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Chapter I: The data.

1.1 Categorical data

In this paper we shall be concerned with the analysis of categorical data.
These data arise, for example, if a number of 'subjecty fill in a multiple
choice test, or if one single subject judges a set of stimuli on a nvmber
of mul{icategory items, More generally: we deal with a2 finite number of
partitionings of a finite set A. In the first example mentioned above the
set A is a get of subjects, in the second example it is a set of siimmli.
The partitionings correspond witk items, tho submets of a particular
partitioning with categories of the corresponding item. Unless otherwise
indicated we shall assume that the categories are unordered, that the
partitionings are proper {in the genge that the subsets corresponding
with the categories are nonvoid, exhaust A, and are pairwise digjoint),
that all'partitionings consist of an equal number of subsets (i.e. all
items have the same number of categories). A has n elements ay there are

n partitionings 17;, each partition I‘j containg 1 subsets Ais’ Thus

AigM Ay = 0, Vj, B £t (1)
1
gﬂjs = A. Y (2)

Unless otherwise indicated the ranges of the subscripts will always be
8yt = 1,000,135 i,k = Tyeeoyn 5 j = 1,00.,m. The corresponding index sets
are denoted by L, N, M. Sets consisting of one single element will sometimes,

if no confusion is posgible, be written as points, i.e. x in stead of {jx} .

1.2 Derived measures and binary matrices

Techniques for analyzing categorical data with unordered categories arc
relatively new and unknown, notwithstanding the fact that theme datu are
very common. In the past it was necesrary to construct dichtomous variatec

on which an order relation could be defined (yes~no, right~wrong). For




e

these 0-1 variates there is a large number of analytic techniqueé available,
varying froh iechniques baused o derived measurement (principal'component
analyais of phi-coefficients or tetrachorics) to more fundamental procedures
(such as Coombs—Kao nonmetric factor analysis, Guttman scaling, and Lingoes
multiple scalogram analysis). Another possgibility is to use the catesorical
variables in conjunction with measvred varinten, This is done in the analysie
of variance and covariance, cnd in (canonical) discriminant analysis, But

the only tool for people who were confrointed with purely nominal data has

for a long time been the croc-s table and ths associated chi-square (or some

other measure of independence).

1.3 The ICP-matrix

In all basic papers on the multivariste snalysis of qualitative data
(Guttman 1941, Burt 1950, Lingoes 1968, De Leeuw 1968) the fundamental
data matrix is the same. Bach item correspondeg with an 1 x n matrix XJ,

with xgi = 1 iff a.i€ A, . Otherwise xj = 0, On the arsumption that we

s si
have mutually exclumive and exhanstive categories

3 o ,
X Xy = Os i, o £ 1 (3)

et | 2

J
22—4 Xsi=n. (4)

8 1

Of course (3) implies that (xj)(xj)' iz a diagonal mairix. The elements on
the diagonal of this matrix are denoted by dg. Thus dg is the number of
elements in the set Ajs; and
>, al < n. (5)
5
The basic data matrix E is a supermatrix obtained by placing all m matrices
XJ beneath each other. In Linsoes (1968) this matrix is called whe altribute
or trait matrix, in De Leeuw {1968) ii ie called the Indicator of Cartesian

Product or ICP-matrix,



1.4 Belonging and order

There is a close correspondence between the relation of belonging and the
order relation. In the first plaoce all items can be reduced in a natural

way to bihary items, by splitting up

TTj';- {Aj1,...,Aj} (6)

into
T, - {A;u' A’Aﬂ} '

{"“52’ afagts

-
nN
i

p

= {Ajl, Al Ajl} , | | (1)

where X‘ Y denotes the complement of Y relative to X, i.e.

x|y =xUT. (8)

On each row of the associated binary ICP matrix E (of order ml x n) a

partial order 2q can be defined by

~ : - -
(Wq, a5) g (qu,ak) iff oy = OA ey =1, (9)
with gq=14...,ml. On the original ICP-matrix the order relation would be
i o I .
(Aja,ai) Z'js (Ajs.ak)_ iff x3 =0 A X3 =1, (10)

Although the data define both kinds of ICP-matrices uniquely, it is in gene-
| ral not posciblé to reconstruct the structure of items and alternatives

from a given ml x n ICP~matrix. By just considering the ICP-matrix we lose
information and the information we lose is exactly the fact that some of
the rows correspond to (mutually exclusive and exhaustive) categories of

en item. Ve neglect the fact that I is a supermatrix.
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Chapter II: Separation by continuous functions

21 Introduction

The algorithms we are interested in in this paper make it possible to
fepreaent the set A in some kind of space, The key concent in tho anikysim
of categorical data is separation. In a purely sat theoretical contex: tuc
geta can be considefed separated iff thoy are disjoint, dut if we want 2
particular spatial renresentation more stringent conditions are neocded. The
concept of separation plays an important role in general topology (it can
even be used as a single prihitive to define the notion of a topological
space). Because we assume that mogt of our readers are not familiar with
this disciplin, we review some of the basic concepis and results in the
first parsgraphs of this chapter, For thia review we relied heavily on

the books Kelley (1955), Vaidyanathaswamy (1960), and Mamuzié (1963).

2.2 Some concepta and results from general topology

2.2.1 The closure operator

Suppose X is a set, Zx is the set of all subsets of X, and YV is a single-
valued mapping of 2x into 2x. Then 2' is called a generalized topology for

X and the pair (X,ir) is called a generalized topological space. If T

satisfies

T Tw-g.
T,) & < TW), Vicr
Ty T(Tw) - (), Vacnx

Ty YMvs) = T v, Vas e x.

then ¢ is called a topology for X and the pair (X, 7) is called a

topological space. In this case it follows from f} that T(X) = X, and

QT(A) ig called the closure of A. Sﬁppose {3 is another single valued
mapping of 2x into Zx with fg(A) = Xl A, If o denotes composition of

mappings then define L(4) = /q o'?.'o(@(A). Then almo T (A) =p o Lop (a).
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£ T zatisfies f1 - {"4 ther 1% Tollewe that L (ff) = /3 o?'op(ﬁf) =

(,xo’i‘(x) = p(x) =@, aml (X) = = mo/.a’x) f3 0 o z{d) .-_-/3'(9!) = X,
By similar argumvnls it foilcr1e that f asotisfies in this case

Ly L - g

L) b < oa, Vacx
Lq) LCo(a)y = {2y, Va ¢
-~
= B . . ‘ d
ls) L(AUBY « t(8) U (B, Y AR C X

We call 4(A) the intrrinr of 4, THe nat 2(a) = ¢ o/j(A) ig called the
exterior of A. 'Whuur o & X is -~ extorion woint of A iff it is an interior
point of the complemant of 4, The inteeiop Lour iniy of A, gi(A), is
defined aa 4 ? l{ﬁ)', the rztovior honndary, ,Y.-.(A)v re 'Q(A)! CO’Q(A).

W -

The boundary of a set iu the untor of i‘s interlor and evterior toundary.

- . e

A point a of a topologica.l rpace Is called an accunuiation point of 4 & X

ifa €4 "\) he g0t of all acminvl-tion poinim of A is calied the
derived set of A. It is denoted by A'. We illvatrate these concepts br a

fou cxnmpleg,

“xample A: Diucreta tonolog‘g.

Let T(A) = A for all A <€ X, Bvideatly & satiefics Z: - Z;l" Por ¢(A)
we obtaiu ¢ (4) = A o’ (){!(A) = o/@,(i‘.) = A for all A. Horeover J’i(!&,) =
;fe(A) = K(A) Jy and A’ = ¢ for all A (if a & A' then o & ?’(A} a) =
A ’ a which is a coutrad’ctiun),

Fixample B: Ircinonnto tonelorr:.

