BN 00968

ROTATIONS: TO OPTLIIZE CONTINUITY

Jan de Lesuw

Sentember 1968

PSYCHOLOCICAL INSTITUTE - UNIVERSITY OF LEYDEN — NETHERLAWDS




—

CONTENTS

Page
Contents 1
Suvmmary 2
I Introduction
1.1 docomposition of rectangular matrices 3
1.2 lecast squares approximation of rmectenguler
matrices £
iI Wethods based ou successive differences
2.1 the mecan 5
2,2 4he rote 5
2.3 d%fferercing matricoes 7
2.4 vectors of Girferences 8
2s5 orthogonal rofations ©0o opiimize polynomiall S
2.6 the "ecomplele case 10
2.7 alternative methods of scdling 10
2.8 obligue rotatlons to optimize continuity 2
11T Methods based on gil differences
3.1 inverse measurcs of nonlinear correlation 14
3.2 metrix formulation of the problem 15
3.3 maximizing nonlinecar correlztion by wotatlons 15
5] B J
v Wumerical examples
4ol results of decomposition 16
4e?2 PPPPAX 17
4,3 SESSAL 13
v Literaturec 19
T Tableg and figures 20




STHMARY

In +this paper we have iluvegtigated some methods %o rotate the results
of a principel ccmponent analysis of multiple time series. In Chepter

lea}t squeres epproximation of

d chapter we formulate 2 tentative

definition of continuvity in terms of polynomials and we investised
2t of two unblased variance estimates. In

o T A kS - L 43
the index 7, the yuctlsn
{ 1

give difference techuniques are exteonded to all

=)
0]
o]
<
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]
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(5) differencas. In,<he final chapter a numerical

ifferent ways. Computerprograms DIFTAB, KAPPA, SSSSAZ and

‘<I
s
o
B
k)
(O R
=

PPPPAX are described.




I. INTRODUCTIOW
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Suppose we have an ordered set CP of functions

s L
‘%’= Ai(bw,s (3_/‘29""”7(}‘)11%
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Bach (b inaps the m-element ordered set R of real numbers into the reals.

The values of these functions can be collected in the n ¥ m matriv X

e 4 . / . . . ,
In the sequel we shall assume thet det{X'X) # O, which imvplies <that
g I b4 &

.

- - . v . . G s w / . - . . N
nym. If X is on nxn metrix and det(X'X) £ O, then there exis®t an num

=
D

metrix K, en mxm metrix L, ead en mxm diagonal matrix.ﬁkp in suc

way that K, L, and_f& obey the relotionships
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o
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1

3.

It iz understood that all these matrices are real. Proof: Because
det(X'4) £ O, X'X can be written as

1T = Py (5)

In (5), both P and W are mxm matrices, P'P = PP' = I, ky is diegonal,

)

nd :>O for all 1 (of Gantmacher 1959, vol I, » 203); Take
L =P (6

S
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K = xLA P
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Then

KAL' = XP 5‘5'QJ5P? = = X (9)

and
K'T = U V!prm TPt ;“ = | “J/w_';: = T 10\
' R A (10)

-

W s /7 . y . . . .
Note: the condition that det(X1X) # O 13 not guite necessary, but if
n}Jﬂ"ﬂKeCS&e in which oeu(j‘x) = 0 ig ouly of thecretical impor

'

as ig the case in which X'X hes nuliti,le eigenvalues. It is gu

obvious that the decomposition of X given by (4) into +the product of




an nwm ond ea mxm matrix is not unlgues If T is eny reguler mxm matris,
then

- AP -1 1-p A - «

KA (D) T’.A,( *>L‘ = KAL' = ¥ (11)

Conversely, 1t is gquite easy to see That 1s there 1s @ decomposition of

¥ into the nxm matrix A and the mxm regular matrix B, 1.c.
then there is e reguler transformation T, in such a way tha

and

A(TH)TT = KA (14)
~-1.2-
If it i regquired to find an nwr metrix A end en myr metrix B, with

