)πT,e(0)e(0) = πT,e(0)(T − I)e(0) = πT,e(0)u(0).

This uses the fact that any two polynomials in T commute. Thus πT,u(0) divides
πT,e(0) . Because πT,u(0)u(0) = 0 we have

0 = πT,u(0)u(0) = πT,u(0)(I−T )e(0) = (T − I)πT,u(0)e(0)

Since T − I is non-singular we have πT,u(0)e(0) = 0, which implies that πT,e(0) di-
vides πT,u(0) . Because both polynomials are monic, they are identical.

Thus this section shows that we can find the solution of the linear system from the
first d(T,u(0))+2 iterations x(0),x(1), · · · ,x(d(T,u(0))+1).

6. CYCLIC MPE/RRE

In the previous section we assumed that d(T,u(0)) was known. In most practi-
cal situations r will be equal to n, the order of the matrix (and the degree of the
characteristic polynomial). Let us consider the system Uc = 0, or more explictly

(8)
[
u(0) | u(1) | u(r)

]


c0

c1
...

cr

= 0.

If r = d(T,u(0)) then the unique vector in the null=space of U will be proportional
to the coefficients of the minimal polynomial. Taking r too large leads to linear
dependencies in (8), but since we use Moore-Penrose inverses (least squares solu-
tions) our results will still be true. We are just doing too much work.

If r is too small, then (8) will be an over-determined system, which generally does
not have a solution. But we can still compute some approximate solution, which
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then serves as an approximation to x?. This leads to the general idea of choosing
an r which is not too big and not too small, computing x(0),x(1), · · · ,x(r+1), and
solve (8) by least squares with some identification condition to find a unique c, and
then use (5) to compute an approximation to x?. Chossing a relatively small r is
the most interesting case from the practical point of view.

Once we have done such a cycle to find a new approximation to x? we can start a
new cycle, using the current approximation of x? for the new x(0). We then repeat
cycles until convergence.

6.1. MPE. Minimal Polynomial Extrapolation (MPE) was first discussed by Cabay
and Jackson [1976]. In MPE we identify the solution to (8) by requiring cr = 1.
This means that if r = d(T,u(0)) we will indeed find the coefficients of the minimal
polynomial. But if r < d(T,u(0)) we minimize the sum of squares∥∥∥∥∥∥∥∥∥∥

[
u(0) | u(1) | · · · | u(r−1)

]


c0

c1
...

cr−1

+u(r)

∥∥∥∥∥∥∥∥∥∥

2

,

and then set

x? ≈
x(r) +∑

r−1
s=0 csx(s)

1+∑
r−1
s=0 cs

In Appendix C we see an implementation of MPE in R. Actually both MPE and
RRE are implemented as options of the single function sidi(). If r = 0 we use
the simple iteration x(k+1) = T x(k) + b. If r ≥ 1 we solve a least squares system
with r predictors to find the r + 1 elements of c, which are then used to compute
the weighted mean approximating x?.

6.2. RRE. Reduced Rank Extrapolation (RRE), introduced independently by Mešina
[1977] and Eddy [1979], is another way of tackling the system (8). We minimize
the sum of squares c′U ′Uc, requiring that c′e = 1, where e is a vector will all ele-
ments equal to one. The solution is simply

c =
1

e′(U ′U)−1e
(U ′U)−1e.

The RRE option in the sidi() program in Appendix C does not actually compute
the cross-product U ′U , however, because that is computationally wasteful and will
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introduce ill-conditioning if r is large. Instead, we minimize the sum of squares∥∥∥∥∥∥∥∥∥∥
[
u(0)−u(r) | u(1)−u(r) | · · · | u(r−1)−u(r)

]


c0

c1
...

cr−1

+u(r)

∥∥∥∥∥∥∥∥∥∥

2

,

and then set

cr = 1−
r−1

∑
s=0

cs,

and

x? ≈
r

∑
s=0

csx(s) = x(r) +
r−1

∑
s=1

cs(x(s)− x(r)).

6.3. Stabilization. It has been suggested, for example by Roland et al. [2007], to
stabilize polynomial extrapolation algorithms by starting the new cycle not with
the extrapolated x?, but by performing another basic iteration first. Thus we use
x(i,0), · · · ,x(i,k+1) to compute x(i)

? by MPE or RRE, and then we set x(i+1,0) = F(x(i)
? ).

This has been observed to improve both global and local convergence at relatively
little extra cost.

