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In probsgbilistic classificatory concept learning tasks (de Klerk &

Oppe 1966, Shuford 1964, Lee & Janke 1964, Lee 1963, Lee 1967,

de Klerk 1968) concepts may be defined as probability distributions

over the stimulus space (de Leeuw 1968b). If the subject's task is

to discriminate optimally between the instances of two different

concepts, B consiructs a set of stimuli by sampling randomly from

the two populations associated with these concepts. We shall assume

here that the concepts are defined in such a way that:

(1) the two probability distributions are m~dimensional normal dis-
tributions.

(2) the dimensiohs are m independent random variables with egual
variances, which implies that the two variance~covariance matrices

and A are identical scalar matrices: AI = AII =5 deA

A1 II
with every ay, # 0.

(3) the two vectors of means my and mp. differ in at least one clement:

My # Mmye

—_ D -
The two multinormal distributions i m dimensions can be written as
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Now def'ine
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Then
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This can be simplified in the following way

~ -1
(Y"‘mI)'A l(y"mI) - (y”mII)’A (y"mII) =

(yomg) 4 (o) = (gmmp) '8 (gmg) + (y=mpp) 47 (ymg) -

-1
(y_mII) "A (y"mII) =

]

(mII—m]:) 1A"1(y_m1) + (mII"’mI> ‘A_i(y“ml:[)

i

<mII-mI)vAfi(ey_<mI+mII>j -

i

oy 4 (g gy ) = (mprmp ) 187 (myp o) (4)

From (3) and (4) it follows

L (™) - y' i g ) - Hmpem ) 147 (g ). ®)

v

In this way we map the m-dimensional stimuli into the real line. More=~
over this lo;likelihood axis L is optimal in a dis¢riminant-~analytical

sense (Van de Geer 1967, Anderson 1958 ).
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In this section we shall prove the following theorems
The projections of the two multinormal distributions on the loglike=-
lihood axis are distributed as two normal distributions with means
+%Ckfand ~%~C}Tand with identicel standard deviations Vc;;g where

o = (mlnmII)’Afl(mI—mII> (1)
Consider the first multinormal distribution: according to assumptions
(1) and (2) of section 1, the Yj (j=lsesesm) are ﬁormally distributed

random veriates with identical standard deviations G . The characterig-—

tic functions sre

. 1,2 -2
Q%) = exp(msit - 58°G ) (2)
The linear transformation that transforms the vector of coordinates

Yy = (yk4’°"’ykm) into the corresponding loglikelihood wvalue Lk is

given by 2.5:
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The first m fterms of (3) are still independent normal variates with

T (ijMmII')Q
means N A and variances ———-—f~i- o This means that their
G 2 13 . G 2
characteristic function can be written as
2
" m, Mmoo (o —m. .0
, Ij "I13 . 1.2 Ii I3 /
Q.{t) =dexp =t~ m_.11t -~ 5% v :
UJ( ) g D o ) Ij 2 G 5 \4)

The last term in (3) can be interpreted either as a one-point dis—
s L N 4 s D e 1 y . L
tribution or as a normel distribution with mean -5 mI+mII A mp=Myy

. v . s . - .
and varisnce zero. Under both interpretstions it is independent of

the other variates and its characteristic function is

Qm+i(t) = eXp {;%(m1+m11)’Afl(mz—mll)ii}. (5)

e

Because of the independence of the mtl variates the characterigtic

function of L can be written as:

ml
o (+) = IT 4, (%) =
j=1 9
m fm. .~m *
f 17 . -1
OXQ{ L?E% > i —3(mIkaI)?A (mI~mII) it
- m om. .~—m )9
4. I."" II.
42 s S5 A ‘
= i o o“ ( )

which is again the characteristic function of a normal digtribution

with mean

] - 1"1 - x y 1 ~1 — —
Sy = o npmmgg) = Fapemy ) T (mmmy ) =

and variance
2 O
/3 ;= (m,~mTI>rA (m*~mIT> = (8)
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linear transformation can be applied o the second set of

]

7,y resulting in a normal digtribution with mean AL 2=—%—0C and varlance

U

/,)§=/D i:OC. This completes the proof of the theorem.
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The O ~measure defined in section 3 is identical with Mahanalobis'
gencralized distance ° (Mahanalobis 1936, Anderson 1958, Kondall

& Stuart III 1966). From %the assumptions in section 1 it follows
thet A is positive definite and that my-my# O. This implies that the
quadratic form©C is always positive, Morcover, it can be scen that

the ''standardized'" districe betwecn the means of the two groups of

projections is equal to

A=Ay _ EX4g Vc;c—

/° o

which means that \/OE = D ig identical with the d'-parameter of signal-

detection theory (Swets 1964).
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e have now characterized all stimuli by a single real number L, the
loglikelihood of its belonging to the first of the two populations.

