

JAN DE LEEUW

ABSTRACT. Data collected between February 2006 and February 2007 with an O3 and PM-2.5 monitor in Lebec, California are analyzed. Extensive analysis is not possible, because of the short timespan, but we give descriptive statistics, mostly as plots. The influence of wildfires on $PM_{2.5}$ and of I-5 truck traffic is discussed briefly. It is noted that there are two schools in close vicinity. In order to get more information about longterm developments, including prediction, more extensive and systematic monitoring is necessary.

Date: June 1, 2008.

Contents

List of Figures	3
List of Tables	4
1. Introduction	5
2. Ozone	7
3. PM-2.5	9
4. Regional Comparison	11
References	12
Appendix A. Standards	13
Appendix B. CARB Letter	14
Appendix C. R Code	18
C.1. Recodes	18
C.2. Standards	18
C.3. Plots	19

LIST OF FIGURES

1	State and Federal Standards	13
2	Ozone, Hour by Hour	24
3	Ozone Daily Average	25
4	Ozone Daily Maximum	26
5	Ozone Distribution	27
6	Ozone Hourly Average	28
7	Ozone Hourly Distribution	29
8	Average Maximum Ozone Level by Weekday	30
9	Ozone Eight Hour Series	31
10	Ozone Eight Hour Distribution	32
11	PM-2.5, Hour by Hour	33
12	PM-2.5 Daily Average	34
13	PM-2.5 Daily Maximum	35
14	PM-2.5 Distribution	36
15	PM-2.5 Hourly Average	37
16	PM-2.5 Hourly Distribution	38
17	PM-2.5 Hourly Distribution (Detail)	39
18	Average Median PM-2.5 Level by Weekday	40

LIST OF TABLES

1	One-Hour State Ozone Standard Exceedances	41
2	Eight-Hour State Ozone Standard Exceedances	42
3	PM-2.5 Annual Averages	43

1. INTRODUCTION

At the request of the *Mountain Communities Town Council (MCTC)* the *California Air Resources Control Board (CARB)* placed a mobile air pollution monitor at Peace Valley Road in Lebec. The monitor gave hourly measurements of both O3 (ozone) and PM-2.5 (fine particulate matter) between February 2006 and February 2007. For location and pictures of the site, we refer to

http://www.arb.ca.gov/qaweb/site.php?s_arb_code=15990.

The data do not seem to be available any more from the CARB site, but you can get about seven months worth from

http://www.cuddyvalley.org/airmonitor.

Since Lebec is in the San Joaquin Valley Air District, which is a non-attainment area for ozone and particulate matter, we expect to see fairly high levels of pollution. It is interesting to single out Lebec, because it is at an altitude of over 4000 feet, in a rural area without much agricultural or industrial activity. On the other hand, it is adjacent to I-5, which has an average annual daily traffic count of 70,000 cars, of which 20,000 are are trucks, with about 80% of the trucks having 5+ axels. The percentage of cars that are trucks is close to 30%, and it is growing. Lebec is also in the southern part of the San Joaquin Valley, where pollution from the northern part accumulates.

In order to place the Lebec measurements in context, it is important to know the federal and state standards. A comprehensive overview is in Appendix A. For ozone the California one hour standard is 0.09 *ppm* (parts per million) and the eight hour standard is 0.07 *ppm*. Thus, for example, if the average ozone level over any eight consecutive hours in a particular location on a particular day is over 0.0749 *ppm*, then there is a public health problem, and if the problem repeats over consecutive years there is a violation.

Observe that in establishing compliance one first rounds the measurements to two decimals, and then compares the rounded number with the standard. The federal eight hour standard for ozone is 0.08 *ppm*, less strict than the California one. We shall concentrate on the state standards in our data analysis. When we calculate standards, we generally follow the federal guidelines in EPA [1999] and EPA [1998].

For PM-2.5 California only has an annual standard of $12 \ \mu g/m^3$ (i.e. microgram per cubic meter). There are no hourly or daily standards.There is a federal 24 hour standard of $35 \ \mu g/m^3$ and a federal annual standard of $15 \ \mu g/m^3$.

Unfortunately the Lebec monitor did not measure any additional pollutants and was only making observations over a one year period. Since pollution is partly dependent on weather and traffic conditions, observations for a single year are of rather limited value. A permanent monitor at the El Tejon middle school, or alternatively access to the extensive monitoring results of Tejon Ranch Company, would be highly desirable. And the air district might want to reconsider its decision that a monitor next to the I-5 in the Tejon Pass is not really needed.

This decision also should take into account the fact that health effects of air pollution are more serious at higher altitudes. California already has a stricter standard for CO pollution above 4000 feet, in particular in the Lake Tahoe area. And, more generally (Michell et al, Journal of the American Medical Association, 242, 1979, 1163-1168),

Current National Ambient Air Standards for sulfur oxides, particulates, oxidants, carbon monoxide, nitrogen oxides, hydrocarbons, and lead are probably too lenient for an altitude of 1500 m and above.

The fact that there are 1000 middle and high school kids close to a polluting freeway through a mountain pass would seem to mandate monitoring for ozone, particulate matter, nitrous oxide, and carbon monoxide. There are many publications from the lab of Constantinos Sioutas at USC on pollution near Southern Californian freeways, especially on freeways with a high percentage of heavy truck traffic, which makes it even sensible to monitor for PM 0.18, ultrafine particulate matter.

2. Ozone

For ozone we have measurements in Lebec at 8415 time points (hours) on 363 different days. Thus some days and some hours are missing, because the monitor was not working properly. In Figure 2 we plot ozone for all time points. The red curve draws a smoothed representation, the green horizontal lines are the 0.07 *ppm* and 0.09 *ppm* standards.

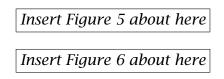

Insert Figure 2 about here

Figure 3 gives the average and Figure 4 the maximum ozone levels over the 24 hours of each day. Again, the red curves show trend and the green lines show standards (if applicable).

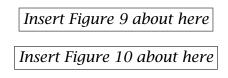
```
Insert Figure 3 about here
Insert Figure 4 about here
```

Since the monitor did not work every day, and not every hour of the day, there are some missing data, but these have been taken into account in computing averages. If we look at the maximum ozone level during the day, we see 13 days where ozone was over the one hour California standard of 0.09 *ppm* at least once (i.e. the maximum was larger than 0.0949).