7. EXAMPLES

7.1. Small Example. The small example we have used throughout the paper has
a matrix T of order 4, with d(T ) = 3. With a random start 222 linear iterations are
needed to get an error of less than 1E-10.

In Table 1 we give the number of cycles for running the example in B.7. We run
MME and RRE with and without stabilization. Both converge in one iteration for
r = 3. How MPE and RRE behave for different values of r depends very much on
the starting point. There are cases in which either MPE or RRE does not converge
(indicated by F in the tables), or converges to a vector which is not the solution of
the original system.

Because the example is so small almost all time is overhead, not computation, so it
does not make sense to compare running times. Note that the number of cycles is a
somewhat misleading performance indicator, because MPE/F and RRE/F compute
the basic iteration map r+1 times in each cycle, while MPE/T and RRE/T compute
it r + 2 times. Thus the number of cycles makes RRE and MPE with larger r
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look too good. Table 1 we also give the number of function evaluations. Because
this does not take overhead corresponding with cycling into account, this actually
makes RRE and MPE with larger r look too bad.

Insert Table 1 about here

7.2. Positive Definite Example. A larger, and better behaved, example with a
symmetric positive definite T of order 10 is in code chunk B.8. MPE and RRE are
indistinguishable, both in number of cycles used and number of fucntion evluations
used. Clearly at some point it is not useful any more to increase r, and in this
example r = 1 is not very good either. Table 2 gives the number of cycles and the
number of function evaluations for different values of r.

Insert Table 2 about here

7.3. Nonlinear Example. Finally, we apply this to the multidimensional scaling
(MDS) example also studied in Rosman et al. [2008] and De Leeuw [2008]. The
code to generate the data is in code chunk B.9 and the code for the MDS computa-
tions in C.2.

For an MDS example with 10 parameters and 15 dissimilarities, starting at x equal
to 1,2, · · · ,10, we find the results in Table 3. There is little difference between
MPE and RRE if they both work, but generally RRE seems to be slightly more
fragile (in the sense that it does not converge or converges to the wrong solution).
We also give empirical estimates of the convergence rate (the ratio of the norm
of the change of the solution over a cycle) in Table 4 and the time the algorithm
takes (using elapsed time from system-time()) in Table 5. We see that in this
example for r = 3 or r = 4 MPE is about 8-10 times as fast as the basic SMACOF
algorithm. Of course this is highly implementation dependent and the figures may
come out differently if we use compiled code. It is unclear as yet if the failures
of RRE are bugs in the code, occur because of loss of precision, or are cases of
sublinear convergence to a saddle point.

Insert Table 3 about here

Insert Table 4 about here

Insert Table 5 about here
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APPENDIX A. TABLES

TABLE 1. Small Example

r MPE/F MPE/T RRE/F RRE/T

0 214 (214) 108 (216) 214 (214) 108 (216)
1 108 (206) 47 (141) F 20 (60)
2 39 (117) 32 (128) F 32 (128)
3 1 (4) 1 (5) 1 (4) 1 (5)

TABLE 2. Positive Definite Example

r MPE/F MPE/T RRE/F RRE/T

0 94(94) 48(96) 94(94) 48(96)
1 52(104) 20(60) 52(104) 20(60)
2 18(54) 11(44) 18(54) 11(44)
3 11(44) 8(40) 11(44) 8(40)
4 7(35) 6(36) 7(35) 6(36)
5 6(36) 5(35) 6(36) 5(35)

TABLE 3. Multidimensional Scaling Example

r MPE/F MPE/T RRE/F RRE/T

0 191(191) 96(192) 191(191) 96(192)
1 63(126) 21(63) F F
2 21(63) 11(44) F F
3 9(36) 7(35) 10(40) 7(35)
4 6(30) 5(30) 7(35) 5(30)
5 5(30) 4(28) 5(30) 5(35)
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TABLE 4. Multidimensional Scaling Rate

r MPE/F MPE/T RRE/F RRE/T

0 0.9031 0.8157 0.9430 0.8892
1 0.4104 0.3543 F 0.1701
2 0.3777 0.0903 F F
3 0.0707 0.0212 0.1781 F
4 0.0114 0.0035 F 0.0178
5 0.0037 0.0002 F 0.0060

TABLE 5. Multidimensional Scaling Time

r MPE/F MPE/T RRE/F RRE/T

0 0.680 0.343 0.687 0.346
1 0.257 0.104 F F
2 0.100 0.063 F 0.066
3 0.072 0.048 0.076 F
4 0.084 0.047 F 0.077
5 0.071 0.040 F 0.093
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APPENDIX B. CODE CHUNKS

B.1. Example Chunk.