We have shown thet the projections of the two groups of stimulil on
this axis arec normally distributed with means/i(f%o‘c and /(-/,2=—9—‘OC ’
and egual standard deviations ﬁ1=/?2=\/5€., If we apply another linear
trangformation to the YJ. and compute the standardized distance
between the means of the two resulting groups of projections then

{); (\’f&l. This can be seen easily by observing that the axis LK:O is
parallel with Pisher's classical linear discriminant function (Van

Ge Geer 1967).




Lz trcof zas ba2en Tound, bul a plausibilify ergument may be givoens

2T =23Cn ﬁ=l, 2,.535

]cjcng(x)dx = }Oznf(x)dx (6)
-"co ~CQ

For each n this defines a polynomisl function relating the four
uniknowns 019 /72y Y and Q to the parameters of f(x), which are

xnown real numbers. This infinite system of polynomial equations

[
n

overdetermined, leaving as the only possible solutions the more
9 p

r less trivial cases (5a) and (5b).

(¢}

in words this conjecture amounts to the followings:

=~

f the subject's classifications generate two normal distributions
with equal standard deviations on the X-axis then either
gl(x)=fi(x) and gg(x)=f2(x) or gl(x)=f2(x) and gg(x)zfi(x). In

both cascs the standardized distance between the two distributions
is V_OE; so, if the conjecture is true, the only case in which it is
formelly permitted to compute a d'~parameter is the very special
case in which S's classification is oxactly identical with (or

exactly opposite to) the objective one.
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The discugsion in section 6 makes it necessary to define & gone—~

ralisatlon of d' for the classifications of the subject:

o /?1- /? 2 (1)
V32 y2)
where reo
Oi = / xg; (x)dx (2)
- O
. + &0
Yf = / ngi(x)dx -/?i (3)
co




Zscreticelly interesting casc is the one prescribed by the

)~
ot

criimel strategy in proﬁabilistic councept learning (de Klerk & Oppe,
Skuford 1964), This optimal strategy is identical with the classi-
ficetions rules of statigtical decision theory (Anderson 1958, van
e Geer 1967). The subject picks out a particular valuc a on the
Z-continuum and classifies all stimuli with X‘> . as instenees of
concept I and all others as instances of concept II. The cut-off
7value a for this Iileal Observer (Tanner, Birdsall & Clarke 1960) or
Stetistical Man (Peterson & Beach 1967) is prescribed by the

e priori probabilitics and the cosis of misclasgsification. In thisg
reper the general case will be investigated where a can have all
possible values., To this cut-off strategy with response bias the

following applies:

f(x) x;) a

5, (x) = (1)
0 elsevhere
0 xS a
f(x) elsewhere
P=q (3)
tco + o0
)(xngi(x)dx = x/.xnf(x)dx (4)
-tA -
<0 “eo
d//xﬂgg(x)dx = ,‘jf e (x)dx (5)
(670

- €0 -

The question we want to investigate specifically is:

Given particuler values for OC,p and a; what is the®'-value of
7.1? The special case with a=0 has been studied by Van de Geer
(personal communication). This speclal case corresponds to the
Tdeal Observer strategy with equal a priori probabilities and
equal costs of misclausification. It is casy to show that this

2=0 case is the only case where 7f1=\f2. The actual integrations




arc prosented in a companion paper (de Lesuw, 1968c).

~ 4 s =
Ll W v oD v Y =3

- - N . . .

iz trcogbilistic gcalar eoncept learning the subject's task is to

ve numericel responses, his subjective probabiliﬁi&syy(Hl/D) that
ke particular stimulus is a positive instance of the soncept. The
rcdel for this kind of experiments postulatecs that these subjective
orobabilities result from the avplications of Bayes' Rule to two
subjeciive ¥y<D/Hi> densities. If we postulate in addi%ionrthat these
subjective distributions are normal with equal varilances, it follows

v

2asily that the subjective loglikelihood ratio

W(ai/p ' ,
sma:m%: A BLIR + 4

ig a linear function of the objective loglikelihood ratio, defined
in section 2 of this paper (also of. de Lecuw, 1968a,)
Theorems: If the above mentioned assumptions are met, the standardized
distance between the two aubjective distributions is ecqual to the
standardized distence betweon the objective distributions.
Proofs For the stimuli of the first set

E(SLLRI) A€ (BLLR;) +.4 = LA A
In the same way for the sccond set

E(stih ) = A € (BLLR ;) +4 & 3924 A

II>

hni

For the variances we obtain

VAR(SLIR) = € (s1LRD) - (E(sim;))? - A%ox
which implies, of course,
Al

VAB(SLLRII)

This means that tho standardized distance is equal %o\fgg.’Q,EuD.




fzzxming szual a priocri probabilities (P=%) we obtain for the total

E(suin) - A

£ (B11R) = 0

VAR(SLLR) = A “o¢
vwiiie
VAR(BLLR) =&
The interpretation of these parameters is clears M is a bias-para-

. , 2 . C . .
meter and .}. roflects the degree of conscrvetism in the subjective

osrobabllities.
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