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1: Introduction

In probabilistic concept learning experiments such as those.discussed

by De Klerk (1968), stimuli are samoled from two multinormal populations
6N1th identical dispersion matrices and eaqual a vriori probabilities). A
stimulus that is sampled from the first population is called a positive
instance (4) of the concept, a stimulus from the second nopulation a
negative instance (B). Subjects are instructed to give their subjeétive
probabilities ihat a particulsr stimulus is a positive instance of the
concept. Mathematical models for these experiments suvrpose that the
subjects build u? two subjective sampling distributions (88D's), that
these SSD's are multinormal with identical dispersion matrices, and that
the subjective probabilities are computed by spplying Bayes! Rule to the
SSD;s. Moreover it is assumed that the subjective posterior probabilities

add up to one, By the Baysian aswumption
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BV the multinormality as=umption
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where m is the dimensionality of the subjective sampling space, ¥y i=s an

element of that svace, m, and my are the vectors of means, and V is the
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common dismersion matrix. Substitution of (5a) and (5b) into (4) proves
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Vithout loss of generality we may assume V diagonal. It follows that fhe
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density function of S{y) is a mixture of two normal density functions

with means
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For a detailed proof of these results of De Leeuw (1968), In the objective

situation we have the similar results
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We may add two additional asgumptions: if S1 is the subjective space and

82 the objective Qné, then there is a matrix A (not necesgarily square)
such that Ay = x for all y g 8, and x G‘SZ (the linearity assumption),
Moreover there is a real constant o such that (/u ~;;¢B ',4~1x =
(/hu ~/u B LA, Ay = tg(m - my )'V ¥y for all vy é‘& (the nronortlonﬁlltv
aqsumptlon) (In De Klerk (1968) and De Leeuw (1968) somewhat qtron#er
agsumptions are uqed) If both S1 and 5. are one-dimensional these
assumptions reduce to the assertion_tha? the subjective dimension values
|

are proportional to the objective ones, 1Tt follows from linearity sand
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proportionality that 5(y) is a linear fumction of B(x), or, in other
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words that there are real numbers  and (3 such that

L —— )

Tn the stndr n® choice reaction times (dwm\ there are two comnetitative
models. One model, proposed by Talmagne, is ezsentially based on a
dichotomous way of thinking. A particular stimulus may be exnected by

the subject, or it may come unexpected. Bqth types of stimuli gengrate

a normal deﬁsity of CRT's (with, of course, the mean of the fexpected®
density less than of the tunexnected' ). The alternative is a model Propose
by Ovpve. In this médel expectancy is a continuous variable related in

a simnle way to tﬁe objective posterior probabilities of the stimuli,
ntimuli with equal posterior probabilities have equal expectancy and

generate one single normal digtribution.

2: General case

The most general distribution we ghall consider in this paper is
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This is a natural generalization of the theoretical distributions

discussed in the introduction. We have a sample of n elements xi. Let

ey 1>2:
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The likelihood function is
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and its logarithm
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These expre~~iong for the first and second nartinl derivatives enable us
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*o une the Newton—Raphson‘method to obtain Ml-estimates, If x(‘) is an

estimate of the (five) narameters, & is the vector of first vartial

-

derivatives evalnated »t v('), and V is the metrix of second nartial

s (x) . .
derivatives at x y then we nce thre iterative scheme
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If we stort with = suitable x then, for k-»0c , x converges to the

ventor of ML-estimates, If n is lares then the ML-estimators are mmlti-
. . ' (o) . . R

normrlly dictributed with vect~r of means ¥ and dispersion matrivd

{the inversa of thns mntpiv of recrn? order nartial Aawiwratives ot the

mnximnﬂ).
3r Taatine nf hypothese~

The hvnothesis P =l : Moximize
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where Jj is some conmtant value (in PCT. we may want to test ff = ). Ve
nee tre derivatives and second Aerivatives from the rrevion= sention
@ith 7 substituted for P nnd without considering the derivatives with

resnect to P, Asymntotic theory for LR-terts saye thnt

> p . .
is digtributed as x with one df if n-yel,

fnecipl came N = 1: In this cnge
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~nd +he 7"1:-—e=,<'-*:3.mr‘co::*Q of /(,L and /‘1 ~re the samnle mean m =and samnle
voriance s, Moreover the asvmnintic vanisnces of these estimates e,
resnectivelw, s”‘_/n n,nd 25:'”/n, while their c.onvariance vanishes: amymptoti-

c=1ly (Kendall # Stnart 1967, n 57). Of course thie im the hvoothesis

ig trivially ecuivalent to 7i—: 1),
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Ve test the hvpothesis that the subject conies the objective sitnntion
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exactlv, The log-likelihood function for this c=ge hns no unknowns, it

ig simnly 2 single real number [ .
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Asvmnintic theory for LR-tests savs that, if nae«, then
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Case II: Ye may also conmider  in {(52) ~nd (53) as » vorieble. The

hypothés;g P o=, /11 = "/MP /)1 /, , = X means in this case

that the subiect is » nem"‘ect Raysian stratesist but he may be conserva~

tive (or whatever the onposite of conservative may he), [(‘,() can
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combinations of

tne mme-limensional Yewton-Ranhssn method withi{ as the

5 .
The corresnonding }(" hag 4 df. By Aronning the as~nmntion

we introduce the nossibility of bias. OF coursge many more

FO and H1 are norsible, the only thing that must alwavs

0

H idis = restriction on the narameters of H . Our advige

1

for PCl—evneriments ir 40 tfest the following servence of hypothemes:
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