We have also plotted the distribution of ozone level over the 7100 hours in Figure 5 and the average ozone level by hour of day in Figure 6. Violations of the one hour standard are in the tail of the histogram (last two bins). We also see that ozone attains its highest levels around three pm (in the summer).

We can look at the distribution of ozone over the hours of the day in more detail by using boxplots. This is done in Figure 7. In a boxplot the box covers the interquartile range, i.e. the top of the box is at the 75th percentile, while the bottom is at the 25th percentile. Thus the boundaries of the box cover half of the observations. In the middle of the box we see the median, i.e. the point below (and above) which there is 50% of the observations that can still be considered in the normal range, the dots are outliers, and they usually require attention.

The boxplot shows clearly that the median ozone level starts to increase at 6am, then increases to about 2pm, and then decreases to the night level at 9pm. This is, of course, related to temperature. But, no matter what the cause, it implies that ozone levels are highest during the working day (and the school day). The highest variation in ozone levels over the year is between 3pm and 6pm (where the boxes are the largest). Top ozone levels during the evening and night are around midnight.


Insert Figure 7 about here

It is also interesting to look at average ozone levels at the various weekdays. These are plotted in Figure 8, which shows the average maximum ozone level (so the maximum is computed over 24 hours, the average over about 52 weekdays).

Insert Figure 8 about here

Differences are nor large, but they are interesting. We can rule out meteorology as a cause here, because the different days of the week do not have different weather patterns. This suggests that the ozone that causes these differences is generated by human activities, either locally or in the San Joaquin. Again, whatever the cause, the ozone levels are higher on work days (or school days).

To study the state eight hour standard we compute 24 - 7 = 17 running averages of length 8 for each day. If hours are missing, there are fewer running averages, but in any case we compute the maximum for each day. The maximum eight hour average for each day is given in Figure 9, and the distribution of the maximum eight hour averages in Figure 10. The horizontal green line in Figure 9 is the California standard of 0.07 *ppm*. There are 53 violations of this standard and 11 violations of the federal NAAQS.

3. PM-2.5

The situation for PM-2.5 is very different from that of ozone in many respects. We have 7346 measurements over 343 days. They are plotted in Figure 11.

Insert Figure 11 about here

What is mostly obvious from this plot is the huge influence of local wildfires. In September, for example, the Day Fire burned for almost all month (although not always close to where the monitor was).

Let's first look at the standard. The annual California standard is 12 $\mu g/m^3$. If we look at the average of our 7346 observations,

we find 13.181 $\mu g/m^3$, which is over the standard. Not by much, only by 0.09 standard deviations, but nevertheless over the annual state standard. One could argue the results are biased because of the wildfires, but wildfires are part of the environment and should be taken into account.

Insert Figure 12 about here
Insert Figure 13 about here

The daily averages are in Figure 12 and daily maxima in Figure 13. They clearly show that PM-2.5 measurements are more variable than ozone measurements. The horizontal green line in Figure 12 show the federal 24 hour standard of 35 $\mu g/m^3$, for which there are 6 violations.

Insert Figure 14 about here Insert Figure 15 about here

The histogram on the left of Figure 14 shows PM-2.5 levels for 7346 hours. It is pretty useless because of the fire-driven outliers. Figure 15 shows average PM-2.5 level by hour of the day, indicating higher levels in the evening and the night. This is perhaps related to the higher traffic volume on the I-5 during commuting hours, and higher truck volume during the evening and early morning. Again, the red curve smoothes the plot to get a clearer picture of trend.

As with ozone, we have also made a boxplot of the PM-2.5 data per hour of the day. It is given in Figure 16. The plot is pretty useless, because the huge outliers make the boxes really small. So we repeated the plot and only plotted the part for which the vertical axis is below 40. This, in Figure refF:zb, is much clearer. It shows the same trend, of course, as Figure 15.

Insert Figure 16 about here

Insert Figure 17 about here

Finally we show ozone levels as a function of weekday. Because of the many outlierswe have computed the median ozone level for each day, and then the average of all sundays, mondays, and so on. See Figure 18. Again, this rules out meteorology. We see 30% higher PM-2.5 levels during working days. It is difficult to imagine that this could be due to anything but traffic.

4. REGIONAL COMPARISON

In the tables discussed in this section, we compare Lebec with other communities in Southern California, first on the one hour state ozone standard in Table 1 and then on the annual average PM-2.5 in Table 3. Rows of both tables are ordered from bad to good.

Insert Table 1 about here Insert Table 2 about here Insert Table 3 about here

Comparison data come from CARB, but we have to be somewhat careful here, because CARB computed a different estimate of the annual PM-2.5 average (11.85). It is unclear what causes these differences. although treatment of missing data and rounding are obvious candidates. It is clear, however, that as far as ozone is concerned Maricopa, Piru, Ojai and Los Angeles are much better off than Lebec. I assume this is at least partly because of smog accumulating at the south end of the Valley.

For the eight hour standard Kern County is uniformly bad, with Santa Clarita catching up. Lebec closely follows, and is worse than Burbank, Pasadena, Glendora, Simi Valley, and Los Angeles. The

eight hour standard seems to give more consistent and stable results than the one hour standard, which is fortunate, because it also supposedly has more relevance for public health.

For PM-2.5 Lebec is worse off than Piru, Simi Valley and about equal to Reseda. A small part of this may be wildfires (although Piru, Simi Valley, and Reseda must also have gotten some of the Day Fire smoke), and a large part is probably traffic, in particular truck traffic.

References

- EPA. Guideline on Data Handling Conventions for the 8-Hour Ozone NAAQS. Technical Report EPA-454/R-98-017, United States Environmental Protection Agency, December 1998.
- EPA. Guideline on Data Handling Conventions for the PM NAAQS. Technical Report EPA-454/R-99-008, United States Environmental Protection Agency, April 1999.