1 set.seed(12345)

2 print(s<-matrix(rnorm(16),4,4))

3 print(t<-s%*%diag(c(.9,.5,.5,.1))%*%solve(s))

4 print(eval<-eigen(t)$values)

B.2. Polynom Chunk.

1 library(polynom)

2 p1<-polynomial(c(-.9,1))

3 p2<-polynomial(c(-.5,1))

4 p3<-polynomial(c(-.5,1))

5 p4<-polynomial(c(-.1,1))

6 print(cpol<-p1*p2*p3*p4)

7 print(mpol<-p1*p2*p4)

8 pdf("cpol.pdf")

9 plot(cpol,ylab="Characteristic Polynomial")

10 abline(h=0)

11 dev.off()

12 pdf("mpol.pdf")

13 plot(mpol,ylab="Minimal Polynomial")

14 abline(h=0)

15 dev.off()

B.3. Equation Chunk.

1 print(b<-rnorm(4))

2 print(xstar<-solve(diag(4)-t,b))

B.4. Iterations Chunk.

1 print(x0<-rnorm(4))

2 xx<-matrix(0,100,4)

3 ee<-matrix(0,100,4)

4 xx[1,]<-x0

5 for (i in 2:100) xx[i,]<-drop(t%*%xx[i-1,])+b
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6 ee<-t(t(xx)-xstar)

7 eup<-max(ee); elw<-min(ee)

8 pdf("error.pdf")

9 plot(1:100,ee[,1],type="l",col="RED",xlab="Iteration",

ylab="Error",ylim=c(elw,eup))

10 lines(1:100,ee[,2],type="l",col="BLUE")

11 lines(1:100,ee[,3],type="l",col="GREEN")

12 lines(1:100,ee[,4],type="l",col="MAGENTA")

13 abline(h=0)

14 dev.off()

15 enorm<-sqrt(rowSums(ee^2))

16 eratio<-enorm[2:100]/enorm[1:99]

17 pdf("eratio.pdf")

18 plot(1:99,eratio,type="l",col="RED",xlab="Iteration",ylab

="Error Ratio")

19 abline(h=.9)

20 dev.off()

B.5. Iteration Solution Chunk.

1 print(cc<-as.vector(mpol))

2 print(sol<-colSums(cc*xx[1:4,])/sum(cc))

3 print(xstar)

B.6. Change Solution Chunk.

1 library(MASS}

2 print(ulft<-t(uu[1:3,]))

3 print(urgt<--uu[4,])

4 print(uinv<-ginv(ulft))

5 print(cc<-c(drop(uinv%*%urgt),1))

B.7. Small Example Chunk. set.seed(12345) s<-matrix(rnorm(16),4,4) t<-sx0<-
rnorm(4) b<-rnorm(4)
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B.8. Symmetric Example Chunk.

1 set.seed(12345)

2 x<-matrix(rnorm(10000),100,100)

3 t<-crossprod(x)/500

4 b<-rnorm(100)

5 x0<-rnorm(100)

6 xstar<-solve(diag(100)-t,b)

B.9. MDS Example Chunk.

1 set.seed(12345)

2 mkMDS(10,15)

3 x0<-1:10
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APPENDIX C. PROGRAM

C.1. Main.

1

2 s i d i <− f u n c t i o n ( f , x i n i t , r , i tmax =100 , eps =1e−10 , method="mpe" ,

v e r b o s e =FALSE , n o i s y =FALSE , s t a b l e =TRUE) {

3 xo ld<− x i n i t ; i t e l <− 1 ; xx<−m a t r i x ( 0 , r +2 , l e n g t h ( x i n i t ) ) ; oaps

<− 1 ; o e r r<− 1 ; aps<− I n f ; s<−1 / ( r +1)

4 r e p e a t {

5 xx [ 1 , ]<−xo ld

6 f o r ( i i n 2 : ( r +2) ) xx [ i , ] <− f ( xx [ i −1 , ] )

7 i f ( r = = 0 ) xnew<−xx [ 2 , ]

8 i f ( r > 0 ) {

9 i f ( method = = " r r e " ) {

10 u<− t ( d i f f ( xx ) ) ; v<−rowMeans ( u )

