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SUMMARY

In this paper we describe our approach to nommetric multidimensional

scaling and compare it with some of.the already existing. approaches.

On the basis of an analysis of what.we mean by 'nonmetric' we develop
an algorithm that can handle the most._general. type of nonmetric data,
and that can. choose. from a continuumﬂof.possible“error theories with

the possibility. of an arbitrary close approximation:to a nonmetric

error theory. Special attention is.given to. the properties. of the

loss-functions, to the precise nature. of the.normetric requirements,.
to the. treatment of ties and inconsistencies, to the ‘initial configu-
‘ration; and to algorithmic aspects. We conclude with an enumeration of

the problems that are still to be investigated.

NOTE

This report is a revised and expanded version of a previous mimeographed-
paper. About forty copies of that paper were sent. away last year..If you

happen to have one, throw it away and replace it by this report.
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1. Introduction

1.1. Definition of nommetric multidimensional scaling

In pommetric multidimensional scaling (NMS) the primitives are a (finite)

stimulus set A and a function ¢ that maps a subset of A x A into the set

A. Over the set A a binary relation 2 (not necessary an order) is defined.

The elements of A are called dissimilarities. We shall frequently use

the notation

%55 7 qer $a5085): <

Let ReP be the set of all ordered p-tuples of real numbers and d a metric

D

on ReP. If w is a2 mapping of A into Re® we shall write

a5 = ger afw (), w(a_j>.>. (2)

The image of A under w(a finite subset of Rep) is called a representation

of A. The purpose of NMS-algorithms is to construct the mapping w in such

a way that the requirements

8y = dij 2 4 (3)

W

S..
14
are optimally satisfied for all ( &. >. (The expression A =B

iJ kl)'e é
must be read as: if A then our representation must be found in such a

s O

way that B). The use op 'optimelly' implies that all NMS-theories need

a particular error theory. The define ‘a loss-function that measures the
departure from perfect fit to the requirements (3) and the algorithms-

minimize this coefficient.

1.2 Classification of existing NMS-algorithms

Nommetric multidimensional scaling techniques use only the relational
properties of the.datas ise. it suffices to input. the indicator of e
If A is a subset of the reals and % = > then this is equivalent to the
assertion that the results of the algorithms are invariant under a
strictly monotonic increasing transformation of the Gij' The existing
algorithms can be classified according to the assumptions they make
about the nature of the relation % In the original versions of the

Kruskal-Roskam (KR) and Guttman-Lingoes(GL) series % is supposed to



be a weak order (Kruskal 1964 a,b, Guttman 1968). Both have been extended
to the conditional case in which A can be partitioned into several weakly
ordered subsets, and in which the partial order % is the union of these

weak orders (Gleason 1967, Roskam 1968, Lingoes 1966 a,b).

The term'nonmetric' is used in yet another sense. For a particular represen-
tation of A each violation of the requirements (3) is called an error.

We shall say that an error theory is nonmetric if and only if the loss
function is a strictly monotonic increasing funtion of the number of errors.
If the size of the errors also influences the value of the coefficient

the error theory is called metric.

In the first case the errors are counted, in the second case they are
meagured. Both the KR~ and the GL-approach use metric error theories.

A third method for the multidimensional scaling of similarity judgments

is due. to Coombs and Hays (Coombs 196k ,Chapter 21 and 22). According to

the definition in the previous section the CH-method is not an NMS-algorithm
because it does not arrive at a metric representation of the stimuli.

It only produces partial ordenings of the projections of A on the dimensions
of Euclidean p-space. This has some obvious disadvantages (cf Shepard
1966). Another practical disadvantage is that the algorithm is not
programmed for a computer as yet. The CH-approach is different in two

other major respects. In the first place it is able to handle. any binary
relation over A. In its most complete form the algorithm includes, as

a first stage, the possibility to convert the arbitrary binary relation:

2 into a partial order. This is a definite advantage in a considerable
number of practical situations. It eliminates, for example, the need to
'"blow up' partially ordered data structures into weakly ordered ones.

' Moreover it makes it easier to analyze the data of individual subjects
separately, thus avoiding the problems connected with averaging (cf

Shepard 1964). A rather serious limitation of the CH-method is that it
only considers order relations on the conjoint distances ('within triples').
Of course this does not restrict its generality in the conditional case

or in the case that the data are collected by the method of trials.

In the second place the error theory of the CH-approach is nonmetric.

The chief reason for calling this an advantage is that it seems less
arbitrary. There is only one way to count errors, but there is an infinite
number of ways to weight errors. Moreover our optimal solution is

invariant under strictly monotone transformations of the‘di.. This may

be important from a computational point of view (taking d%j simplifies

the treatment in the Euclidean case),but also from a theoretical point



of view. If ¢ is a strictly monotone, subadditive, real -valued function
with ¢(0) = 0, and. d is a metric, then ¢(d) also is a metric. An optimal
solution for d is.an optimal solution for the class of metrics ¢(d) iff
we use a nommetric. error theory.

In this paper we shall develop an algorithm for NMS that.is.also able

to handle binary relations over A, but arrives at.a metric representation
of A. Moreover it concludes the possibility of an arbitrary close
approximation to a nonmetric error theory. We are able to regulate the

degree of metricity of the error theory, so to speak.
2. Data.

2.1 Nature of the data

v

Suppose the stimulus set A has n elements. Let N. be the. set of the. first
n positive integers. In NMS the data can be defined as.a subset L of the
Cartesian product N“..L,can be.constructed. in several.ways. The.most com=-
plete type of data arises if we show the subject all n" possible combi-
nations of pairs of stimuli and ask him if stimuli a: and as are more
dissimilar than stimuli a, .and.a

k 1
the affirmative, and (k,1,i,j)elL otherwise. In other cases the raw data

. Let (i,j,k,1) €L iff he responds in

consist of a mapping ