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In the situations considored in this paper we have a set of n sti-
muli varying on m "physical' dimensiongs. Define an nxm matrix

A= (aij) is the vslue of stimulus i on stimulus dimension j. The
task of the subject in these experiments ig to partition the sot
of stimull into two mutuslly exclusive and exhaustive subscts A and
Bs These classifications define an n—element‘vector X, with k=1

if § classifies stimulus i as belonging to class A end k; = =1 other-

wise.

S R
We shall say that a subject follows a linesr cut—off strategy if
there is an m~element vector of weights u and a real number Pys such

that
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This can also be writton as

f= 1S gujaij =P 3 O

]

i
ki = =165 Euj(”aij) + Dy ) 0

Define (for a perticular subject) an nx(m+1) matrix X snd an m+l-

element vector w with

Xij = kiaij i=19 ° ey n; ,j=1, Q;.gm
Xij = —ki i=19 006y n; j=m+1
and
W, = \u, .51 s 0 m
j J=d; 9

L= pC j:l’n—f-i
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Summarizing, our definition may be roformulated as followss
We shall say that a subject follows a lincar cut—off strategy if
the system of homogeneous inequalities

X 3 0 |
has a non-trivial solution.
Both the geometrical and the algebraic aspects of systems of linear
inequalities are treated extensively in Kuhn =nd Tuckor (1966). Some
elegant algorithms for finding a solution vector W if the system:
is consistent, are discussed in Saaty (19599 Do 114~125).

v
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Suppose that in a particular oxperiment there are four stimuli,
charactorized by the values 1/4, 1/2, 1 and 2 on one single physical
dimension. The subject classifies the first three stimuli as examples
of elass B. We may say that he follows a linear cut—-of f strategy

if the following four inequalities have at least one nontrivial solu-

tion,.
1/4 w, o+ w2>0
1/2 W+ W, ; 0
W, o+ WQ,E_O
~2 W1+ 'wg,}O

Bach of these inegualities cuts the space of all possibie solutiouns in
two halves. Ono of these is permissible, i.e., all points in this
halfspace satisfy the defining inequality, all points outside it
violate the inequelity. For the four inequalities in our example

the shaded areas in figures la~1d sre the permissible halfspaces.
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of the n permissible halfspaces. In the casc of homogeneous inequa~
lities this intersection always containg the trivial solution w=0.
If the system is counsistent the solution set is & polyhedrsl convex
cone with apex at the origin (a polyhedral convex conc is defined
geometrically as the intersection of a finite number of halfapacecs,
whﬁse boundary hyperplanes pass through the origin). The solution

a5t for our example is the shaded arca in figure 2.
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fig. 2.
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In this section an algorithm will be constructed for golving systems
of homogeneous linear inequalitics, based on the theory of least
Squares. A8 & matter of fact it is a member of the class of =ltor-
nating least squares algorithms discussed in De Lecuw (forthcoming)g
Introduce an n-element vector of slack variables s (with si:; 0 for
each i=1;...,n). The function %o be minimizod c-n Lo writton as
P = (KW—S)’(XW~3>

Suppose that during the B iteration we have an cstimate of &, do-
noted by S<r)o Then the least squares estimate of w(r) ig given by

w2 (i) (0)

If the value of F for this w and this s equals zero, we have found

[42]

a

solution of the system. If not, another loust Sguares procegs 1
. . . (r+1) . s s
used to find a new estimate s which miniprizes F for the current
~ Y . . <r+1) - .
value of w, under the conditions +that 5y Zﬁ)lor cach i=1,...,n.
. r . . .
Define t:Xw( ). Because F is a sitrictly convex function of Sy Wo may
write
(r+1) .
. = 1§, if %, 5
i i £ 1>7 0
(r+1) : :
. if 4,
84 = 0 3_< 0
) (r+1) . ) L.