APPENDIX A. STANDARDS

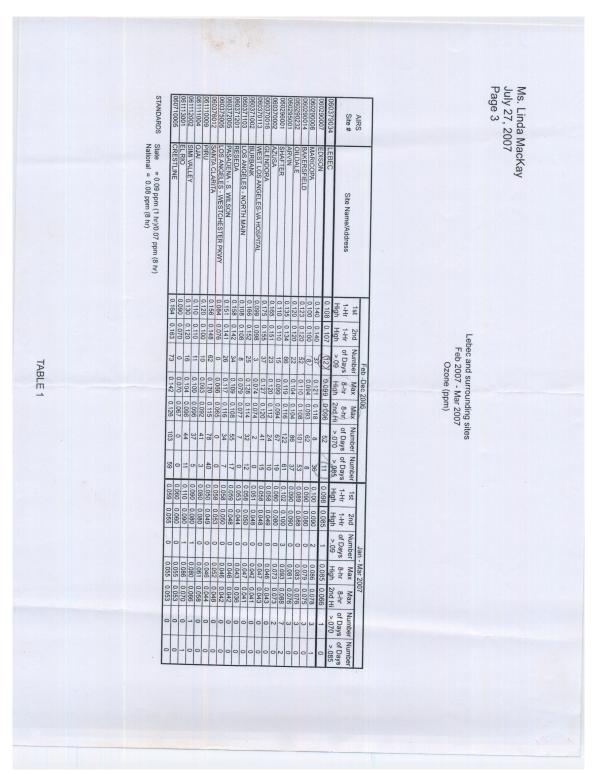

		Ambient	Air Qual	ity Standa	rds	
	Averaging	California Standards ¹		Fe	ederal Standards ²	
Pollutant	Time	Concentration ³	Method ⁴	Primary ^{3,5}	Secondary ^{3,6}	Method 7
$O_{\text{Torns}}(O_{\text{t}})$	1 Hour	0.09 ppm (180 µg/m ³)	Ultraviolet	—	Same as	Ultraviolet
Ozone (O ₃)	8 Hour	0.070 ppm (137 µg/m ³)	Photometry	0.08 ppm (157 µg/m ³)	Primary Standard	Photometry
Respirable Particulate	24 Hour	50 µg/m ³	Gravimetric or	150 μg/m ³	Same as	Inertial Separation
Matter (PM10)	Annual Arithmetic Mean	20 µg/m ³	Beta Attenuation	-	Primary Standard	and Gravimetric Analysis
Fine Particulate	24 Hour	No Separate St	ate Standard	35 µg/m ³	Same as	Inertial Separation
Matter (PM2.5)	Annual Arithmetic Mean	12 µg/m ³	Gravimetric or Beta Attenuation	15 µg/m ³	Primary Standard	and Gravimetric Analysis
Carbon	8 Hour	9.0 ppm (10mg/m ³)	Nag Diagonius	9 ppm (10 mg/m ³)	None	Non-Dispersive Infrared Photometry
Monoxide	1 Hour	20 ppm (23 mg/m ³)	Non-Dispersive Infrared Photometry (NDIR)	35 ppm (40 mg/m ³)	None	(NDIR)
(CO)	(NDIN) 8 Hour (Lake Tahoe) 6 ppm (7 mg/m ³)	—	-	_		
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	—	Gas Phase Chemiluminescence	0.053 ppm (100 µg/m ³)	Same as	Gas Phase
	1 Hour	0.25 ppm (470 µg/m ³)		_	Primary Standard	Chemiluminescence
	Annual Arithmetic Mean	—		0.030 ppm (80 µg/m ³)	-	Spectrophotometry
Sulfur Dioxide	24 Hour	0.04 ppm (105 µg/m ³)	Ultraviolet	0.14 ppm (365 μg/m ³)	-	(Pararosaniline Method)
(SO ₂)	3 Hour	—	Fluorescence		0.5 ppm (1300 µg/m ³)	,
	1 Hour	0.25 ppm (655 µg/m ³)		_	—	-
	30 Day Average	1.5 µg/m ³		_		_
Lead ⁸	Calendar Quarter	_	Atomic Absorption	1.5 µg/m³	Same as Primary Standard	High Volume Sampler and Atomic Absorption
Visibility Reducing Particles	8 Hour	Extinction coefficient of 0 visibility of ten miles or n miles or more for Lake T particles when relative h 70 percent. Method: Be Transmittance through F	nore (0.07 — 30 ahoe) due to umidity is less than ta Attenuation and	No		
Sulfates	24 Hour	25 μg/m ³	Ion Chromatography		Federal	
Hydrogen Sulfide	1 Hour	0.03 ppm (42 µg/m ³)	Ultraviolet Fluorescence		Standards	
Vinyl Chloride ⁸	24 Hour	0.01 ppm (26 µg/m ³)	Gas Chromatography			

FIGURE 1. State and Federal Standards

APPENDIX B. CARB LETTER

	Air Resources Board	
Linda S. Adams Secretary for	1001 Street • P O Box 2815	Arnold Schwarzenegg
nvironmental Protection	Sacramento, California 95812 • www.arb.ca.gov	Governor
July 27, 2007		
Ms. Linda MacKay,	President	
Mountain Counties 7 P. O. Box 178	own Council	
Frazier Park, CA 93	225	
Dear Ms. MacKay:		
As you know, the Air	Resources Board (ARB) conducted an air moni	
	r (PM _{2.5}) were sampled to characterize the air q ed corridor. I am pleased to convey our findings	
	ebec site as a six-month (later extended to 12 n il 2005 letter to Catherine Witherspoon, former A	
monitoring initiatives	beyond our established network of size	pport of air
autumn and early win		season in the
	it the area is already classified as non-attainmer	
I also advised you that		t tor ozone and
		ter that status or
the air quality control	initiatives adopted as a result of that status.	ter that status or
the air quality control	initiatives adopted as a result of that status.	ter that status or
The ARB's air quality ozone data collected a PM _{2.5} concentrations,	analysis staff has reviewed the particulate matter analysis staff has reviewed the particulate matter at Lebec. The staff found ozone concentrations i with the excention of some impacts from fine to	r (PM _{2.5}) and
The ARB's air quality ozone data collected a PM _{2.5} concentrations,	initiatives adopted as a result of that status.	ter that status or r (PM _{2.5}) and
The ARB's air quality ozone data collected a PM _{2.5} concentrations,	analysis staff has reviewed the particulate matter analysis staff has reviewed the particulate matter at Lebec. The staff found ozone concentrations i with the excention of some impacts from fine to	ter that status or r (PM _{2.5}) and
The ARB's air quality ozone data collected a PM _{2.5} concentrations,	analysis staff has reviewed the particulate matter analysis staff has reviewed the particulate matter at Lebec. The staff found ozone concentrations i with the excention of some impacts from fine to	ter that status or r (PM _{2.5}) and
The ARB's air quality ozone data collected a PM _{2.5} concentrations,	analysis staff has reviewed the particulate matter analysis staff has reviewed the particulate matter at Lebec. The staff found ozone concentrations i with the excention of some impacts from fine to	r (PM _{2.5}) and
the air quality control The ARB's air quality ozone data collected a PM _{2.5} concentrations, appear to reflect prima	a that any monitoring we conducted would not a initiatives adopted as a result of that status. analysis staff has reviewed the particulate matter at Lebec. The staff found ozone concentrations to with the exception of some impacts from fires in arily localized impacts.	ter that status or or (PM _{2.5}) and o be fairly low; September 2006,
the air quality control The ARB's air quality ozone data collected a PM _{2.5} concentrations, appear to reflect prima	a that any monitoring we conducted would not a initiatives adopted as a result of that status. analysis staff has reviewed the particulate matte at Lebec. The staff found ozone concentrations i with the exception of some impacts from fires in arily localized impacts.	ter that status or or (PM _{2.5}) and o be fairly low; September 2006,