1<r{m§nyiﬁsmhammyﬁmﬁ

F=Tr g(f;AB*)'(X—AB‘)& (15)

is a minimum, then these matrices can he found by taking the r columns

A

of XA eand L corresponding with the r greatest elements of /L . Proofs

theorem and the theorem in the

(for = mors complete development of thi

=

w

1936), SohBnemanu, Bock & Tucker

previous sectlon see
(1965), Johnson (1963))
1) + Tr(BATAB') =

\

/<y T i " A
T (XX 1317t) + Tr(aB'Ba') (

=__§
[@2N
S

Symbolic differentiation with respect to 211 elements of A end B

simultansously (cf Dayer & wcPheail 1948, Wrobleskl 1963, Schinemann

Il ¢
e
y]

7 {40
\)’.«— = —P2XB + 2AB'B 10
A

Bgueting all partial derivetives %o zero eud solving for 4 end B glves
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ITs MBTHODS BASED ON SUCCESSIVE DIFFERENCES

-2, 1~

his article on the factor znalytic treatment of learning curves,
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(o =t 2
(1) \ € - - 1)
{;{ = \L‘—-_L) O = > <J\,,l+i .)C_l J (i/}
1=1

o

to evaluate the smoothness of the resulting reference curves. Tucker
uses gl in a rather primitive way, classifying components with o -va 1lues
greater than a certaln amount as ungatisfactory and others as satis-—

the work of Von Neumann e

o

al (1941), who investigated the distribubtion of 0 in the normel case.

The first twec moments abous of aizme n from =

normal populetion with variasnce &  arc

N
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e variance of 13 conseguenily given oy
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2 _ 4Q3n-4) -4 AN
6 no 50 (\4]/’
5 mo 1)<
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It follows that O offers en unbissed estimzte of the varience wita
relative efficiency (as compared with the semple variance)

2(n-1)
3n—4 : )

N
~—

g =

which means that the ARE equals 2/3. More detailed information about
L J 5 L 3 1 b < 2 Mal 3 > e} e S T
Tthe digtribution of t) can be Tound iu the article of Von Weumann a.o,

\ . .
(1 41), ond in several more recent papers of

O

1

Cther coefficients, bazed on chzsolute differences and scusred om
2 i

abeolute second differences, are discussed by Kamet (1953b, 1954,

. . ) , 2 . . .
If we evaluate curves by computing the value of &° and if the goodness
o) i =) =




v geems guive logleal Ho rotate

columng ¢i the roitated matrix }

- P eNE ] " o o 4 < A
the second columu s the next eigeavector, etc.

3 e S e
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idently

columns are vhe refcorence curves, in the

The problem can be

T gy M=} L e e T 2 e
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recker operator, LI




o see that leugayx, 1=Oe Thisg
k-1

y
U

cach j=l,sc0sk, then 1T 1s yulte easy
mesns thet S i ank (k-1), and that the kxk matrix

o (k)4 () (112)

hes one snd only one zero eigenvelue. Von Neumenn (1941) proves, that
. . (k) } 4
the eligenvolues of D are eguesl To
i > il . .
i, = 2 - 2 cos§ = 4 sin’ = i=lye00, k-1 (LQ}
i k 2k

Of course }Ak = Q.