This s i1s used to find a new velue of w, and so o, until F=0,
Evidently we may also proceed the other way around, i.c., start
each iteration with an estimate of w and compute the corresponding
value of s. Moreover, because the solution set is & convex polyhedral
cone, it follows that, if W is a solution, +then >\wo with >\>O

is olso a solution. This means that we may scale w (or s) while

iterating (for example by requiring w'w = 1).
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This approach generaslizes very easily to non-lincer decision bounda--

ries. Consider for example the n x %m(m+3) matrix B, with




ij h iJ‘ j:iyeocym

bi,j = aij sziyoo'ygm

bu2m1=*ﬁfﬁg

s’ meee

=

1m(me3) T 84, me1Pin

By augmenting the matrix with an extra column of constants and by
changing the sign in the eppropriate rows, an n x ﬁ%@(m+3)+1) =

n x F(m+1) (m2) matrix'y g eongtructa upon which the algorithm may
be applied. In this way we can *est whether or not S uses & guadratic

v

decision bounddry.
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Numerical experience with +the algorithm outlined in section 4 inAdi-
cates that it converges asymptotically to a point on the boundary
of the permissible region (provided the system is consistent, ond
the initial point is chosen outside the permissiblc region snd out—
side its poler cone). If the system is inconsistent, the algorithm
eonverges asymptotically to the trivial solution W =0, as it should
do. In some applications however, it may be interesting to know
to what extent the system of incqualities is consistent, A rough
measure of the degreo of inconsistenoy is the number of negative
elements (say n_)in the vector t. Definec
n—

Re 1 e
R is a measure analogous to the coefficient of reproducibility in
scnlogram analysis. In some other cases it may be useful to obtain
a non-trivial solution, which is "bogt! in some well defined sense,

even 1f the system is inconsistent.




-7 -
If the system 1s inconsistent we can always.construct a consigtent
sutsystem. If the number of deleted inequalitics (i.e. rows of X) is

equal to hgs WO want to find a subsystem, such that

5|

S =1 -

is maximal, and such that the resulting system of n-ng eguelities
is consistent. In other words: we arec looking for the maximal solvable
subget. For methods to obtain such a solution, see Do Lecuw (forth-

coming).
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Ancther 2lternative is to define
2
ﬁ(t.-— .1 )
p. B
- n
4342

i=1

We shall prove some simple properties of %3;
) o P

ii)CPEnF

5
by

i=1
iii) For cach W :(b(wo) + d)(~wo) = 1
iv) ¢)x O iffw  lies in the permissible region (excluding WO=O).
V) (b:z 1 iffwo lies in the polar cone of the permissible region
oxoluding w_=0).

n
vi) d)= %’iffggi ti &#ii = 0 (excluding Wozo).

Proof:

i) (p j? 0 is trivial. Purthermore

n n
5 (o o) )7 -4 Etf - -Qgi(t§+'ti 1] ) - "Q{ieti[ ([odr
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i) P o= ;E% (t,-5,)° = zéi(ti—max(o,ti))g - ;%i(ti—%(ti - 'ti] ) =
- %g (% - itlt )
=1
iii) Cb(wo) +Cb(-—wo) =
n i > | n L 5
P o B
s +2
n =1 n ’
iv) C¥)= 0 122 3 (4, - |4, ] )% =0 ana 342 40, 17t = \;] for
i=1 1z1

cach 1 and %, £ 0 Vfor at least one i. By definition the correspond-—
ing value of w_ lies in the permissible region (end W £ 0).

v) From the proof of (i) if follows that ¢=1 iff }til = ~t, for
cach i and # 0 for at least one i. By dofinition the
corresponding value of W lies in the polar cone of the per-

missible region (and w  # 0).

vi)¢.-=% iﬁ'f (4~ éti, )2~ 0 il-ti = 0 and t £ 0; iff 2’1 ty ‘ti) = 0
i=1 im1 iz1

and %, #£ 0 for at least one i.
Two possible approaches towards minimiging 4>are diseussed in
De Leeﬁw (forthcoming). The first epproach is to ugse the algorithm
discussed in section 4, and to scale t after cach iteration so that
t't = 1. An obvious disadvantage of this procedure is tho unpredic-—
table asymptotic behaviour. The second approach is a stecpest des-.ond

process, which use the partial derivatives

g

Because ¢= 1 implies and is implied by ti = - {tJ a1 (b: 0 implies
} -
cnd in dmpli~d by ti = ltA s Tor these coges o011 portisl dorivetives are

cqual to zero.
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-z this final section we zhall give some numerical xamples of +he
zlzgorithm outlined in scction 4., Date were taken from one of De
Clork's probabilistic concept learning oxperiments (De Klerk, 1968)
in which 50 stimuli, varying on two indepeondent dimensions were
used. we investigatod the quadratic case. A PL/I program was written
for the IBM 360/50 and 20 iterations wore performed for cach of
the 38 different blocks of classifications. The output for ecach
iterstion was:
i)  number of negativerelements in 4
ii) wvalue of F
iii) value of ct;
Neither w nor t were scaled while iterating. In table IT She results
Tor a typical good subject arc given, in table 1 +the results for
& bad one. Some tentative conclusions from these rosults (and from
the other 36 cases) are the followings
i) minimization ig fast for higher values of F, slow for lowor oncs.
ii) although the program was constructed 4o minimize F, the

