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7+ Genernl Formulation,

Tet X be a Pinita Frbset of the sat pe 417 M=tunles of nesl pumbers, ¥

hng n elomentn yj,vq,...,?h. The Coordinate valnea ern be collected in

a motrix ¥ {TY.

i

} ' i:?,...,n; =1y 0es,m, “nnpose Y i snother set

of n elements, mrtislly ordered by tha relation % e o apa interentad

in the evistence o~ rer]l nunheps o Tree T Sneh that
" m 1 m

To eatahliay renre~entatian thenrems the frRingt wvey 4o to nee the method

of Tyerals (1964) ana “cott (1064), fineh of the recnirvenants (1) ann pa

trene]atag inta o hamn ennann- Tineqy 'in@f*u?'f_i'hv, Tf (V,,V,)é’;} then
1 ? e

WO recnima
2 ~ - \ . 2
(Ji” '4h)'Hp ;? o, (=)

e rnﬁvnhph+rtinﬁ thanrome ama the Familion therremo sivine necessapy
andd fufficient conditions fap the e¥intenge ar solvtiore af e tome af
Ainman ih?”uﬂli%?eﬂ. A vepy eomnloete revden 0F thasp thorrong o T ven by
Pan (1954), my, nigueness theorems, +hat ctate nranertinsg of the
golntion set, “re mont ansily "mAeratnod b peine~ the craomatni o thanpy

of nolvhedrn] CONveY conar ang their extrene Pooen,

The congtruetive ﬂhnpoéﬁh T mananranant theorv, Ag mrontiacad B nennie

2 Tyunn, ¥ronte, and Snomes, ean Plen be nged ip thris enre, Let @& denote

(comnonentwise) veetor addition in X, The axvioms ~pa choren in smeh a e

that <fX,<§‘,%:> i o fully ordered trekmimed ann TONN, and hy Hgldap's

thecrem thepe ~¥ists A fanction Fof ™ into tha fﬂfls fach that for 211

FTyv € X

B @) =t 4 ey, | ()
ii) flx) > (vy) CAFP x>y, (4)

~.
It is ey Fnovm that the only continuons solutions of the funetion~

e n~tion (3) are the lineap fanetiong. Continuitw of f can bhe fusrenteed

bv imnopjnﬁ (:yiomptionllv) restrictiong on the order tonnloey imdnuced




-on 1 by Z . e shall azsvme in the cemnel

i) the columns of the matriy X are centered, i,e,

= x. . =0 for all T=1 ) 00 e yma

ii)} Y is a cet of real numbers, Hithout los~ of generslity

L S

“e may sunvete 2 v, oo (.

1

k3

e assume that rank(X) = m, and conzeruently also thot

n>m,

iii)

In later sections we rnhall show that all three asgumntions ¢an he avnided

~nd are not esgential for the aleorithms,

72 Mlternating lenst sruares algorithm.

v
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v
In order +o find the begt volne of v for cur problem we uste a Krushsle

trpe error theorg. Define the long finetion

Pk (’? _ 2
1211 ;)

Con - .
2 (s, -2 )
i=1

with

S}

iz the mean value of thno zi, and 2 is anv vector monotone ith v,

Throuchout thie naper j denntes a vector with all elements erunl to

(5)

unity. Because X ir centered colimnwire we have 'K = 0 and z - "y Jtiw = O,

Thus

o _ Lz~ LIS )) _ v Xy
T 2y h wtX

e e

*

- 20'X'8 4 '3

Conzider # as a fived vector. Then 5 is minimized if we minimize itm

.

numerator under the cmdition thet w'¥'%y i some constent value (snv

unitv), The Lagransisn frnetion ig

l’(w) = wt Ve ’-’r.-,r'."'?"‘ﬁk + B'% -F(Ta?"}‘,f'xl.‘r - 1)’

ana

(8)




e must molve the svstem of ecustiong

(1 = M) < xrg - | (10)
WMo = 1_. ‘ (11)
for w and/u . The»solution'is

w

J

For a first anoroximation we take 8 = Ve Obsérve that the nroblem of

il

(27 (e x2) ™ (ver )Ty g, | - (12)

-1 2
T = (2rX(7 )T Treg)E, (13)

fl

minimizine~ S for fixed 2 iwn closely.related to the oblique Procrustus
rroblem discussed by Browne (1967). There we recuire why = 1 in stead of
wIXtiw = 1 and, an a_conseruence, the stationsary ecuations must be solved
iteratively., The next step ig to comvute new values of Zy, and to find 2
in such a way that g is minimized under the condition that 8 remaings
monotone with y, This nroblem is aolved by the amalgamation method uged
by - Vruq&a}. In summary

L{(0)

1) set 3 = ¥, and set iteration counter g = 1 H

) %y (12) with 5 = a(s=1)

G

2) find w
3) compute z(S) =
4) find g(q) by the almagamation method, commnte S(S) :

5) if 5 = “max PheM €0 1o step £ (zee section 3), otherwise

& =8 + 1 and poto step 2,

3: Newton-Rnavhson iterations.