11 ac<− l s f i t ( u [ ,− ( r +1) ]−u [ , r +1] ,−u [ , r + 1 ] , i n t e r c e p t =FALSE)

$ c o e f

12 cc<−c ( ac ,1−sum ( ac ) )

13 xnew<−drop ( cc%*%xx [−( r +2) , ] )

14 }

15 e l s e {

16 u<− d i f f ( xx )

17 i f ( r = = 1 ) uu<− a s . m a t r i x ( u [ 1 , ] )

18 e l s e uu<− t ( u [ 1 : r , ] )

19 cc<−c ( l s f i t ( uu ,−u [ r + 1 , ] , i n t e r c e p t =FALSE) $ coef , 1 )

20 xnew<−drop ( cc%*%xx [−( r +2) , ] ) / sum ( cc )

21 }

22 }

23 x s t b<− f ( xnew )

24 naps<−norm ( xold−xnew ) ; c r a t<−naps / oaps

25 n e r r<−norm ( xnew−x s t b ) ; e r a t<−n e r r / o e r r

26 i f ( s t a b l e ) xnew<−x s t b

27 i f ( v e r b o s e ) {

28 c a t ( " I t e r a t i o n : " ,

29 formatC ( i t e l , d i g i t s =6 , wid th =6) ,

30 " Change : " ,

31 formatC ( naps , d i g i t s =10 , wid th =15 , f o r m a t =" f " ) ,

32 " E r r o r : " ,

33 formatC ( n e r r , d i g i t s =10 , wid th =15 , f o r m a t =" f " ) ,
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34 " CRat io : " ,

35 formatC ( c r a t , d i g i t s =10 , wid th =15 , f o r m a t =" f " ) ,

36 " ERat io : " ,

37 formatC ( e r a t , d i g i t s =10 , wid th =15 , f o r m a t =" f " ) ,

38 " \ n " )

39 }

40 i f ( n o i s y ) {

41 c a t ( " S o l u t i o n : " ,

42 f o r m a t ( xnew , d i g i t s =10 , wid th =15 , f o r m a t =" f " ) ,

43 " \ n " )

44 }

45 i f ( ( i t e l = = i tmax ) | | ( n e r r < eps ) ) b r e a k ( )

46 i t e l <− i t e l +1

47 xo ld<−xnew

48 oaps<−naps

49 o e r r<−n e r r

50 }

51 r e t u r n ( l i s t ( i t e l = i t e l , aps =naps , e r r = n e r r , c r a t = c r a t , e r a t = e r a t , x=

xnew ) )

52 }

C.2. Auxilaries.

1

2 mkMDS<− f u n c t i o n ( p ,m) {

3 asum<−m a t r i x ( 0 , p , p ) ; ab<−a r r a y ( 0 , c ( p , p ,m) )

4 f o r ( i i n 1 :m) {

5 x<−m a t r i x ( rnorm (100 *p ) , 100 , p )

6 a<−c r o s s p r o d ( x ) ; ab [ , , i ]<−a

7 asum<−asum+a

8 }

9 e i g<−e i g e n ( asum ) ; k<−e i g $ v e c t o r s ; d<−1 / s q r t ( o u t e r ( e i g $ v a l u e s ,

e i g $ v a l u e s ) )

10 f o r ( i i n 1 :m) ab [ , , i ]<− ( c r o s s p r o d ( k , ab [ , , i ] )%*%k ) *d

11 aa <<−ab ; d e l<− r c h i s q (m, 1 ) ; d e l <<−d e l / norm ( d e l )

12 }

13

14 fmds<− f u n c t i o n ( x ) {

15 m<−dim ( aa ) [ 3 ] ; p<− l e n g t h ( x ) ; asum<−m a t r i x ( 0 , p , p ) ; d<− r e p ( 0 ,m)

16 f o r ( i i n 1 :m) {
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17 d [ i ]<− s q r t ( sum ( aa [ , , i ] * o u t e r ( x , x ) ) )

18 asum<−asum +( d e l [ i ] / d [ i ] ) * aa [ , , i ]

19 }

20 r e t u r n ( drop ( asum%*%x ) )

21 }

22

23 f l i n <− f u n c t i o n ( z ) drop ( t%*%z ) +b

24

25 norm<− f u n c t i o n ( x ) s q r t ( sum ( x ^2 ) )
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