Dy o

If y is an n-element vectior of real numbers, it follows that the (n-1)~

v

slement vector
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I+~ the calculus of finite ~ifferences (jordan 1965), it is proved thet
Kk
. (i e sl '
A\ (Lx.) _ _ J j2 < \_L?)
A7 =2 (1) (j>di+j
J=0
= . < 4 P SN 4 (ﬂﬁ ming. 1962, 7 89
For our purnoses, however, the followlng theorem {(Hemming, 170, D ©)
is more impcrient: If
. .2 Y] 40N
v, = a4+ a, 1+ a1l + - + 2 iF (io/
Jl O T i a c,g S P

b
>
Q

s

2571 all i=1,...,1. This is celled the fundamental theorem of the
iifference caloulus. If we Translate this back into matrix algebre, 1%

means thet 1f y. 1s a polynomial of

d
y;S(n)YS(ﬁ—i), 6°S<nmp>‘S<ﬁ"p> i S(n~i>s(n)v _ o (21)




f.2

the ”zerzdogree~polynomiality“ by choosing k in such a way, that

is minimized, unde

suppo

is the m¥r matrix thet must be rotated, end k is a vector of

ninimized. Here, T

se in

This pr

‘irection cosines (the first column of the rotation metrix), we maximize

N, = kpp™e (22)

4
(m

N’

is defined by (11). We impose the condition

f

1. The second column é must be found in such o way, thet

/N
1\l g f N
/\2 ?*”j B’(i (93)
o} O I . !//y’tf /7 1 and k! ~ e -
ler The conditions [/'¢ = 1, and k {, = C. The matrix
A4
0 ~im
()
beczuse D'/ ig of rank m-1 (section 2,3). e
£, . 1 4 3 . N(O)\'—/’_ :
this section ‘ﬂet:rén%4¢ which means that (C } exists;

that the solution for k is the eigenvector associsted with the

s \.\-—- - ; . .
(C(O/) 1? ,& is the

sigenvalue of & cond esigenvector, and so
ocedure finds en rxr rotetion matrix X, with K'K = KY¥' = I
vay thet the enlumrs of ¥ = BK are as constant as possible.

C<i> - '*ys(r—(oxg(m 1>1~\m"'1/~<7\>3 (95>

The columns of ¥ = BK are maximelly linearly related to i. Observe,

a . . . D -1 AD=1) p\ G e \ i . Loa
Torteriori y’S<i> S< )*5< /5<~ v = 0. Addition of anocvher S-matrix

ver, Ttha

~e poly

Trnere 1s
slement

function of i=1;...,m,

7
. . , ‘o {» .
nomial, or, iu other words, if y’S‘*>‘Sk /y = 0O; then a

cds 1tg rank whenever m~p—1'<r9 or j> m-r—~1, In that case

vector k # 0, such that

t @ zero degree polynomisl is z special case of a first

o speak,; a further relexation of the continuity requirements.

o(p)

is of rank min(r,m-p-1i). Evidently, its

D . : ,
’C(*>k = 0, which implies that

p—Gegrae polynomial

s of the vector y = Bk sre = perfec
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o)
s . . . . - . U
-Z r=2; %then the discussion in the provious section shows that C< 7

I m~1 . ) ,
STy aaa C( > arc all singular., Let k(*> be a r~element vector

/», \
~Irsover,; let y(p> = Bl_<p)e Then ykg} is a p-dogree polynomiel in i. If

. (D . . - -
oy rovectors k'Y arc collocted in the m ¥ m motrix K, thon X'K = XK' =
2. IZ B'3 = I (ef section 1.2)y then Y'Y = K'B'8K = K'% = I, which means
-

Tt t the polynomials in Y are orthonormel. Actually this is 2 specisl

L Al il

- #c of the following, rather trivial, theorem: If ¥ and L are square

critronormal matrices, i.c. K'K = = LL" = L'L = I, then there oxists

cZokher squarce orthonormsl matrix of the same order; in such o way that

-~ = L. Proof; teke 1’=K'L, +then !