Ms. Linda MacKay July 27, 2007 Page 4

24 Hour PM2.5 Feb 2006 - Mar 2007 Data from available sites in area surrounding Lebec

		2006	2007	2006
AIRS		Days	Days	24-hour
OILE #	oile Name/Address	over	over	Annual
0000		35 ug/m3	35 ug/m3	Average
060379034	LEBEC*	თ	0	11 85
060290014	IBAKERSFIFI D	ľ	4	11.00
10052000		29	22	18.65
2000/0000	ALUSA	8	л	15 50
60371002	BURBANK	2	-	10.00
060371103	I OS ANGELES NOBTLI MAINI	0	-	16.50
060271204	DESERVICE - NORTH MAIN	8	6	15.56
1071 10000	RESEUA	1	0	12 94
060372005	PASADENA - S. WILSON	-		
061110009	PIRI	-	0	10.00
00111000		0	0	9.17
2007111.00	SIMI VALLEY	0	0	10 24
061113001	FIRIO		0	10.34
100011100	LE NO	0	0	9.86

Standards National = 35 ug/m3 (24-hour) State = 12 ug/m3 (annual)

*BAM data for Lebec, rather than the Federal Reference Method, is included in this table. The Lebec 24-hr annual average is based on the sampling period March 2006 - March 2007 rather than the 2006 calender year.

TABLE 2

THE LEBEC AIR MONITOR

APPENDIX C. R CODE

C.1. **Recodes.** We start with code that transform the Excel files into a matrix format we can more easily use in R, and that leaves room for missing data.

library(gregmisc)

```
fill<<u>--function</u>(<u>mat</u>) {
     mtab<u><-as</u>. <u>data</u>. <u>frame</u>(<u>tapply</u>(<u>mat</u>[,4],<u>mat</u>[,2:3],<u>sum</u>))
 5 mord \leq mtab [order(as.Date(rownames(mtab), "%m-%d-%y")),]
     n \leq -nrow(mord); m \leq -ncol(mord)
     rr<u><-as</u>.Date(<u>rownames</u>(mord), "%m-%d-%y")
     first<-rr[1]-1; last<-rr[n]</pre>
     nn<<u>-as</u>.<u>integer</u>(last-first); newmat<<u>-as</u>.<u>data</u>.<u>frame</u>(<u>matrix</u>(NA,nn,m))
10 <u>names</u>(newmat)<<u>-names</u>(mord)
     for (k in 1:nn) {
                sel < -which ((first+k) = = rr)
                <u>if</u> (<u>length</u>(sel) > 0) newmat[k,] \leq mord[sel,]
                <u>rownames</u>(newmat) [k] \leq - format (first+k, "%m-%d-%y")
15
                }
     return(newmat)
     }
     lebdt<-read.xls("o3.xls")</pre>
20 leboz<u>←</u>fill(lebdt)
     dump("leboz", file="leboz.R")
     lebdt<-read.xls("pm25.xls")
     lebpm<_ fill(lebdt)</pre>
25 dump("lebpm", <u>file</u>="lebpm.R")
```

C.2. **Standards.** This is R code to calculate the number of violations of the state and federal standards.

```
is.valid<-function(x,std) {
    ind<-which(!is.na(x)); jnd<-which(!is.na(x[10:21]))
    if (length(ind)==0) return(NA)
    m<-max(x[ind])
5 if (m > std) return(m)
    if (length(jnd)>=9) return(m) else return(NA)
    }
```

```
oz1hr < -function (mat, std=.0949) {
10 <u>length(which(apply(mat,1,function(x) is</u>.valid(x,std))>std))
      }
      oz8hr<u><-function</u>(mat, stand=.0849) {
                  ab \leq t(\underline{as}, \underline{matrix}(\underline{mat})); bc \leq array(NA, \underline{dim}(ab)); nn \leq prod(\underline{dim}(ab)) - 7
15
                  for (i in 1:nn)
                              {
                              aa < -ab[i:(i+7)]
                              if (\underline{length}(\underline{which}(\underline{lis},\underline{na}(aa))) > 5) bc[i] <-mean(aa, <u>ma</u>.me=TRUE)
                              }
20 ab \leq t(bc); n \leq nrow(ab); c < rep(NA, n)
      for (i in 1:n) {
                  ca <-which(!is.ma(ab[i,]))
                  <u>if</u> (<u>length</u>(ca)>=16) <u>c</u>[i] <-max(ab[i, ca])
            }
25 <u>return</u>(<u>length</u>(<u>which</u>(<u>c</u>>stand)))
      }
```