The iterative scheme in the previous section hag the obvious provperty that
s(s+1)§f s fact in each iteration the value of § in diminished two
times, in Qten (2) and in step (4). e have 3(341) = S(S) iff w(s+1) =
W) s 8t *7) _p(8) () e g(5) _ 0. IT'S . > 0 then the method
- min
does nni eonverge in a finite number of.steps. The rate of convergence ig
somewhat mneatisfactory {in qenémal it can be commared to that of the

ontimal fradient method, which means thet the method is very inefficient

nerr the minimum), In our comnlete algorithm we use onlv a few (nquS
. . «




steps of this method. They are sunnosed to bring us clome to the minimum,

where 3 is dominsted by the second order terms of its Taylor expansion,
i.e, nearly quadratic. There the Newton—Raphson method becomes very
efficient. It has 'the additional advantage that we obtain information
'about the distance from the minimum and about the curvature of the

function. In order to develop the necesrary formula's let {superscripts

denoting the iteration humber s are deleted)

e = X'z = X'u, (14)
£ = X'(z - 2), | (15)
s* = (z - 2)'(z -~ %), . (16)

v

™ = 2z, (17

Then
~
Iy} ¥
~= - e, (18)
('\)Wk
and
\ E K
U .
vV k
Thus
'\q ? ‘
6
e = w= (F - S ). {20}
T 1 h . :
an mi k k .

These vnartial derivatives are collected in the gradient vector g. The

second order derivatives are given by

2 . .

s -~ 2 ¢ .
C;wk C7W1 = e E(T - q)ckl - (glek + gkel) } , (21)

with C = X'X, These elements are collected in the symmetric Hessian
matrix ¥V, and we assume that V is nongingular. The Newion-Raphson scheme
is simply

W(S.!-q) = W

(=) - (V(S)Qj1g(8)n (22)

The entimated distance from the minimum is given by

(_}(S) - '% _' ;O:(S)'(V(S))—-‘,‘»’:(S).

min




The quantity (say ) on the right hand side of (23) is a good stopping
r

criterion for the iterations, Obqerve that the form of the second order:
derivatives sugeests anoﬁher modified gradient method which will also he
cuite efficient near the minimum and does not recuire computation and
-inversion of V., Simply take
) (s) _
W(S"}-T) = w(S) - 2(1=~S : C_1€'(S). (2‘4)

-

The weighting matrix 0“1 must be computed anyway. Thig method is an
analogon of the method of scoring for paramelters in ML-estimation, To
conclude the scheme from the previous gection

6) t =1, w0 _ w(s), 2(0) _ (s), s(0) _ (s) ;
7)  compute F(t), V(t) (V(.h)“"1 and, {m(t)
8) irf ﬁ(t)<£ then stov
9) compute w(t) br (22) .
10} compute zei Xwﬁé
11) commute ﬁ(t) by the almagamation method 3

12) ¢ = t+1, and 80 to sten 7 ,

4 Heqtrlctlve conditions,

S

The first restrictive condition we 1mposed in section 1 was that ;% xij =0

for all Je Sunpose thig is not true. Then there are real numbers .Xi

(3=1,...,m) such that

=%, .+ )

Fig = %y i (25)

~ . s e . :
where xii 18 our orieinal centered Variate. Then, for o particular value

s

of the vector W,

‘ i - S A “ ~
z, -2 WXL = zw X 2 w =z, X (say). . (26)

It follows from the nature of the almwpamatlon algorithm tha,
2 =% 4 N, g | (27)

1 1 e

Moreover

;=%2‘(.gi'+)-)=§’+_>\= \ oy




(29)

zi";‘—.?i*??fzv-' : T ,'(30)

Lo .
Consequently S = S for all vectors w. The minima of two identical funciiom

are, of course, also identical,

The second restriction was that y must be a vector of real numbers. This
restriction was used only in the computation of an initial estimate of
we It is easy to generalize the approach to an arbitrary weakly ordered '_
set (Y, . We use the CDARD4 technique (De Leeuw 1968) to obtain an

initial estimate of w, Let

Sij = 0 if ,Yi:o yj’ (31)
S 4

Then we must maximize the coefficient
%% sij(zi - zj)
F = S 5 . (32)
2 =g

i

Simplifying the numerator (by using the fact that sij = "sji) yields
| ;(_ZJ_ sij(zi. - zj) = 221 z; 2 85540 (33)

J

It is easily seen that
Zj sij = 21'i - (n+ 1), ‘ (34)

where r, is the rank rumber of ¥ in the order, and where ties have

evual (averaged) rank numbers. Moreover

'ZZsij=ZZri—n(n+1)=0. ' (35)
i 3 - i - '

Hriting?; for the centered ramk numbers we obtain
~.