=L, MW = L'EKX'L = I, end

J

—-' = I'LL'Y = I. Observe moreaver thet Lil! = LL'K = @,
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I sufficiently low degroe. Thisz is not 2 new use of the Torm feontinuity”

=% msychometric litersiurc. Whon fooded with smoll sots of dissimilorities

T2e Kruskal MDSCAL, GL-SSA

Tind to produce rether jageed distance
i the diagrams do come back in

N

enother (similar) date sot. Zepecielly =

..L_]

i the shope of the distence function (as with stimulus

20%2) this is o nuisance. Shepard (1964) tricd to correct this sk
Topuiring that the distence functions b polynomials of 2 sufficiontly

1°% dogree; which did result in distence funmctions thrd werce morc smooth

#2¢ more stable. The approscih to moximipe smoothnoss outlined in the

“rovious scctions uses a similor definition of continuity., I+ hos two




~~vious disadventeges. In the firgt plece it 1s restricted o cqually

zuaced data points.

Py

using divided differencos instoed (Jordan 1965,

oe)
=

- 15) we could do away with this regtriction, but the reletion with

-plyunomiality becomes much more complicated. Sccondly, the expocioed

2 . , . . .
Trlue of S dopends on the variance of the population frcu which who
- s o K2, . y . -
Zete arce sampled. Wo have seen thawv is an unbiascd estimate of
. 2 .
ths verlance. The sample vearlance 8.2 defined as
Ik ®
- ol
< ] -2 o)
s, = (yy - ) (28)

(29)

. . . ‘o . 2 . , 2 .
Clearly the estimote of 57 provided by 8 will be close to s, if the

: () N . 1
successive differences are roproscntetive for the whole set oft §m(m~i)

reogsong Von Houmenn a.0. (1041) irﬁPiSGd
> (g, - 7)°
82 " o i+l i
= = - — 0
q’ .2 -1 m -0 (30)
Ty 2 (v, -7v)
. 1
i=1

55 2 measure of trend, The distribution of Q was investigeted by

e

hey found,

-=cug other things, for a unormal parent population
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St
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2 N
G'Q - ._..4&,@12_).._ (32')

T (1) (1)

-

_d

[alie
-l
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of continuity for the casec

the distributicn
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(2 . .
¢ ° we have the advantage that VZ cen be written as o simple

Turotion of quedratic forms. If y is on m—slement vector of real numbers,

(m),
R v'D N (33)
_m-—ivfI LT T
yz J me m”mm‘}3
Tz 433) T dis an mxm matriz with j . = 1 for cach (k,1), snd T  is the
- 35y Yo, 18 an mx & Jkl 1 ca (19 ); end 1 . 18 The
=z identity metrix., Define
\
j -1 m-1
glm) _m=lp el (34)
m  mm le mm '
L1,

(35)

1

-z Zze context of rotation of an mxr matrix 3 with a vector of direction

|
|

ct=zlzes k
( )
-~ t'p:"’\&m Y
JASE D] ES)a K‘\
!’) = m__.m__ . (30/
L Kk'S5'EV Bk

F(m) jvz(n")'\ : (37)
()

1

Tzzz clearly F 1s proportional to the veriance-coveriance matrix of the

Tiriztes in By and

czuse no confusion is possible, we will drop the superscripts of C(

in the sequel aud write simply C end F. Pinding the exérome

o

of (30) means solving the generalized elgen~problem (Wilkinson

[’

e '

i 1 I} g 3\ T : ] k)
= 337-3403 Gentmacher 1959, I, v 310-326). /e assume thed hoth C
= zre nousingular, and we find Ik and Jz in such a way, that
Ck = ? i (39)

Tlizutly the velue of k thet meximigos ? i1s the eigenvector agsociated

. . PR -1 "
T LTL Tie dominant elgenveluo of the matrix O By, thet iz, we solve the
elgen-problem

ol - e (40)




-1 3m

cgsocleted with the dominant

2
R

= 1.{Gantmacher, 1959, I,

P
e

in such a way
K'CK
I

p—
K1FK

N . . . A <
is a diagonael matrix fY-=

of 7 values. I
Tvidently a sufficient condition feor Y'T to

~lumns of B are centered. In

315)., The r eligenvectors of X ca

maximizes

. which means that it minimizes ?10 Observe that the second elgonvector
= tne system (39) does hot in genserel obey the reletion k' f =0, but