C.3. **Plots.** These is the code for making various plots (not the boxplots).

```
dateo<u><-as</u>.Date(<u>rownames</u>(leboz), "%m-%d-%y")
     datep<u><-as</u>.Date(<u>rownames</u>(lebpm), "%m-%d-%y")
     my.mean<-function (x) {
 5
                ind \leq -which(!is.ma(x))
                <u>if</u> (<u>length</u>(ind) == 0) <u>return</u>(NA)
                return(mean(x[ind]))
     }
10 my.max-function(x) {
                ind \leq which(!is.ma(x))
                <u>if</u> (<u>length</u>(ind) == 0) <u>return</u>(NA)
                return(max(x[ind]))
     }
15
     ozvec<u><-as</u>.<u>vector</u>(<u>t</u>(<u>as</u>.<u>matrix</u>(leboz)))
     ozlab \leq -as. <u>vector</u>(<u>t</u>(<u>matrix</u>(<u>rownames</u>(leboz)), <u>length</u>(<u>rownames</u>(leboz)), 24)))
     pdf("oztot.pdf")
20 plot(as.Date(ozlab, "%m-%d-%y"), ozvec, type="1", col="blue", ylab="ppm")
```

```
ind<<u>-which</u>(<u>!is</u>.<u>na</u>(ozvec))
     kk<u><--</u>1:<u>length</u>(ozvec)
     a<-loess(ozvec[ind]~kk[ind])
     <u>lines(as</u>.Date(ozlab[ind], "%m-%d-%y"), predict(a), col="red", lwd=3)
25 <u>abline</u>(h=.0749,<u>col</u>="green")
     abline(h=.0949,col="green")
     dev.off()
     mm(ozlab)
30
     pdf("ozave.pdf")
     ozave<<u>-apply</u>(leboz,1,my.mean)
     plot (dateo, ozave, type="l", col="blue", ylab="ppm")
     ind<<u>-which</u>(<u>!is</u>.<u>na</u>(ozave))
35 kk<u><-1:length</u>(ozave)
     a \leq loess(ozave[ind] \\ kk[ind])
     lines(dateo[ind], predict(a), col="red", lwd=3)
     dev.off()
40 pdf("ozmax.pdf")
     ozmax<<u>-apply</u>(leboz,1,my.max)
     plot(dateo,ozmax,type="l",<u>col</u>="blue",ylab="ppm")
     ind<-which(!is.ma(ozmax))
     kk<u><--</u>1:length(ozmax)
45 a \leq loess(ozmax[ind] \\ kk[ind])
     lines(dateo[ind], predict(a), col="red", lwd=3)
     abline(h=.0949,col="green")
     dev.off()
50 pmvec <- as. vector (\underline{t}(\underline{as}, \underline{matrix}(\text{lebpm})))
     pmlab \leq -as. <u>vector</u>(<u>t</u>(<u>matrix</u>(<u>rownames</u>(lebpm)), <u>length</u>(<u>rownames</u>(lebpm)), 24)))
     pdf("pmtot.pdf")
     plot(as.Date(pmlab, "%m-%d-%y"), pmvec, type="l", col="blue", ylab="ppm")
55 ind<-which(!is.na(pmvec))
     kk<-1:length(pmvec)
     a<-loess(pmvec[ind]~kk[ind])
     <u>lines</u>(<u>as</u>.Date(pmlab[ind], "%m-%d-%y"), <u>predict</u>(a), <u>col</u>="red", lwd=3)
     dev.off()
60
     rm(pmlab)
     pdf("pmave.pdf")
```

```
pmave<<u>-apply</u>(lebpm, 1, my. mean)
 65 plot (datep, pmave, type="l", <u>col</u>="blue", ylab="ppm")
      ind<-which(!is.na(pmave))
      kk<u><--</u>1:<u>length</u>(pmave)
      a<-loess(pmave[ind]~kk[ind])
      lines(datep[ind], predict(a), col="red", lwd=3)
 70 <u>abline</u>(h=35,<u>col</u>="green")
      dev.off()
      pdf("pmmax.pdf")
      pmmax<<u>-apply</u>(lebpm, 1, my. max)
 75 plot(datep,pmmax,type="l",<u>col</u>="blue",ylab="ppm")
      ind \leq -which(!is.ma(pmmax))
      kk<u><--</u>1:<u>length</u>(pmmax)
      a \leq loess (pmmax[ind] \sim kk[ind])
      lines(datep[ind], predict(a), col="red", lwd=3)
 80 <u>dev</u>.<u>off</u>()
      pdf("ozhist.pdf")
      hist(ozvec, col="magenta", xlab="ppm", main="")
      dev.off()
 85
      pdf("ozhr.pdf")
      ozhr<u><-apply</u>(leboz, 2, my. mean)
      plot(0:23,ozhr,type="l",col="blue",ylab="ppm",xlab="Hour")
      kk<u><-</u>1:<u>length</u>(ozhr)
 90 a \leq loess(ozhr_kk)
      lines(0:23, predict(a), col="red", lwd=3)
      dev.off()
      pdf("pmhist.pdf")
 95 <u>hist</u> (pmvec, <u>col</u>="magenta", xlab="mug/m3", main="")
      dev.off()
      pdf("pmhr.pdf")
      pmhr<-apply(lebpm, 2, my. mean)
100 plot(0:23,pmhr,type="l",col="blue",ylab="ppm",xlab="Hour")
      kk \leq 1: length (pmhr)
      a \leq loess(pmhr_kk)
      lines(0:23, predict(a), col="red", lwd=3)
      dev.off()
105
      oz8runs<u><-function</u>(<u>mat</u>) {
```

```
22
                                                  JAN DE LEEUW
                  ab \leq t(\underline{as}, \underline{matrix}(\underline{mat})); bc \leq array(NA, \underline{dim}(ab)); nn \leq prod(\underline{dim}(ab)) = 7
                  for (i in 1:nn)
                             {
110
                            aa < -ab[i:(i+7)]
                            if (length(which(!is.na(aa)))>5) bc[i]<-mean(aa,na.rm=TRUE)
                             }
       return(t(bc))
       }
115
       ozruns<-oz8runs(leboz)
       pdf("oz8hist.pdf")
       hist(as.vector(ozruns), col="magenta", xlab="ppm", main="")
120 <u>dev</u>.<u>off</u>()
       pdf("oz8.pdf")
       y<u><-apply</u>(ozruns,1,my.max)
       plot(dateo,y,type="l",<u>col</u>="blue",ylab="ppm")
125 \operatorname{ind}_{\underline{\leftarrow which}}(\underline{!is}.\underline{na}(y))
       kk \leq 1: \underline{length}(y)
       a \leq loess(y[ind] kk[ind])
       lines(dateo[ind], predict(a), col="red", lwd=3)
       abline(h=.0749,col="green")
130 <u>dev</u>.<u>off</u>()
       pdf("ozmaxweek.pdf")
      w<u>-</u>weekdays(<u>as</u>.Date(<u>rownames</u>(leboz), "%m-%d-%y"))
       a<-apply(leboz,1,max)
       i \leq -which(!is.ma(a))
  5 \underline{\mathbf{m}} - \underline{\mathbf{tapply}}(a[i], w[i], \underline{\mathbf{mean}})
       labs<u><--</u>("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday
             ")
       n<_m[labs]
       plot(n,ylab="ppm",axes=FALSE,type="l",xlab="weekdays",col="BLUE",main="
             Average_Maximum_Ozone_per_Weekday")
       axis(side=1,at=1:7,labels=labs, col="RED", cex.axis=.6)
 10 <u>axis</u>(side=2,<u>col</u>="RED")
       dev.off()
       pdf("pmmedianweek.pdf")
      weekdays (as. Date (rownames (lebpm), "m-d-w"))
 15 a \leq -apply(lebpm, 1, \underline{function}(x) \underline{median}(x, \underline{ma}, \underline{metruE}))
       i \leq -which(!is.na(a))
```

```
m<mark><−tapply</mark>(a[i],w[i],<mark>mean</mark>)
```

```
labs<--c("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday
")</pre>
```

n<mark><--</mark>m[labs]

```
20 plot(n,ylab="ppm",axes=FALSE,type="1",xlab="weekdays",<u>col</u>="BLUE",main="
            Average_Median_PM-2.5_per_Weekday")
            axis(side=1,at=1:7,labels=labs,col="RED",cex.axis=.6)
            axis(side=2,col="RED")
```

dev.off()