Lot T(4) = X for all A ¢ aud LAFY = o hgadu 2‘1—- ’[;1 arn natisfied,
t(4) = ﬁ o7 o/‘(ﬂ - AUX) = 9 for 211 2 ' W oand L (X) = X. Morcover

(}/i(A) = A, ‘_’-Q(A) = /,e,(,c); o I'j/(z\) = T, Pirally A7 = X for all A £ 4.
". A

2.1.2  Opsn and clesed snetn

Tapological soaces cun A el vind in othop (equivalenti) ways. Let X be a

g . - R ey g
set, and § o TaMly of sobreic of X gacinlying
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£,) x et ,
" . (\
£,) L VY WA = Ya et
i=1
£,) Tet a2l
4 EN=

The members of the famiiy ;} are called open seota. Obmerva that f4 statern
that the union of all membors of sny subfamily oflqy is in ¥ ; whilo

f3 requires that the intersection of the members of any finite cubfonily
is in’¥'. Define ¢ (A) ae the ﬁnion of all op:a mots containod in A, This
mapping satisfies £1'- { o It follow: that (X,;},ﬁ’) is a topologizal
space if we let 7 =p o Lo If ¢(A) = A thuu A is the unicn of &ll
open sets contained in A cnd tuwa, fﬁf A i< opon. Conversolyy ir o i:
open then the union of all opnn S;tﬁ contained in 4 ~quals Ar £ (4) = A
?ff A is open. A set is called tlosed if its complament /Q(A) ie onen.

It A(4) is open then o (4) = A8), amd T(a) - po; oA h) = o) -
A, If fvo/ﬁ(A) =/G (A) then ¢ (&) = A, 5o A im opon snd /3(A) is.élosed:
A is closed iff ff(A) = A. A closed met containr its dofived set: A' =
't'(ﬁ)] Aor T(A) = A U A'. IT # is cloned timn T(A) = A and thusm
A=A U A", or A'C A, If 2 ic oper. then iis interios houvndary is enpty:
Ii(A) = A ) L(4) = A ‘A = @ If A in closed hen its exterior boundary
is empty: JO(A) =/{ (A)i ¢ o/3(A) ={5(A)\ F(A) = (. Tho sets ¢ and X

are both open and closed.

Example C: The ‘real line in itao natural topology

A get A of real numbers is opon if for overy point a £ A there exicts a
number r;>0 auch that the open interval (a~»,a+r) ¢ A. Morcover @ is open.
It follows that open intervals are opcn, the 2omplenents of cloéed intervals
are open and thus closed intervain ave nlosed, IFf A in thea clened snptanerad
C;,b] fhen the interior of A is the open interval (a,b), whoza closure

‘- e b
again is A, Tho derivsd sct of both (a,b) and }a,b; iz *ho sat fa,b{.'r'his
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set ie also the boundary for both the open and closed interval. The only sets

that are both open and closed are ¢ and X.

2023 Neighborhoods

We have defined topological spaces using as primitives the closure opserator,
thé interior operator, or the family of open saets. There are other
alternatives., Yé may uée the ooncept of a closed set or the boundary
operator as primitives. Another possibility is to use the notion of
neighﬁorhood. With each point a of the met X we associate'a number of

subsets Va of X, These subsets are called neighbérhooda of a, and they

are chosen in such a way that they satisfy

§1) Bach point has at least one neighborhood,

v2) Each point is contained in every one of its
neighborhoods, |

v3) For each pair of neighborhoods Va and Wa of a there is
a Ua € Van) Va.

v4) For each Va there eximis a "a, such that Va contains a

neighborhood of each point of Wa,

Ye shall say that b is a contact point of A iff each Vb has a nonempty

intersection with A. Let T (4) be the set of all contact points of A. Then
T satisfies ?f1 - 754.>Each point is an interior point of each of its
neighborhoods, and a set is open in the neighborhood topology defined
above iff it contains a neighborhood of each of its points. A neighborhood

of a set is the union of the neighborhoods of each df its points,

Example D: Lower~limit topology for the real line

Define a8 neighborhoods of the real number a all half open intervals [a,b),

with bt)a. Postulates v, and v2 are irivially satisfied. If [ﬁ,b1) and

[a,bz) are two neighborhoods of & with a .(_'b1 \< b, then [~a,b1) N E‘?bz)

o2

L a,b1), and the neighborhood [ja,%(a+b1)) is contained in ra,b1). This
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verifies Vye Let [a,b1) be a neighborheod of a, then each point of
[a;%(a*b1)) has a neighborhood contained in [a,bi). 8o Vv, is algo true,
It follows that b.is a contaét point of a gset AC X iff b & A or b is a
lower limit point of A. The closure of A is the union of A and ite lower
limitse. The.glosure of the open intervél (a;b)'is {?,b). Cloged intervals
are cloged, An open interval coﬁtaina a neighborhood of each of its points
and is thus open. An upper limit topology for thereal line can be defined

in the pame way.

2.2.4 Continuity
Consider the topological aspaces (X, T ) and (Y, 4 ) and a mapping f of X into

Y. The function f is continuous at a point a & X iff for aach neighborhood
Wb = We{a) C Y a neighborhood Va € X can be determined such that f(x) &€ Wb
for every x € Va, The function f ie continuous on AC X if it is continuous
at each a2 € A. By cfneidering the definition of open and closed sets in
n;ighborhood spaces, it ias obvious that a necessary and suffieient condition
for £ to be continuous ie that the inverse image of every open set in Y is
open in X (or, equivalently, the {berse image of every closed set is closed),
It can be verified that in the case in which X and Y are real lines in their
natural topology this definition is equivalent to the familiar definition

uged in analysis.

Example E: Suppose the infinite eets X and Y are topologized in the
following way: the only olosed subsets of X and Y are sll finite sets, g,
and X and Y themselves. If A is an infinite subset of X (or Y) then the
closure of A aquals the intersection of all closed sets which contain A.
But X is the only closed set that contains A, i.e. T(4) = X (or Y), If
A is finite, then (3(A) inm infinite, and ((a) = [50";036(A) = [3(X) = {.
If A is infinite, then /3 (&) may be either finite or infinite. If p(A)
ig finite (i.e. A equale X except for a finite number of points) then

({(4) =(30'?.’oﬂ(;\) =/ o/}(A) = A, if both A and (J(A) are infinite then



t(a) = {’~ oo (.\(A) = p(x) = ¢, The only open sets are ¢, X, and the setsv
A that are équal to X except for a finite number of points. The only séts
that are both open and closed are ¢ and X, the sets A for which both A and
P(A) are infinite are neither open nor closed. Clearly all one-oneé mappings

of X onto Y are continuous.

2.2.5 Separation axioms

Topological spaces can be classiflsd by several conditions ocalled sparation
axioms. e list the most important' of them,
Toz For any two distinct points a,bg X either a¢ T(v) or
or b ¢ T (a) or both.

T,: For sny two distinct points a,b€ X both a o T(b) and

1.
b ¢ T(a).
It follows that T (a) = a for all points a & X if T, is satisfied.
T.2 For any two distinct points a,b £ X there exist disjoint

2
neighborhoods Va and Vb,

T, For any closed set A C X and any point b & A there exist
die joint neighborhoods V{(A) and Wb,

0

called a 'I‘i-npace. The remaining two separation axioms are for T1-spaces

Bvidently '1‘3-9» '1‘2—-9’1‘1-»’1‘ + A topological space that satisfies axiom Ti is

only.
T 3 ., For any two digjoint closed sete A and B of a T1-space X
there exist disjoint neighborhoods V(A) and V(B).