2 (36)

B o= WX % *

. s
The optimal solution for w is the same as in formula (12), with 2 = 7,




In the case of a partially ordered set the situation is 1esé gsimple. We
let sij = 0 if the order relation between ¥ and yj is undetermined,.
Formula's (32) and (33) can still be use@ but the simple relation of

) Va2 ‘pynd fa Vg
with rank numbers is not true. Define si = 2. sij and use s as
3

2 in (12). It is also possible to adapt the almagamation algorithm for
partial orders. In the relevant step of the iterative program we have to
solve the quadratic programming problem
(2= 2)"(z ~2) min ! | (374,
A% 0, (379
where A ig a matrix constructed in such a way that any 2 satisfying (370)
sétisfies the order relations. Perhaps the problem (37) is must easily

solved by the Gauss-—-Seidel type method for quadratic programming proposed

" by Hildreth and d'Esope and disccused by Kunzi and Krelle (1963).

The third (and most important) restriction in section 1 was that
c = XfX must be nonsingular. Observe that the only place in whiéh we
use this is section 2, where ¢! is computed (only once). Consider the
normal_equatiohs

X'Xw = X'8, - (38)
These equations always have at least one soultion. Proof: a system of
linear equations Ax = b is consistent iff for all y for which y'4 = 0
it is also true th;t ¥'b = 0. Because X'X is positive éemidefinit,
y'X'Xy= 0 implies y'X'X = 0. The converse is obvious. Thus: y'X'X = 0
iff y'X'Xy = 0 iff y'X'= 0, which implies that y'X'z = 0. Q.E.D.
It is well known that the solution of (38) for w is unique iff X'X is
of full rank. If (38) is oonsiétent, but rank(C€) < m then there are
more solutions, A genersl inver;E\(ghinverse) of an n x m matrix A
is defined as an m X n matrix A" such that for each consistent system
Ax = b the vector x = A'b is a solution. It is not difficult to see

that 4~ is the g-inverse of A iff AATA = A iff ATAA™ = A~. Because the




nornal equations are consistent the vector

w = (X'X)"Xvg ' (39)

is a solution., The general solution is given by

w=CX'8 4+ (CC -1}, - | - (40)
with arbitrary b, In our procedure we héve to scale the vector w after—
wards in such a way that w'X'Xw = 1. Some practical ways to compute a
g-inverge of C in the special came of normal equations are given by Hao
{1965). Let the rank of X be < m, then it is possible to construet

an (m-r)xm matrix H such that the matrix

X
Ta ol (41)
is of rank m. Then 8'= %}3'= X'X + H'H posesses a true inverse, and this
inverse‘E; is a g-inverse of C. Another method (which is.especially
.useful if we also need the canonical form of C or the Eckart-Young
decomposition of X) is to write C as KAK', with K'K = T and,;L,diagonal.
Let L™ denote the diagonal matrix with elements ;\Z; if 'Xii:> 0, and
0 otherwise. Then N~ is a g-inverse of A, and X A"X' is a g-inverse
#f C. The final method we discuss is to delete the m -~ 1 dependent
rows and columns of ¢ (without logs of generality this may be taken to

be the last ones) and to invert the resulting r x r matrix C.. Then the

m X mmatrix
-1

cr T 0
' (42)
0 o0

is a g-inverse of C,

For the similar assumption'in'the’Newtqn—Raphson equations the situation
is less simple. The NewtonnRaphson method resulis ffom approximating a
functioen by its second order Té&lg; eipansion

| f(x - h)a F.(x_;h) = f(x) - h'g, +h'V h, (43)

A necessary coéndition for an exireme value of F ig




Vib =g (44

This system is not necessary consistent, If it is, a solution is given

by V;gg. Otherwise we must go back to the method of sectiion 2,

*

5¢ Psychomeiric Applications.

5.1: Nonmetric multiple linear regression.

This is the standard cage, the analogon of ordinary multiple regression,

The matrix X is measured in the ordinary way {at least on an interval

scale), the 'dependent' variable y is measured on an ordinal scale,

5.2: Nonmetric polynomial regression analysis.