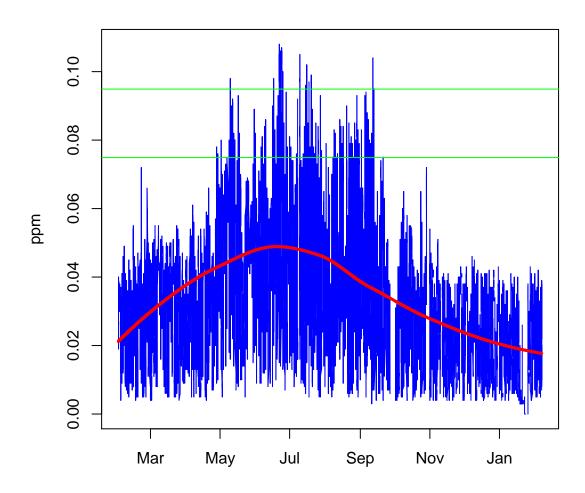


FIGURE 2. Ozone, Hour by Hour

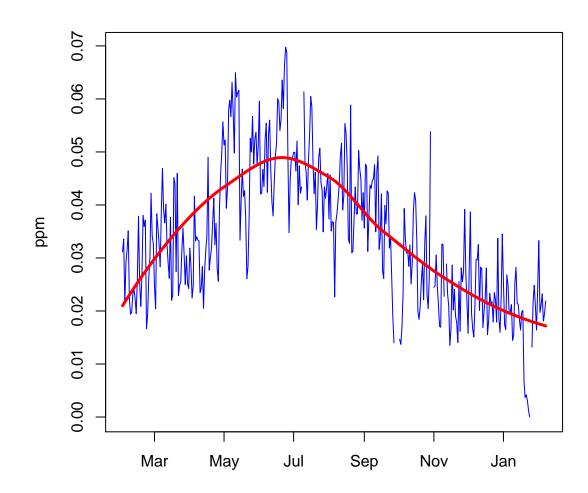


FIGURE 3. Ozone Daily Average

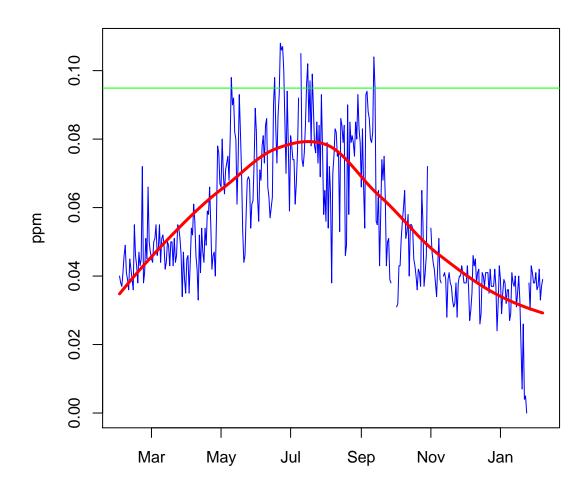


FIGURE 4. Ozone Daily Maximum

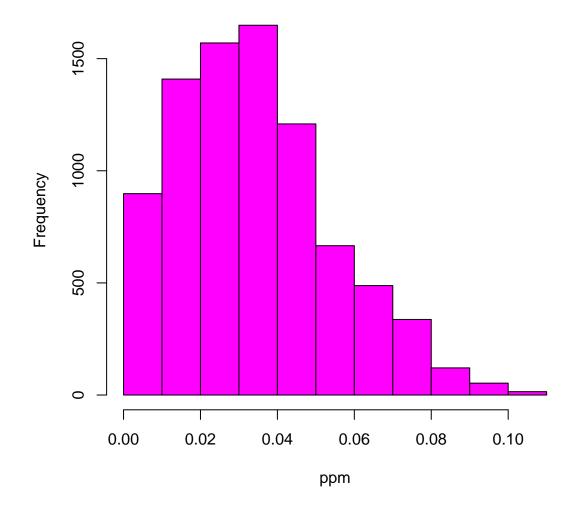


FIGURE 5. Ozone Distribution

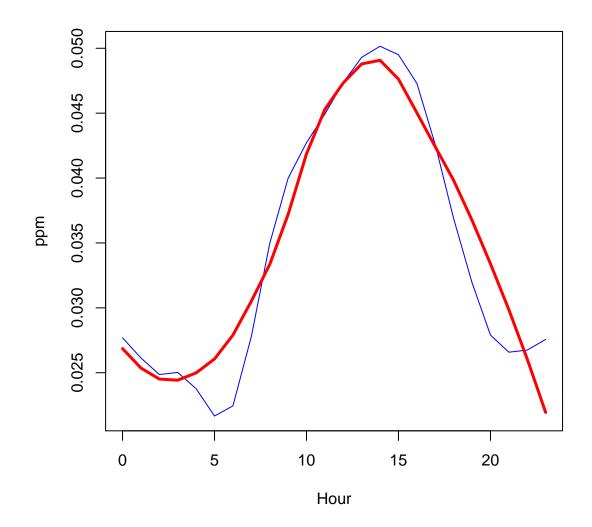


FIGURE 6. Ozone Hourly Average

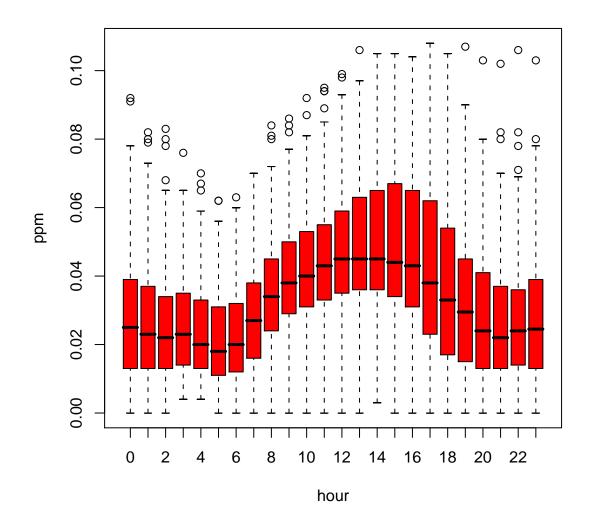
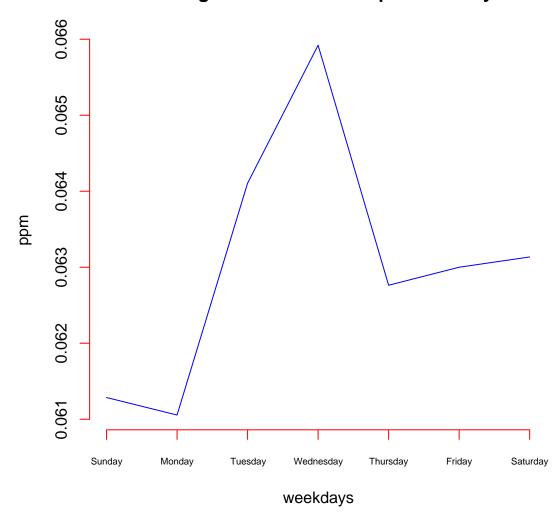