?_ 3 For any two sets in a T —space X with AN T(B) = BN t(4) =

1
¢ there exist disjoint open neighborhoods O(A) and 0(B).

. AT, . ~space is a space which satisfies both ’1‘1 and '1’3.

Of course '1‘5»9 T4 13

Such a space is called a regular épaca. A ‘I.'1 —-gpace is called a normal space,

and a T

~gpace a completely normal apqc_e_'__because in a T15-space svery

15

subgpace is a normal A(T1 4)' Bpace.

S1: Bach nonempty closed set B C X and each point a ¢ B can be



functionally separated; in the sense jhat there ia a conti-~
nuous function £ of (X, 7 ) into [0,1} with f(a) = O and

f(b) = 1 for cach b & B.

A T1S1—epace is ocalled completely regular, T1S1~9 T13.
82: Each pair of disjoint closed ssts A,B C X can be functional
ly separated (3 £: X [0,1] , £ continuous, £(a) = 0
Vaca, £(d») =1 VYve B). |
2~» T1S1, but alsmso T182¢v%>T14. Wo restate this last result as:

In a T1-spaca every pair of disjoint closed setn can be functionally

Trivially T1S

separated iff the mpace is normal. Thus every normsl space is completely
regular. A very thorough investigation of the rolstion betwesn the different

separation axioms has been carried out by Van East and Freudenthal (1951).

2.2.6 (Pseudo)-metric space

. %
Suppose & is a single-valued mapping of X?into the positive reals satisfying

d,: d(a,a) = 0O, . Ve e x
d,: d(a,b) = a(b,a), Va,be X
d3: d(a,e) > d(a,b) + d(b,c). Ya,bec < X

We shall denote the open spheres around a poini a by S(a,r). Thus S(a,r) =

{;xl d(a,x) < rt? where r is a positive real number. The neighborhoods of

a are all sets S(a,r). Tﬁese neighborhoods satisfy v, - 42 59 (X,d, ) ie

a topological space. All functions that satisfy d1-d3 are called pseudo-
metrics., Let D(A,B) =.infnrd(x,y)] XA, yeE B‘}. Then it is easy to see
that a is a contact point of B (i.e. a ¢ 7 (B)) iff D(a,B) = 0. Thus

T(a) = f x»} d(x,a) = O 3‘. The dismeter (Sof a set A ¢ X is defined as
supA{d(x,y) ix,yga A}‘. In any pmseudo-msiric space D(4,B) = D( T(a), 27(B)),
and S(A) = 8('3(A)). A pseudometric space satisfies Tye It d satisfies in
addition

d4: d(a,b) =-0 = a=hb, | Va.,b cX

then 4 is called a metric, and (X,d, t) a meiric gpace. In a metric aspace
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d(x,a) = 0 } = a, i.e. a metric space iz T,, or normal. The

T(a) = {x

metric can be resiricted to subaspaces of X while remaining a metric, and

14

thus a metric mpace is also a completely normal space.

Example F: Let X be any smet, d(a.,b‘) = 1 iff a # b, otherwime d(a,b) = 0.
Then d satisfies d —d4. For the closure of A we obtain T(A) = {?x ‘
D(x,4) = o}. Now D(x,A) = 0 iff Jb ¢ A P d(x, b) = 0 iff x ¢ A. Thus
T(a) = 4, and ((A) = /\o’t’o[g(A) = po/.\(A) = A. All subsets of X are
both open and closed., The topology induced by the metric d is equivalent
to the topology considered in example A. Or: the topological space in

example A is metrizable.

Example G: Let X be the sat of a}l pairas of real numbers: X = {(yjz)}

Yy = Re, 2z & Re} o Each point x corresponds with a pair (y,z). Define
d(x.,xj) = iyi - yJ( . Then d is a pseﬁdo-metric for X. In this space the
closure of a poini x is the set of all points that have the same first

coordinate as x. If we let d(xi,xj) = Vrz;;—:’;j) + (zi - zj) then

d is a metric and the closure of x is x. In this meiric space circles

play the same role as intervals in the natural %topology for the real line.

2.3 Separation of sets in meiric spaces (binary items)

Suppore we have a representation of our stimulus met A in some kind of
topological space (X,?J), and nupposew77_*is a partitioning of A into
two subsets B and C., We shall say that our representation of the iteﬁ
(partition) id weakly contiguous (WC) iff there is a continuous real
valued function P that satisfios

;;'1: if x @B and y & C then P(x) ¢ ¢(;r).
A set of items has a WC~representation if all items have one, Suppose
(X,?f) is a normal mpace. Then s§ts*consisting of a single point are
ologed gby T1), the union of a finite number of closed sets is closed, so
" there exists a continuous 9ﬁ with ?f(x) = 0 for

4
all x ¢ B and 95CY) = 1 for all y < C. This means that a sufficient

B and C are closed, By T



condition for an item o haim a FJC-reiaroaen'baticn is that the abace in
which we raﬁresent A is normel. It aleso meonns that requiring a WC~represen—
tation poses ro cerstraints cn the d‘ata, only on the séaoe. In a me_trio
gpace a WC-reppesontation is slways poésiblb. We proceed %o éonstruc‘t an

explicit expression for t.lP in this ocane,

neavoid ' )
Lemma 2.3.1: If A is z subeot of a pruevdo-metric space (X,d4,7) then

D(x,A) ie a continuons funotinn of x.

Proof: Tako any two poi:r':: rordy € X, and let 2 bé a point of A such
" that D(y,A) = a(y,z). Svch o point auicia iF A is nonvoid, though it may
not be unique. Wo have d(=,z) /4 a(x,y) + adly,z) = d(x,y) + D(y,4). By
definition D(x,A) £ d(x,z) ond thus

D(x,4) € a(x,¥) + D(y,A). | (1)
In the same way z' ig a point of A such that D(x,A) = d(x,z'). Then
ay,z') £ da(x,y) + d(::,z'). = a(z,y) + D(x,4), and, a ferteriori,

p(y,r) £ a(x,y) + D(x,A). (2)
Combining (1) and (2) yields |

| n(x,8) = Dz a) b £ al=) )
If y lies in the open sphere s(x,r) then iD(x,A) - D(y',A)i { r, and thus
D{y,A) lies in the opeﬁ interval (D{x,a) - r,D(x,A) + r). Consequently

D(x,A) is continuous for 21l (norveid) A, QeE.D.

By using this lemma, the foct ihot For Aisjoint B smd C the funociion
d(x,B) + d(x,C) never vaniches, and the familiar rules on the comtinuitiy

of combinations of coniirucus roal valued funciion we obiain the following

Theorem 2.3.2{ The funotior

£(x) = D—(:—’?%L“%@ 3 (4)

ig real valued, continmons, ol retiaflon (4\/1.-

If A is a rezl number on *he opr intorval (0,1) and Ty = {x \f(x) =>\} ,

then each continuo»r path frem o point of B to a point of C contains at
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least one point of f) e+ In the case of an Fuclidian (or, more generally,
a normed linear topologiocal space)bthe line segment Xx:+ (1 = a')y (with
0 X { 1, x € B, and y ¢ C) intersects f) in at least one point. In‘the
examples that follow we have taken (X,d, 7)) a8 the real plane, d as the
ofdinany Buclidean distance, and A = %. In each example the set f; is
drawn. Of course f{x) = % iff q(x,B) = d(x,C) and the sat f%'is piecevise
linear (a combination of line gegments). The examples are shown in figure
Ia~i. Some important conclusions ara the following: there'arﬁ othnr
continuous functions besides f that catisfy 4)1. The sats B g;d C can be
separated by a straight line, for amemple, in figures Te, Idf Ie, and If,
Only in the case Ic the function f is 2 straight line too. bh the other
hand there may be reasons to profer this Tunction to tho straight line,
In example If the deviation fuom a si=night line borndary cexpresses a
significant feature of the representation, in exanple Ib the line through

b1, 4 and, b5 'weakly' separates the two sets but thore are reasons to

prefer our separating function, Define

S¢ = {x‘f(x){'%}, | (5a)
s, - {xle=x> 2] | (5b)