5 = 0. This means that the vectors are orthogonsl in a

s. To be more cxplicit, they are orthogonsl in the skew coordinzie

-- whose axes are defined by the equation for the uait sphere

(41)

(42)

41

BK, then

be diagonal is that

P o3p™s o B gip L (men)a? BB = 2L wiy (43)
in m ;
- ¢ ¥
T = KUBUEK = e KIFK = i T (44)




ITI: METHODS BASED ON ALL DIFMFERENCES

T-= =uss of successive differeuces in counsgtructing a measure of smoothness

analysis of equally spaced data points,

o
|
11
pord
O
0je]
-
e}
28]
[
6]
=
e}
<
0g
[
N
s
ot
!:)\—"

i
e

Z:izuse in that case successive differences are equal (or at least
--zcriional) to the successive divided differences. The methemotical

ot of continuity is translated into finite~difference terminology

LA}
b

Tcilowss a2 unlt step in the iudependent variable must have ounly a

4

z-:z21 szffect on the dependent veriable. By roplacing the word Munith by

v
T2z word "smallY we have a much more general requirement, which is unot

-:sTricted to equally spaced data points, and which can teke all

neces into account. Accordingly, Carroll & Chang (1964) proposged

15 S o V2
Ky =3 2 2 u4(37v) (1)
sS 14
J
“Zzr:z 4, . is a decreasing fuanction of %xi -~ in . A similar coefficient
_"J 2.

=322 by Shepard & Carroll (1966)3

— —y_ 2
Ko = = Z A (2)
J

® -:urse (2) is @ special case of (1). In %his paper we shall use

|
W.. = {xi - Xj{ (4)

w2iz%s will he scaled in such & way that

h
o

_T TIZz tzrzmeter p equals wmero, than Wij = 1 for cach (i, j). Evidently in

o

2z Thkz value of (3) ig unity (cf Tormula 2029)o If p=2 then (3)

|t

2cizl czze of (2) with Vij congtant for all {i,j).
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zI1z 3 use differencing matrices. Let (i9j) be & pair of natural numbers

L= ;<:j€ﬂ

. 1 A . in -
T:2r zzrrasponds & row of the §m(m—1) X m matrix T( )e Let row p corres-—

3

. There are, of course, sm(m-1) different pairs. With cach

T
o

—-———— - ~ -

ir (i,3). Then

- &}q _ qu (6)

Pq

W

PR g

. - . m -
-~ 7 =% zn m~element vector of reals, then the vector d = T(‘>v contains

o

[0

RN . e BN s £
=. 1) differences of the clements of y. In partisular the clement
I_ = arls y.—yj, Clearly

T(m>‘T(m) =ml -~ J v (7)

mm uatil
-2 1z the diagonal matrix of order %m(m~l)9 with values of W .oon the
F— s " e (o 4 (m)
‘IoTIzriszis places; lece Lp = Wij’ then (writing T for T )

(@3]
p—

Pi~ y'T'oTy (

v Ty

- x

ZZ .. =1 for all (i,3), then 2 = I, and consequontly ¥L= 1o

oo sozntity Y& can be minimized quite simply by solving the pencil problem
B'T'QTBE = K B'T'TBk (9)
1z. .zuiivelently, the determinantal equation
Brr(s ~ g\I)BT =0 (10)