FIGURE 7. Ozone Hourly Distribution

Average Maximum Ozone per Weekday

FIGURE 8. Average Maximum Ozone Level by Weekday

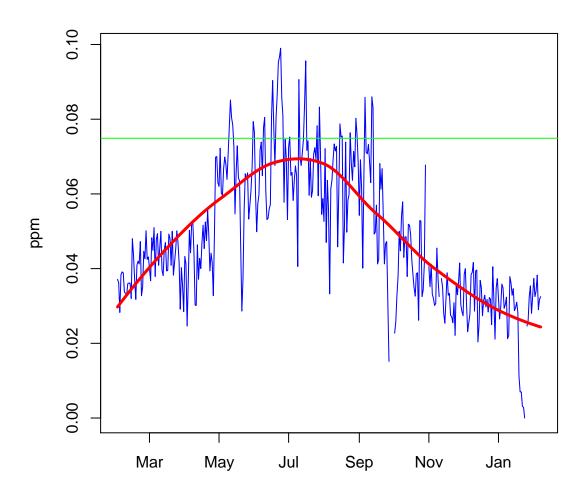


FIGURE 9. Ozone Eight Hour Series

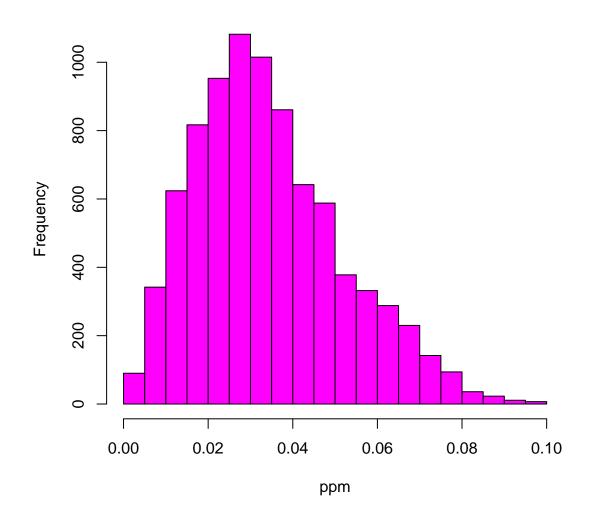


FIGURE 10. Ozone Eight Hour Distribution

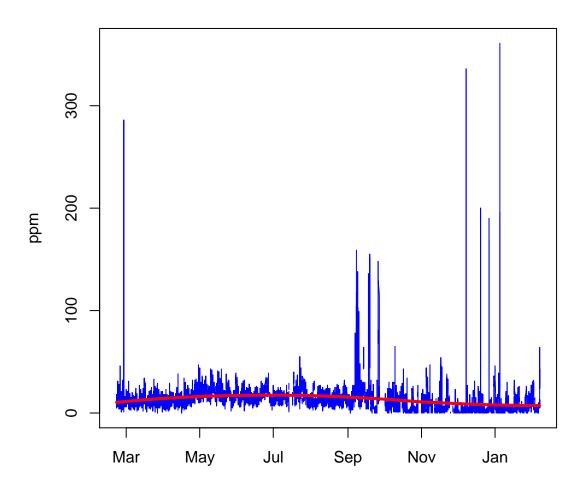


FIGURE 11. PM-2.5, Hour by Hour

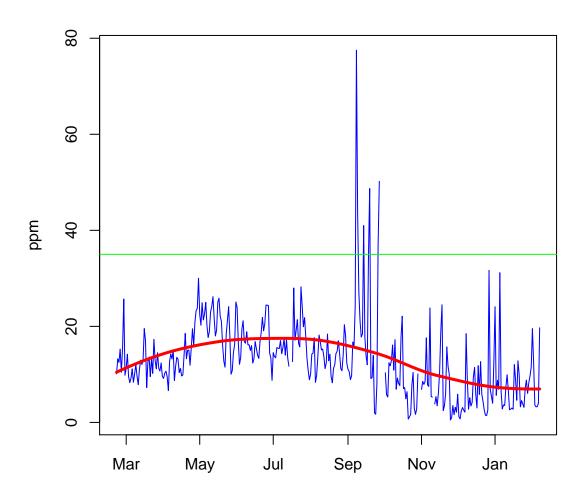


FIGURE 12. PM-2.5 Daily Average

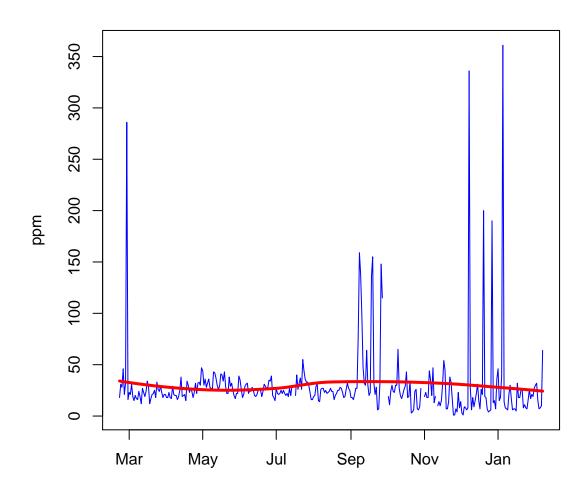


FIGURE 13. PM-2.5 Daily Maximum

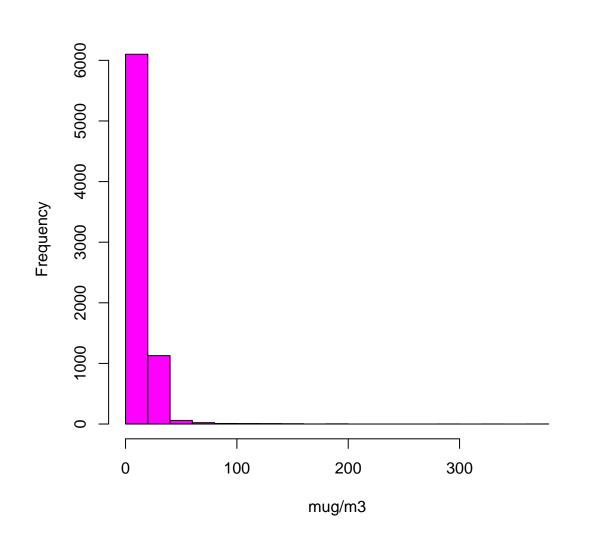


FIGURE 14. PM-2.5 Distribution

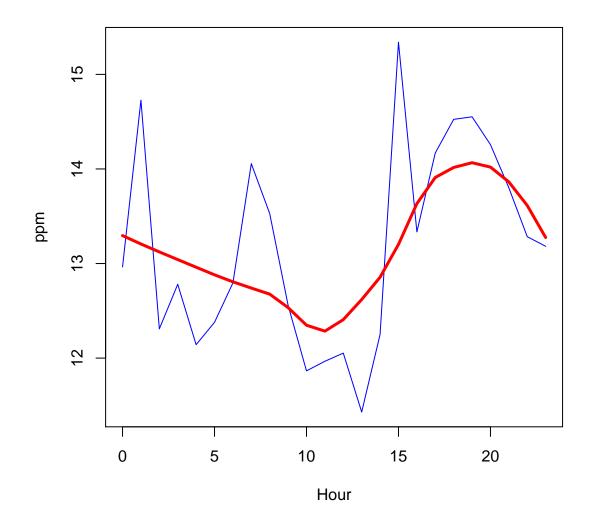


FIGURE 15. PM-2.5 Hourly Average

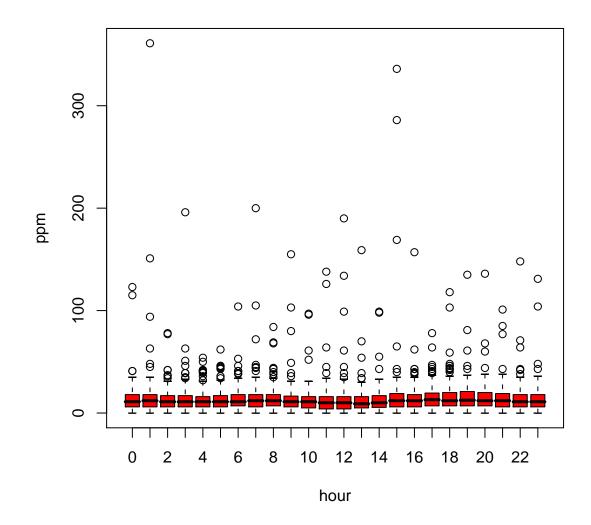


FIGURE 16. PM-2.5 Hourly Distribution

FIGURE 17. PM-2.5 Hourly Distribution (Detail)

Average Median PM-2.5 per Weekday

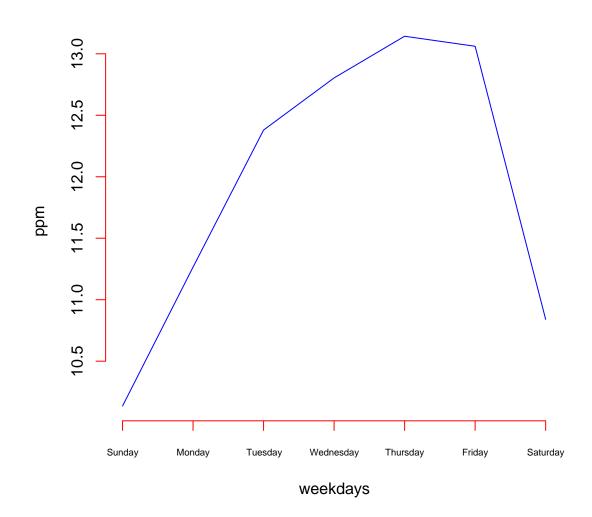


FIGURE 18. Average Median PM-2.5 Level by Weekday

Site	Exceedances
Crestline	73
Arvin	69
Santa Clarita	62
Bakersfield	52
Edison	39
Glendora	37
Reseda	34
Pasadena – S. Wilson	26
Burbank	25