In examples Ia, Ib, Ic, Ie, If, Th, Ii both S< and S:, are connected., In
example Iz the smeot S< is connented, but S> han two components., In Id both
sets are disconnected, S ¢ has three components and Sy two. Although the
function f always satinfics @)1 we are sometimes dismsatisfied with its
performance as = separator. In later sections we shall try to give a
quantitative measure of dissatisfaction and a way to optimize matisfaction.
A very interesting attempt to do just this was developed by Guttman. His

approach will be discussed in the next section,

2.4 The MSA-~I rationale

The mathematical rationale of Guttman's multidimensional gcalogram analysin

(MSA) is still largely unpublished, all we have to work with are some
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examples {Ierael Institute for applied social reseach, mimeographed), and
user—oriented descriptions of the computer program and definitional pystem
. by iingoes (1968, 1969). We shall treat the general case: an ;tem with
1.} 2 mutually exclusive and exhaustive categories A1,...,A1. We work in

a pseudometric space (X,d,7T ). Each categoﬁy is partitioned into two sets:

i
8

follows. Let a be a point of Al As and let b be the point of AB such that

the inner-points A and the outer-points A:. Outerpoints are defined as

d(a,b) = inf'{d(a,x)ﬂ X € AB} = D(a,AB). Such a point b is called an outer
poinf of As' i.e. b & Ag. More formally:
b & ADiff D € A A ;.\aclAiAsﬂ Y x €, it is true that
a(a,b) < da(a,x).
. Evidently Ag # 0 for all s (assuming, of course, nonempty categories). Ai
is defined as A, ‘A:, and AL may very well be empty. We shall eay that
category s has a MSAI-contiguous representation iff \’a =3 Ai it is true
that I b ¢ A‘; 5> Vee JS{ A: {1 is true that a(a,b) < da(a,c). In words:
iff each inner poiﬁt of category a.is closer to some oufer point of this
category than it is to any outer point of a different category. If the
category g has no inner points we shall say that the MSAI- problenm is
undecided for that category. An'item has a MSAI—contiguous representation
if all its categiries have, a set of items if all items have one. In the
examples in figure Ia-i we have underlined the outer points, Items Ia,'Ib,
and Ic have an hSAI-contiguous reprasentation) in items 14, Ie, Ig, Ih the
MSAIéproblem is undeéided for all categories, in .examples If and Ii the
problem is undecided for one of the two categorics while the other category
has a ocontiguous representation. Of course partly our difficulties (having

no inner points) are due to our small scale examples with coordinates in

the lattice points of the plane..

Because we work in a pseqdometric space all items that have & MSAI—oontigu-

ous representation also have a WC-representation. It ie easy to construct




representations, however, in which thesoaiegories can be separated by a
straight line but are not MSAI-contiguous, and vice versa. In figure IIa,b
the outer points again are vnderlined. In figure IIa there is a atraight
line separating B and C, but cloarly (using the ordinary Euclidean metric)
d(02,b4) < d(o1,02) and category gb} haﬁ no MSAI~cont1guous representa-
tion. As a digréssion, conzidoer the positive symmetric function

a(x,y) = v fxl - yij + \ ixz - y2, . (6)
This function defines a metric:.Proof: dgy 4,y and d4 are obviously
satinfied., We proof d3. Triangle inegquelity for Euclidean moetric on the

first axis:

lx1"y1] IR LA A (7

thus, a forteriori,

R N A RN EAE R VA 2y~ 24l (8

( \f jx, = v )2 ¢ (v Iz, = 2d + ||y, -2, )% (9)

"ix1 - y1§ | S’\hx1 -z o+ Vly1 - 21] . (10)

The same reasoning for the recond axis gives

mi *241"2"‘2}. B IR I - O

Adding (10) and (11) giveé the required result, i.e. d defined by (6) is

or

-k

or

a metric. The distances, using this metric, are

’ 0 1 !E; 14 VE; VS_ 2\rga

b '

1

b, o 1 2 VZ \2 +\3
by 0 1 11 +\F
b, 0 2 142
01' 0 ﬁ;
02 0O

It follows that the outer pointm, using this metric, are the same, but now
¥

- - . I
d(b1‘,b4) > d(b1,c1) and d(b2,b4) 7 d(bz,c1), while §021 has an MSA™-

contiguous representation. There ig little doubt that there exist metrics






for which both sets arc MSAI—contiguous and others for which thay both
are not. In the example of figuro IIb the sots B and C cahnot be separated
by a straight line (a proof in given in a later chapter), but the outer-

innar-point structure chows that thay are ﬁSAI~contiguous in the Euclidean

ca3e,.

Lot us suppose that category Aé anzx innewr poirit's.- For each a GAi we find
the closest outer point b~ A5 @nd wa dofine the closed sphere ™a,b) =
T(s{a,b)) = S\xl d(a, x) ~ &fa b)} Tha MSAT ~axtengion of Ai, written

es A° o is defined az thn slomed ong

A: = ct‘ /1 T(ﬁ,‘-’;). ) (12)
& &.A, :

.Observe that A C L(A ) ond fi(A ) .A‘ # #. in axample is given in
figure III. In a mﬂtric (¢14) spzco tho closed sety A and ‘z) A can be
geparated by a continuous funciisn jof *“ﬂv are disjoint. If A and %1/ A
_ are disjoint, then A: and };ﬁ Ai are dimjoint too (if As containe an inner
point b of another category 4, “hen b mvst lie in one of the spheres T(a,b);
because b is an innor point of % thore is an outer point ¢ closer to o then
b, which implies that o < T(a,b) CZA‘J. The iatersection of A: and A: uoes
not have to be empty, necescary and »ufficiens Sor NS AI—contlpulty of both
categories is that is does not contain any noinia of 4 LJA « Although it
is, of course, possible to give a rigourous definition of MSA ~contipuity
and a satiﬂfactofy orror theory, 3% is vrather difficult to soe what HSAI-
contiguity implies in terms of sopsrating functions (or, equivalently, in
terms of what regicng uré conuiderad rconiiguous), Yoreover we have some
objections %n the HSAInnlﬁ?#iibz *hal cme similar to our objcctioné to the
algorithms in the SSA-geriesa (DevLeeuw 1969), and oven somewhat more
pertinent. Nevertheless “ha M3A-T nrosTaR selvex a nwmber of problems in

a very satisfactory way.'For itemn with dinary Tesponges there is perfect

recovery of tho underlyine circw: iplex or rafox., Tha Coorbs~Kao disjunoctive-
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conjunctive structure with rectangular boundaries comes out verfectly.
Although the definition of MSAI-contiguity is somewhat arbitrary from a
purely theoretical point of view, the results are often satisfaoctory from
a practical point of view, Horeover, because of the formulation of the ‘
réquirements in terms of a particular metric and not of a smeparating

boundary, geheralisation from iwo to more than two categorien is obvious.

2.5 Weak contiguity (l-ary items)
The MSAI—re,tionalc genereclincs easily to items with 1 > 2. For the approach
that uses the function f tha generslization is less immediate, Consider

the 1 functions
D(x,A_).
D(x'[;s) “!‘ D(I,A: AB)

fs(x) = (13)

separating As from A ‘ As’ and the armrooiated regions Ss3 = {x\ i‘a(x) < %}.

We shall proof the following

Theorem 2.5.1: The 1 regionso SS ‘a:z-e' digjoint.