1

d} ~vValues also seem to converge %o a minimum.
iii) +the number of errors may increase, bul the gize of these crrors

decreases congistently.
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h_ 3
1 15 1. 645880 0.178680
2 14 1.052479 0. 168305
3 15 0.687707 0. 158026
4 15 0. 459402 0.146042
5 15 0.313695 0.138506
6 17 0.219028 0.129639
7 19 0.158736 0.123532
8 20 0.119453 0. 120807
9 20 0.091462 0.119618
10 20 0.070596 0.119074
11 19 0.054661 0.118812
12 19 0.042390 0.118677
13 19 0.032900 0.118604
14 19 0.025546 0.118563
15 18 0.019840 0,118541
16 18 0.015410 0.118527
17 18 0.011970 0.118517
18 18 0.009299 0.118511
19 18 0.007224 0.118508
20 18 0.005612 0.118505
1 p) 0.010405 0.000271
2 2 0.009086 0.000237
3 2 0.007948 0.000207
4 2 0.006960 0.,000181
5 2 0.006105 0.000159
6 1 0.005359 0.000140
7 1 0.004704 0.000123
8 1 0.004129 0,000108
9 1 0.003622 0.000095
10 1 0.003177 0.000083
11 1 0.002786 0.000073
12 1 0.002443 0,000064
13 1 0.002141 0.000056
14 1 0.001876 0.000049
15 1 0.001644 0.000043
16 1 0.001439 0.000038
17 1 0.001260 0.000033
18 1 0.001102 0.000029
19 1 0.000964 0.000025
20 1 0.000843 0.000022




Netes for RN 006-68 ; Non-metric Iiscrminant Analysis

D 43 line 17 and 18: read

(r+1) .

Si = ti if ti ) 0
r+1) .

sg = Q 1fti<0

p 6: The numerator of é} is a function that was already used to obiain
solutions of systems of inequalities (for example to find an initial
feasible point in mathematical programming routines, see P, Wolfe:
Methods of Non-linear Programming. In J. Abadie (ed): Non-linear |
programming. Amsterdam, Nobth Holland, 1967). It is similar to the
exponential method discussed in Saaty (luo,)y but scaling is easier.

Secaling is necessary because in almost all cases our systems are incon-

sistent.

p 63 Although there is no program for NDA in the G-I-series as vet,
Professor Louis Guttman informs me that he would favor the absolute
value principle. FProm the (up to now) rather sketchy accounts of this
principle I gather that it is quite similar to my positive orthant

method (RN 010-68).

P T minimzing (? is equivalent to maximizing E;ti\ti under the
condition that Ezti is some constant value. I.7.
f(w) = w'x |xw| - /L(W'X'XW - 1)
and the conditions for an extreme value are
/AX'XW

w'X'Xw = 1

H)

X*!XW]

It follows that
m’X'IXW} = f*
v 8: at the moment of writing this note Kees Truyens is testing a new

version of NDA whiech uses the Newton-Raphson method to minimige %ia

Further progress will be reported in a note similar to this one.

D 8: line 18: read ! d)—values'



P 82 Further numerical experlience proves that after a (comparatively)
fast decrease in the beginning, (? begins to increase very slowly
af'ter a larger number of iterations., Fy; however, continues to decrease.
In fact, writing C for X(X'X>“1K'9 t for t<n>9 and u for t(ﬂ+i)9 we
obtain (because C is idemnotent)

u'u =z (370t - 2]t]rct + [t)rc]t)
Because C is idempotent

tret £ b1t

Moreover
[ rcjt: & \/}t\'\t\a hlfo}til= \/fvtgit\'cf;Y
30 ’
HETERTe
and
fircls] ¢ +'+
Finally

A
2klret € 2 v’hi'}tiat’Ct < ot

Adding these inequalties gives
0 5/ u'u S' £
Equality iff
Clt] =0t =t = |t
in other words iff C has at least one eigenvector with all elements
7 0. Otherwise t't — O, in which case t —»0. Of course than we

also have equality, i.e. reached convergence,

Jan de Leseuw
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