Azusa	23
Oildale	22
Simi Valley	17
Shafter	15
Lebec	13
Ojai	12
Piru	10
Maricopa	8
Los Angeles - North Main	8
W. Los Angeles –VA Hospital	3
Los Angeles – Westchester Pkwy	0
El Rio	0

TABLE 1. One-Hour State Ozone Standard Exceedances

JAN DE LEEUW

Site	Exceedances
Arvin	125
Crestline	103
Bakersfield	101
Oildale	86
Santa Clarita	78
Shafter	67
Maricopa	62
Reseda	55
Lebec	53
Simi Valley	45
Glendora	41
Piru	41
Ojai	38
Pasadena – S. Wilson	34
Burbank	32
Azusa	24
Edison	10
Los Angeles - North Main	7
W. Los Angeles -VA Hospital	2
Los Angeles – Westchester Pkwy	0
El Rio	0

 TABLE 2. Eight-Hour State Ozone Standard Exceedances

Site	Average
Bakersfield	18.65
Burbank	16.50
Los Angeles – North Main	15.56
Azusa	15.50
Lebec	13.18
Pasadena – S. Wilson	12.94
Reseda	12.94
Simi Valley	10.34
El Rio	9.86
Piru	9.17

TABLE 3. PM-2.5 Annual Averages

Center for Environmental Statistics, Department of Statistics, University of California, Los Angeles, CA 90095-1554

E-mail address, Jan de Leeuw: deleeuw@stat.ucla.edu

URL, Jan de Leeuw: http://gifi.stat.ucla.edu