-

Proof: By definition x £ 5§ iff i“s(x)< % iff D(x,AB) {D(x,A \As). Because
D(x,B) = inf%d(x,y)l Y e B} it is always true that if B is partitioned
into subsets B then D(x,B) = inf%D(x,Bw)} . Thues D{x,4A ‘As) =

inf »%D(x,at)

t ¢ L) s‘} « Suppose that there 'are 8 % r ¢ L such that there is an xeSsnsr.

v
tel | s},', It follows that x & 5, iff D(x,As) < inf (D(I,At) ,

Then x € Sy implies that D(x,a )< D(x,4.) and x € S, implies that D(x,A )¢

D(x,AE). Thies contradiction astablishes +he theorem.

Theorem 2.5,2: Let Ts = 8 :c’ fs(x) < %} « Then the union of the_TS exhausts

the whole space.,

Proof: Using the proof of the previouz theorem: x & ‘I‘B iff D(x,AB) =

?
inf&D(x,At) { t € L} » whero it in pourible that for r £ o D(x,Ar) = D(x,Agz
For each roint » & X compute 11 voluen D(.‘:,A+) and sclect one n & I such

that D(x,As) < D(x,At) for £ll t & L. Then x & T,» Thus all points x €X




can be placed in at least one of the Te (they are elemants of exactly one

T, iff they an element of an Ss). This completes the proof .of the theorem.
_ , 1 :
It follows that the mets Si,...,Sl, §g4 T“ SB constitute a partitioning
of X. R
Corrolary 2,5.3: If the funqtions.f8 are defined on the Euclidean space X

vith Fuolidean metric d and if they are all hyperplanes, then they are

perallel.

2.6 Smooth separating boundaries

In section 2.3 we ha§e expresased our gatigfaction with some examples and
our dlssatxsfaction with others. Moreover we have shown in 2.3 and 2.5 that
requiring weak contiguity with l-ary jtems is triviel in a metric space.
Nevertheless the properties of the function fs proved in the prévious s8c~

tion are sufficient important to hold on to it somewhat longer,

Consider the examples IVa and IVb on the real line (with Buclidean metrio
d); In both functions we have drawn graphs of the funotions f, and f,. The
‘gseparating boundary, where f1(x) - fa(x) = 4, is more satisfaciory in the
gecond example. It is oclear that the degree of jaggedness and connectedness
of these boundaries depends on the smootliness of f1(x) and fz(x). Quantita~
tive meaéures of smootﬁ#ess have been piopoaed in psychometric literature
by Carroll (1963a,b), Carroll & Chang (1964), Shepard (1964), Shepard &
Carroll (1966), Tucker (1966), and De Leeuw (1968). The paper De Leeuw (1968,
contains an extensive list of references to both the psychometric and thae

gtatistical ‘literature.

Our problem thus becomes to find a mapping of A into the meiric space
(X,d,?) such that all functions fs(x) are as smooth as poseible. This
‘must be trne for all categories and all ttumﬁ; i.e. there are ml functions
fs(x). The first remark must be that the value of fs(x) on the points of

A is either zero or one, no matter how smooth or jagged fﬂ(x) is., Ip our
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definition of smoothnoqs the points of A cannot prossidly play a role.
Therefor we need a (finite) set of auxilary points Z. 2 contains, say,

P points 81,...,zp.’The ml x p matrix I contains all valunes of fje('p)'

Define {f , ) o (a] 2 - '
is zi ia %1‘;7 ‘ P P .-_
f "2.'. R CRL PL /4 ?;‘%{fjs('i)
f”(zj)}z-], | ()
K 31 l{:)s v | : | (15)
and |

K- 2 K, | e

Jm1
as our inverse measure of emoothnaés of the répre-entation. Thohindei P{
is similar to the coeffioients used by Carroll & Chang (1964), Shepard &
Carroll (1966), and De Leeuw (1968), Our algorithmic problem is to find a

representation of A such that, (for fixed 2) f(’becomes a minimum,

2.7 Separation by functions of degree n gbinggx itema}

The discussion in this section refers exclusively to binary items and to
Euclidean multidimensional space, It applias equally well, of course, to
items that can bo reduced to binary items by the method of section 1.4.
Incidentally, this method can te applied whenever the investigator feels
that its use will oauge no serious loss of 1nfo?mation. This may be true,
for example, if the items is designed as & short way to ask a number of
(binary, yaa—no) items at the same time. In stead of using this syntactical

(logical) method, we can, of couree, also use a sematie method in whioch

we pool several categories on the basis of an external criterion and end
up with only two oategiries (for example right and wrong) We use Weierstrass
theorean for functions of sevral variables (of Hobson, 1957, 11, p232:

'A continuous function af any number of variables, defined in a given closed




cell, is such that a finite polyno;nial in the var;ahlon existse w'h'ibh differs
from the Motion by less than a prescribed positive number, at all points
of the cell!), For .our purpose we "Shall‘ use the following series of
(__dontinuons) functionss ' B |

f (x) - d, " e T ‘ (17a)

2lx) = o AR d, : . ' (17b)
4 (x) =22 by Xy%5 + Zcixi + d, (17¢)
£3(x) -ZEZaijkxixjxk +2£ by %y 3 + Zc + d, (174)

and so on.
The superscripis used in (17) denote the degree of the funotion (the

highest possible power of x). Obaerve that we may raquire, without loss

. - of generality, L o . | '
Bi5k ® ki T %k T Fgki T Peig T Pkjir - (18v)
and 8o on, ’

Suppose item j has catogoriea B and C, We shall say that the representat:on

is contiguous of degree p iff there is a t‘unction of degree P auch that
P(x) < 0 Vx' ¢B, B ©(19a)
P(x) > o Ve ce. o | (19b)

If an item is cohtiguoﬁs of degree p then it is.contiguous of degree’r with

r> p. Noreover, by Weierstrass' theorem, if we take p larger and larger .

we ocan approximate the fmiction f of (4) arbitrary close, Consequently

for each representation there is a finite integer p such that the represen-

tation is contiguous of degree r for all r > p. Cieariy‘ contiguity of

. degree p implies weak contiguity for all p.

Generalization to l-ary items seems difficult. Of course we can comstruct
1 functiong fB of degree p that separate A‘ AB' for all s &€ L. But the

conditions that guarsntee that the regions S, = %x‘ fz(x) \' 0} Ar6 A

partitioning of the space X are quite complicated. Moreover there is no
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reason why all functions fs should be of the pame degree. This is, of courac,
also true if we seek a representation of a set of binary items. Therefor

a set of binary iteme is called con{iguous_of degree (p1,p2,...,pm) if

item 1 is contiguous of degree Pys item 2 of épgree Py and so on.‘In‘
general thig complioates the prbblem because in 6ur optimization problems
the number ; = % }E’pj is an a&ditional quantity to be minimized, and asn
such it is qﬁité diffioult to manipulate by purely analytical (non-heuris-
tic, non-enumerative) methods. The ide of minimizing :ipj is dircectly
related to requiring 'smooth' separating boundaries (of Shepard 1964).

The special case of contiguity of @egree (p1,p2,...,pm) with'pj =1 for

all j is treated in the following chapter from a different and more general
point of view and under a different name. Some special cases of contiguiily
of degree (p1,...,pﬁ) with Py = 2 for all j!ezlﬁ ;re discussed in chaptcr\
IV. The problem of finding a repreaentation that is oontiguou; of degree
(p,,pg,...,pm) is relateé to the problem of nonmetric disoriminant analyeis.