o3 similar %o those in section 2.8,




IV NUME

ERICAL EXAMPLES

To: fz7z wz will use for our numerical examples were collected in a
.1zl zzsccicte word-lesarning experiment. The valuc X. . was the number
1T toxrzch enswers of subject 1 on trisl § (i=1;.0.,0=203 J=l,e0.,m=10).
= 2czouted principal components of the matrix X'X. The sum of +the first
/‘\‘ >
zIlx sigegavelues, divided by Trac k&‘l); gave a value of .9992. /e analized
“-:z Zzwz with r=6., The diagonal clements of the matrix _ﬂ_éé Wars
A 269.8496
v
Ao 33,4711
)\3 1324725
A
A4 10, 2097
A [ sYeTa
Do >
/‘,\5 L/\JQ
e
}6 5.9026
Tz corezsponding elgenvectors from L/ are shown in figure I a-f. The
:_z=zr7s of the eigcuvelues are plotited as o function of 4riasl number.
= T = m called DIPTAB computed difference tables for cach of the
iz oriris. The difference tabloss themselves are not shown, but in table
22 iz zzven given the values
n--k
T (A
Q— ‘=i
=1 {2\
v = L
k ( :.«) '9}'{) -
il (k
.. T=:zz2025 to use this partivular scaling of the sum of sgueres can be
Soimi o ix Tendall & Stuart, III; p 304~-393. The veluc of fz ig also given
1o 7:tiz IZ. Prom the tables of Hart we see that under normel thoory
| 3 bg "5
-izoToTicrs the probability p( ) 4< f)) is less than 10 for the
s L
Zo-zo owe compounents; less than 01 for the third, aad grester than .09
i T 7oz mzet of the components. In table IIT we heve collectoed the values
’
22 ¥ Jor different values of p, aund for ecach of the sim componenis. (they
[N
azrozoom outad the DL/T program YAPPA). In figurc IV thesec %(»Values




e e e
=T~

- ozirireyed as a function of the number of the component. Clearly,

[u8)
£

ImIrzssz oin p results in more extreme f(—valuesy and the patiern conver-

I3 rzihor quickly for p-w po. Comparc elso figurc V, in which the valucs

>nt number.

oz ? =r3 plotted as a fuuction of com

-

discussed in chaniter II, we wrotc a PL/

=1

program called

fe)

N

BIGET from

Qu
oa]

am uses the PORTRAN subroutines NROOT aud

NI SY”TEM/}éO SSP~serics). Most importent for the program arc the

icters aere used in the computation

o2 Twc matrices P oand Q. I JTYP = -1 thon

nt= T (2)

T5 DT = 0 then
- o}s] /
— . =) \
0 = § \mI-J%JV (3)
IS T o= k> 0 then

13
m
'()

ey

b

Co- ozt omtep of PPPPAX ig to find the vector k that minimizes

k1Pk

= Ktk (6)

SZ.izls D is e swnecial case of £y with ITYP = 1, and JTYP = O, Minimi-
{ m
el and

coo Invastigatc r Yens 1950 t mey indeed prove to be rewsrding

|
[

~irimizs coofficients like

11
62 T om-2 -1, <7)

as maximiging second degrec polynomislity, while

Clearly minimigin. a
o )

soaifizisnt with ITYP = k d JTYP = g meeng maximizing another coeffi-
TLooT owitz = ¥ and JTTP = k. Becouse we find all stetionary velucs




solutions sre identical, which meeuns thet we
7

--== % 75 %0 consider cases with ITYP ) JTYP., If ITYP = JTYP, then

e

T = :=3i f ig uniformly oune, s0 therc is nothing to minimize (et !{

),

7= = = C). The six rotated components with ITYP

f
|__s
C |
|
2
o
i
I
H
j$V)
=
[)

i
N
w
Cy
=
<
)

}

[
’v N
2
=
[0}

3 in figure VI a-f. The components for ITIP

-~— similar. The six elgenvalues erc progerted in table VIL. Some of

—-- 2%nar results of PPPPAX: in figure VILII a end b the first two rota-
<:2 zcmponents are shown with ITYP =1, JTYP = O. Results for ITYe = 2
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figure X
IT III v v VI
2147522 | 0409446 | 1.12295 12.18256 | 1261.77
=z v039314 0318547 2,19151 4’65534 721‘503
.016209 | 240889 |3.04824 |6,66214 | 783,228
013684 | 1237871 | 3454370 |7.79844 | 873.143

table XI