The matrix X is‘constructéd by ﬁsing as délumns either powers of an
independent variable x, or the orthogonal polynomial coefficien%é. Again
¥ is measured on an ordinai scale. Observe that the polynomial of degree
zero (a cdnstant) is irrelevant and must not be included in the analysis.
- If we have two independent variables % and x2 the columns of X can be
constructed by using the vectors xf, xg, X Xsy Xy and X In this case
we fit a quadratic function to the (ordinal) data. This approach

generalizes easily 1o all 'separable' functions of p variables,

5.3t Nonmetric disecriminant analysgis.

In the metric case discrimiﬁantanalysis can be considered as a degenerate
form of multiple regression in which the Ydummy' dependent variable
congiste entirely of zeroces and ones. In the noametric cése‘the same
thing is true; In gtead of requiring maximum distance between the two
populationsfwe require minimum overlap {and of course we use>Kruska1’s
primary approach to ties in this case).

5.4: Nonmetric canonical discriminantanalxsis.

Ye adapt our algbrithm of secti;hg2 to the case where there ars p groups.
We require that the projections Xw of the groups are pairwise disjoint.
To do thig we form (g) vectors 2_, (s %), we let %¢=;§‘2; 2_,» and

we minimize




~10—7

wWX'Xw - 2 W'X'8 4+ B
gt

'
?"ZZ T WX X S't“g—"

st

This is equivalent (with the 2 . fixed) to maximizing

w'Xts ‘ ’ ' :

F= wiXtZuy !

znd no new aspects have to be congidered,
£.5: Additive conjoint measurement,
In =2dditve conjoint measurement the matrix X must be constructed in 2

rather special way, Consider the case of a two-factor design, with

(45)

(46)

Tacets A and B, A has 1 elements (levels, structs), B has m - 1 elements.

Por the dij = (ai’bj) elemeht of the data structure D = A x B we cons
y . _ : . .

2 row of X ag follows: the row X, has m elements, both Xq and xk,1+

are equal %o unity, all other elements of xk are zero, It follows th

X, WeWw, +uw
[ 4

k i 1+j3?
which is what we want. Generalization to more than two factors is obv

3ecause of the special structure of X the equations for the iterative
Program can be simplified, We develop them again for the two~fsctor c
with no missing data. Facet A has k elments, B has 1 elements, k + 1

a—

Kl = n. The scale values are collected in w'= tu' . v']. Moreover

[ 4

. = U, +°v,
Zig uy vJ,
gij is ‘the corresponding monotone matrix,.jz Z éi. = 0, We must mini
, P .
u-ir:g.. -7, ., 2
P :L‘*( ij iJ)

S
which is'éq?ivalen% to maﬁimizinﬁa“

P oo gZéiiiifii ] ‘?Z Zfiﬁ(ui + vj)
L2 zij .:_Z.Z(ui . vj)2

e

truect

h
at

(47)

ious,

age

::m,

(48)

mige

(49)

(50)

The derivatives of the Lagrangian»?unction are ( A as Lagrange multiplier)

‘2&;223‘~2Au —2)7'57»1
jsa ] jJ

(51a)




%—% = 22 2, - 2>\§rt - 2)2 u_. ' (51b)

~ T = A —
Let n j 2 . an vy =21 2“, then % 1_13 2—!; vy = Z ‘z_ gij =0, I%
. ~ o 1 h .
foll k if .. = - T2 \-E Loy
follows that, if zij = u, + vj and ¥ =[2 zﬁzij =, then u ~}’ %, and

i3

v'—fx vy are a salutlon to (51) The theory in thlq gsection can essx;y
be translated into a matrix formulation u31ng the g-inverse (we add some
rows 1o X to make up for the deficiency in rank). Moreover it can equally
easily be generalized to cases with partial craeés, zZero--cne responses,
non-nuéerical responses, and muliifactor designs. Quite similar simplifi-

cations are possible in the equations of the Newton-Raphson metheod,
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Upom furtherrinvastigatién the method proposed in formula (24) turns out te¢

be somewhat of & hoax, The proposal was

(1) | J(8) - () (e :
W =W - ' g . : (52)
| 2(1 - S(S))

Prom (14), (15), and (20)
)« ] (1 - sEne) m‘s’}- | (53)

Substitution of (53) into (52) yields

(g+1) 1+ ~1yea(5)
W - (x1x)"'xrg\®/ (54)
(1 - Sm)

and thus the method of (24) is identical %o the method of section (2). This

shows that the faster convergence of the Newton-Raphson method is due

- entirely to the terms 878y + &8 in the expression for Vie1®

if we are close to the minimum, these terme must necessarily be quite

Neverthelesns,

small. -
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