In that case, howver, the only unknowns are d, s b and so on,

13" %45k

while the coordinates (the x~values) are known.
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Chapter IJI: Separation by hyperplanes in linear spaces

3.1  Introduction

The most simple separating boundary is a straight line, or, moro goncralls
a hyperplane. In this chapter we develop a:théory of contiguity haced o
separation by hyperplanes. In order to develop these thaogins more f=1lly
we need some bamic resulis on linear topological spaces. The relev 1t
books are Kelley et al (1963), Day (1959), Bourbaki (1953,1955). lor-ovar
we need a number of results on conver sots. These oan be Found in +hn
books of Bonnesen & Fenchel (1939), Fenchel (1953), Egzlanton (1058), ard

especially Valentine (1964).

3.2 Some bagic concepts

3.2.1 Algebraic concepts

}.2.1.1 Real linear mspacen
A real linear space is a amystem (X,+,.) with X a noneupiy set, end '+' end
'.' binary operations:
+ 1 X x X -»X, (1)
. ¢ Re x X —=NX, (1b)
The elements of X are called vectors, + is called addition and , smcala=n

multiplication. The operation + is defined in such a way that (X,+) ia

an abelian group (i.e. it is closed under addition, addition in commtative
and associative, there is a zero element, and each eloment has an iunverss).

If no confusion with the real number O is possible then tho zero o

(the origin) will alsc be written as 0, otherwise we writo O OHa’ and

x'
g0 on. Scalar multiplication is distributive with respect to addition In

X and with respect to addition of real numbers. Moreovor it ia associrtive,
and 1,x = x for all x € X. Thus multiplication by a fixed scalar is an
endomorphism of the group (X,+). A subset AC X is called linoarly
independent if every finite lineor combination Eifixi of elementn x, of

A equals zero iff all o/, are zero. A cubset A€ X ir czlled a (Eg@gl) hran
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for X iff each element of X can be ropressnted in a unique way as a linear
combination of the elements of A. All Hamel baser for a linear spase havce
the same oardinal number, this numbor is called the dimencion of the spaco.

- .
If A and B are subsets of X then A + B denotes Sl_x ’ X =a+bh, ac 4}, beB} -

The set {x'} + A is called a translation (iranslate) of A. A real linesp

apace (Y;+,.) is a linear subspece of (X,+,.) iff YC X end the opn:rrn.'z;icm:

- oY i
+ and . in Y coincide with thome in X. Two linea~ rubspocen Y s1d 7 Lof

course this ias an inaccurate chort cut notation) are saliad Loacloas rhavy

oo B0 - erewon oy mamaramaay oY o

iff Y + Z = X and Y/} Z = O,. The ranc (co-dimrmsion, deficicnsy) of ¥ in 3

is the dimension of n avbenrcs of X that ic complenentery to Y in X. A
hyperplane is a subspace of rank onc. I % ard Y ar: two real Linra« Ly
and f is a mapping of X into f, then t ir called n linesr functiorn (1ra,

S o Yo i WA T -, & .

mapping, transformation) iff for all 5,y * X and all pairg of ol numbara

o ,/.\, it is true that S( xXx + py) = Nf(x%&- Af(y). A linear funcii:nnel
‘ ' : L

iz a roal valved linear {unction (i.o. Y is the met of rnal nurmbers).

If £ is a linear functional and t is a real number thon +he sots

ix & f(x) £ tg and gx [ £(x) 2 t} are complementary. They are calleil

halfgpaces., Y is a hyperplanc iff there is a nonidentically zmero lin-ax

functional f and a real number « such that Y « 1"-1(0( )» The nvll sprae

(kernel) of a linea» funciior is the sat f""(OY). The linear function f

is a linear isomorphism iff f“1(OY) = 0},. Equivalently: a linear function
is a linear ipomorphiem iff it is one—to-one. The space of all linear

functionals on X ig salled the &E?;}. of X.

3.2,17.2 Convexity
, 2 .
The line segment joining x,y € X is dofined as the set {zl Z = Ax +

(1 - A )y, 0% \ <1 }. Its i3 donotnd by ]_}.::3,:1 . The open lirc zogr:r*
(x:y) is defined in a gimilar way, with 0_<',\ {1 A mat 2 in oo linaay
gpaca is called convex iff for all ponire of pointr x,y € £ it is twme

that N:c.y] C A. The interaection of all conver sets that cowtain o aet £
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is called the convex hull{ extension, cover, eavelops) of A. It in convex,

and denoted by (A) Clearly A is convex iff & = (A). If B is tho set of

<
i of elements of A, with ;.{.-'{i a4

and 0(12 0 for all i, then B = (A)., A set A is circled iff AA <A for

all finite linear combinations Za.!ix

all IAI €1. A circled set is gymmetric in the sensme that -A = A. The

smallest circled smet thal contains A is called the circled extension of

A. A set AL X is radial at a point r (ov: x in a p_gg_ﬁ point of A) iff

for each y £ x there is a 2 # x such that [xz u) C [Py] D A (in words:

A contains a line megment through x in every direction). The eat of all
points at which A is radinl ic the radial kernal (_9_:3;;!_3_) of A. If A in convex

then the radial kernel of & is convyx nnd it in its cwn radial kernel.

If A CX radial at O*c than the llinkoveki functional for A is dnfinqd as

p{x) = inf {a‘ %" X €Ay 2 0} . It follows that p(x) is nonnegatively
homogeneous: p( o/x) = & p(x) for all &3 0, that p(x) is subadditive:

p(x +y) &€ v(x) + p(y) if & is convex, and that p(x) is absolutely
homogoneoun: plox) = \a(\ n(x} if A is ecircled. A nonnegative, abolutely
homogeneous, suh~dditive, rcal value? functionm is called a peaunco-norm.

It is a norm if p(x) = O ifT x = O, Tor any convex set radial at o the
Minkovski functional has ihe following properties: ,ix }p(x) < ‘I} ig the
radial kernel, and A < {V\ p(x) £ 1?; . Convereely, if p is o mnonnegative,
nonnegatively homogeneous subadditive fovnction on X and A = %x‘ p(x) £ 1} !
then A is convex and radicl at 0, ani p is the lMinkoveki functional for A.
Moreover A in circled iff p is a psendo-nerm. A sot A is called star-shaped
relative to a point x if for osch ¥y 4 the segnent [x:y:\' Z A, If -4 2
radial at x then it is star-shapcd rolative %o x. The kcrnel of a set A

is the set of all pointn with rennsect te which A is star-chaped. Becnuse
the kernel of an arbitrary ss~t is alwvaye convax, it is also called the

convex kernel. A set AC X is a cone iff A + A CA and xA C A for all

0(2 0. Both OX and X are econes. Tha interanction of all cones *hat

contain a set A i cslled the conal cutengion of A.



3.2.1.3 Separation

Two subsets A and B of a real linear Spaoé can be geparated if there are
complementary half-spaces that contain A and B respectively. The linear
funotion f geparates A and B iff aup{f(x) ix{f_ A} Z inf ,yf(x)’ x ¢ B:}. Ir

the inequality is strong thea f strongly separates A and B. If A and B are

non-empiy convex subsets of a real linear space % and A is radial at some
point, then there is a linear functional f geparating A and B iff B ig disjoint
- from the radial kernel of A. For a proof see Kelley et él (p 22-23), or
Valentine (§ 24-25), Por our purposes the following theorem is more important:
if A and B are nonempty, convex, and disjoint subsets of a finite dimensional
linear space X, then they can be separated by a hyperplane. This result is
proved, for example, in Valentine (p 25). The oorréaponding theorems on strong
genaration are: two convex subsets A and B of a real linear space X can be
strongly separsted by a linear functional iff there is a convex set C which

is radial at Oy such that (A + C) () B = . Proof: Kelley et al, p 23.

3.2.2 [Topological oconcepts
A linear topological gpace (topological vector space) is a linear space X

with a topology such that addition and scalar multiplication are continuous
gimultaneously in both variables. Wo shall suppose moreover that all linea
topological spaceg aatiefy T2 (this causes nearly no loss of generality, cf
Kelley ot al, p 41). In linear topologcal spaces ologures of circled sets

are circled, and oclosures of convex sets are convex. The interior of a circted
set is cirocled iff it contains OX’ It is interesting to consider the conditions
cquiValent to continuity of a linear functional. In general, if f is a (not
identically gero) linear function of the linear topological space X into the
linear topologivcal space Y, f is continuous iff ¥ is continuous at some

point pf ite domain iff the null space of f is closed iff £ is bounded on

some neighborhood of OX' We know from general topolegy that a mﬁbfamily;ifa of

the neighborhood syotem V_ of a point x is a bace iff each member of V contais
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a member ofﬁis. A base for the neighborhood system of 0 is called a local base
A linear {opological space is locally convex iff the family of éonvex
ne;ghborhoods of O is a local base. A set A C X is bounded iff for each
neighborhood U of OX there ia a real number « such that A € «U. A linesr
topolpgical space is normable iff it is locally convex and it contains a
nonempty bounded open set, All finite dimensional linear topological spaces
are normable, A normable linear topological space with a norm is called a
pormed topologisal space. If it is also finite dimensional it is called a
IMinkovskl 8pace. Another useful concept from general topology is compaciness.
A cover of a set A is a family of setg {B & such that A £ L)l3 . A set Ais
compact iff every cover of A hae a finite subcover. In a finite dimensional
'linear topological space all bounded closed sete are compact. We are now
ready to state the relevani resultis: if A and B are nonvoid convex subsets
of a linear topological space X and A has nonempty interior, then there is
is a continuous linear functional separating A and B iff B ie disjoint from
the interior of A. If A and B are nonvoid convex subsets of a locally convex
linear topological space, then there is a continuous linear functional
stronglv separating A and B iff Ox is not a member of the closure of B — A.
If A and B are disjoint nonvoid convex subsetis of a locally convex linear
topoiogical apace X, and A is compact and B is closed, then there is a
continuous 1inear'functional strongly sparating A and B, For the proofs see
Kelley et al p 118-120. In Valentine (p 25) we find: if A and B are nonvoid
disjoint compact convex subsets in a finite dimenaional linear topological
space, tlien there exisis a hyperplane stronplv separating A and B. If A and
anh-yhﬂ&ﬂﬁwﬂu‘ :
B are nonvoid disjoint convex sets in a linear topological space, then there
exists a hyperplane separating A and B, The following two interesting resulis
are also proved in Valentine (p 86-89): If P and ¢ are two compact collections
of poigts in an n-dimensional linear topologiocal space, then P and @ can be

strongly separated by a hyperplane iff for each subset T of n + 2 or fewer
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points of PLJQ there exista a hyperplane strongly separatinngf\P and TN 0.
The previous theorem is also true if we replace the notion of strong separation

by that of separation and n+2 by 2n + 2,

3.3 Separation by hyperplanes in Minkovski spaces (binary items)

In this section we apply the results of the previous sections to our problem.
A (binary) item with cafegories B and C is said to have a gsemi-strong
contiguous repreeentation iff there ims a oontinuous linear functional f such
that

C,t Bup.{f(x) l x éB} < inf ,{f(x) l x & B{.
A set of items has a SSC~representations iff all items have one. We restrict

ourselves to Minkovki spaces.

Theorem 3.3.1: An item A = {B,C} has o SSC-representation in a Minkovski-

space X iff the convex hulls (B) and (C) are disjoint.

Proof: Sufficiency: A Minkovski space'is of course normsble, whioch implies that
it is Haumdorff (TQ) and thus T,. Therefor B and ¢, being finite, are closed.
Moreover they are of finite diameter, and thus bounded. It follows that B and
C are compact, In Minkovski spaces the convex hulls of compact sets are compact,
Thus (B) and (C) fulfill the conditions of the theorem on strong separation in
finite dimensional mvaces, and conseguently item A has a 3SC-reprasentation,
Necescity: If the item has a SSC-representation then there is a real
number i suck that £f(x) <« for x ¢ A and f(x) > for x ¢ B. The open half-
spaces 5, = .Yx | f(x){x} and S, = Xx ]f(x):n\} are disjeint, A £ S, and
B L S,. Moreover §, and S, are convex, and thus (A)C S, and (B8) C 8,0 It
follows that (A) and (B) are disjoint., Thir completes the proof of the theorem.

It is easy to see that requiring SSC is equivalent to requiring the existience

of a solution to a finite system of strict linear inequalities.

3.4 Separation by hyperplanes (1-ary items)

There sre several possibilities to define S3C for l-ary items. We may require




(SSCI) that the convex hulls of the representations of all categories are
pairwire disjoint, or (SSCII) that the convex hulls of A  and Al A are
disjoint for all s g L. Clearly the latter is the stronger condition: if
(Aa)f3 (A jAB) = ¢ then, because for t # = (At) € (A lAs)' also (As)(1 (Ai) =
¢. A third condition is that the separating hyperplanes are parallel (i.e.

translates of each other). Again SSC_ -—> SSCI. In the GL-MSA-series the same

P
requirements are uwsed in MSA-III, It is evident that both 38C. and SSCII can

I
be formulated as requiring a solution to a system of strict linear ineaqualities
(that is: given a particular representation). Moreover if a representation
satisfies either SSCI, SSCII' or SSCP.then any translate of this representa-
tion also satisfies the same requirements, For a fourth poseibility this is
not true, We call it SSCE and all separating hyperplanes pass through a
common point. If we take this point as the origin then a necessary and
sufficient condition for an item to have an SSCE contiguous representation is
that the conal extensions of A1,...,A1 aré disjoint, Becausg the convex hull
is a subset of the conal extension we have SSCE4é>SSCI. But also, less
obviously, SSGP—a;SSCE. This can be seen most easily Ey taking the origin at
a very large distaﬁce from A, The hyperplanes emanatihg from this origin and
separating the subsets of A will then be almost parallel, and by taking‘the
origin further away they can be made to be as close to the parallel hyﬁerpianes
of SSCé as we wish: Thus SSCP is a limiting case of SSCE, and SSCP«4>SSCE.
Examples are shown in figure VI a-d. Whefher or not the represenfationé in
these figures are contiguous according to different definitions is mscored in

the table below,

figure ssC;  §5C;; S8C, S§SC msa®
Via + - + e
Vib + - - ‘
Vie + + - +
VIa ' + - - - +

In figure Vic the MSAI-problem is undecided for category c¢, the other catego-
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ries do have an MSAI-contiguous representation.

3.5 The inner groductMgggg;

Another approach to the study of separation by hyperplanesis to represent the
item alternatives and the subjects (the set A) am points in the same space.
We sssume that this space is a Minkovski space with inner product. The inner
product is denoted by (x,y) and satisfies

ip, (x,y) = (v,x) Vx,yd y

ip,t (x,x)y © ¥ xe Xl Oye

ip3: (x + y,2) = (x,2) + (y,2) Vx,y,2e X

ip4: (n x,2) = pix,2) Vx,z ¢ X, & &Re.
The norm associated with the inner product is

hxp = (x,7)%,
and the metric

dx,y) = J = ~vil .
A pequence of points x1,12;... in a metric space is called a Cauchy ﬂor
fundamentall gequence if d(xm,xn)-e» 0 if m,n tend independently to .
Every convergent sequence 'is 2 Cauchy seguence, but the converse igs not
necessarily true, A metric space is complete iff every Cauchy sequence
converges (of course Rep is complete, becaure in this space with its usual
topology a Cauchy nequence converges by definition). A complete, normed,

real linear space is called a real Banach space. If f(x) is a continuous

linear functional on a real Banch space X with inner product, then thare

exists an element b & X such that f(x) = (b,x). It follows that in Euclidesnr
"7

p-apace (x,y) = 1 x5 We shall limit our discussion to this particular

inner product space.

Consider item j with 1 categories. The categories are represented by the
points y1,...,y1, the elements of A by the points x1,...,xn. We want to

find the representation in such a way that

J

J =1 A xJ =0, (1)
8l

k

/7 QAT I

(ya’xi) j) (ys,xk) whenever X
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Theorem 3.5.1: An SSCII—contiguous representation for item j ocan be found

in Euclidean p-space iff the inequelities defined by (1) have at least one
golution.

Proof: Sufficiency: Suppose that there is a solution x,y to the inequalities.
Define (using this solution) the real number & = %[info{(x, y.) , x.€ ,Ajé
+ sup {(x,ys) }x € A l Ajs} . Then (x,ys) < = g Tor all x eAjs and (x,ys)

: » . |
S s for all x ¢ Al Ajs’ and thus the function {x[ (x,ys) = o 53 separates
A, .M f S -u_]
je and Al Aas oreover thim set can be written as x l % xrysr -18 and
is thus a hyperplane. ‘

Necessity: Simply reverse the argument. Q.E.D.

This theorem makes it clear why we stfessed the relation between belonging
and order in section 1.4. Consider the nonmetric factor analysis (NFA) Qodel
discussed by Shepard (1966), Roskam (1968), We have an n x m data matrix Z,
on each of the rows of Z a partial order >3 ig defined, we want to represent
"the row stimuli in an n x p matrix Y and the column stimuli in a m X P

matrix X by finding a representation in such a way that

P P .

£§1xisyjs‘/ ézaxisyks whenever =z, )i 24y (2a)
i R (2b)
B_1xisyjs é£1xiayks whenever zij =3 zik 2

Applying these requirements %o our ICP-matrix E is equivalent to requiring
SSCII' This also ﬁelps to show a weakness of SSCII' We consider each row of
E meparately, without actually uging the fact that some of the rows
correspond with (mutually exclusive and exhaustive) categories of an item,
I1f we permute the rows of E the outcoms will be the same, This is because
we consider each oategory a8 a binary categorizer, and nof each item as an
l~ary categoriger. Of course for binary items there is only one form of

$SC, and this form is also equivalent to NFA and to the compensatory model

devised by Coombs and Kaso (1955) for binary items.
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For SSCP the situation is much less simple, although it can also be translater

into the inner product model,

Theorem 3.5.2: For item j an SSCP contiguous representation ocan be found
in Euclidean_p—space iff there exists a point yj and 1 disjoint open
intervals H1,R2,...,Rl such that the asystem

8

(yj,x) € R, whenever x ¢ Aj ' (3)

has at least one golution.

Proof: Sufficiency: Let R_ = (u’s,/gs) and suppose, without loss of
generality, that the item alternatives are ordered in such a way that
/Ss <a('t for allv 8,t €L with 8 {t. Congider the 1~1 quantities

JSA= %('< + f» +1), S=1,+00,1-1. Then the 1-1 hyperplanes (yj,x) = J.s
are parallel and meparate the aets AJ.

Neceasity: Choosne y1 such that (yJ,x) is a hyperplane through 0X
and parallel to the separating hyperplanes. Let Y = inf iﬂv ,X), X céh }
and ﬁs = sup{(yj,x)' x € Aa} . Then the olosed intervals L,as,/;;]
disjéint. Order them in such a way that f?a K g 8=1,¢00,1=~1, and define

Ry = (g = Ay 3By + 2 )
Ry = A+ <) Ay + X)),

Ry =GPy s X B 4y

with A 1,.A o arbitrary positive numbers.Then the open intervals Rs are

disjoint, snd x & A,  implies x & [~ o ﬁa'} implies x € R_. Q.E.D.

The essential differences with SSCII are cleart in SSCP each item (and not
each category) is represented as a point in the joint space. Moreover a
byproduct of the SSCP representation of an item is a natural ordering of the
categories, Thg reagson why the SSCp requirements cannoi be formulated as a
simple set of inequalities (a8 in SSCII) is that we do not know this ordering

beforehand. Suppose we define an arbitrary (strict) ordering :2 over the
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categories and require
- ;._).‘
(yj,xi) > (yj,xk) whenever x, & Aja A Xy GAJ.t A Ajs £>\ AJ.,‘_’. (
If this set of inequalities has s solution then an SSCP representation
exists, i.e. the condition is sufficient. Of course 1! different strict
orderings can be defined over the categories, each ordening has a solution

set Q (which is poseibly void). The conditions Q, # ¢ (taken separately)

are all sufficient for SSCP tut the condition

11
‘hﬁ’Qv £ ‘ (5)

is both necessary and sufficient. Because (uyj,x) = —(yj,x) by ip4, we only
have to consider £1! different orderings (delete one of each pair of mirror-
images), but in a set of m items this may amount to the prohibitive amount
of (311)™ differents sets of inequalities that have to be investigated.
Necessary and sufficient for SSCP is that at least one of these systems has
a solution. Of course uasing conditions that are only sufficient but not
‘necessary for SSCP as the rationale and basmis for an algorithm means in
fact that we require a gtronger form of contiguity. It seems clear that
SSCP ig a more appropriate theory for unordered l-ary items. It has the
same drawbacks (not knowing the order on the categories yeforehand, and
thus being forced to use somewhat heuristic methods) as Cutiman scaling

with unordered categories (which is, of course, one-dimensional),

3,6 Jome special structures

Both SSCII and SSCP are interesting because they have a direct connection
with the inner product model and with nonmetric component analysis, For

SSCE the comparable rationale is given by Guttman's circumplex theory, and
with elliptic multidimensional scaling (Van De Geer 1969), To gzive
algorithm—orienteé& necessary and sufficient conditions for SSCE we construct
the sphere Sj with radius 1 and center yj. Thuse Sj = é.xl d(x,yj) = 1} .

The half-lines emanating from yj and passing through x; are given by
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H = § z‘ 7 = )xi + (‘I-) )yi , X'Z‘O } These half-lines pass through the

ephere at the point where d(y_j,z) = 1. Solving for A gives

.

. j, = 1/d(xi,yj). ‘ (6)
Censider the points (on the sphere)
\ . -\
ﬁi = - i-“i + (? ’ i)yj' (7)
and let nij be the cosine of the angle between the two vectors X and X,
(seen from y].). Thus
(xy =30 -y)) &
S. = ’ ’
i d(xl,yijd( ,y37
and
2
d (gi'kk) = 2 - 2sijo (9)
For the distances measured along the sphere we obtain
5(2 2, ) = a.rccos(s ), (10)

and 0y O (2, 8 ¥ 2

Theorem 3.5.3: If p=2 then the points xi can be projected as pointas ;Ei on

the real axis in such a way that ‘S (Sti,ﬂ.k) = d.(xi,xk).

Proof: Let

- - yy) - )
X, = arcsin ——d—(x_—fl)— (11
i3
or ) :
(x,, - ¥ -
—}T;-G-—-JJ-)— = sin(xi). (12}
.i,yj
i Then
g % B,, = 8in X, gin X, + cos X. cos % = cos(x. - x,) (13)
{ ik i k i *x i~ X/
L 4
o and thus
(xi,zk) = arccos sij =X -Xx. (14)

This proof is somewhat provisory and not very exact. Some of the difficulties

will be clarified in the examples. Neverthelesm: Q.E,D,




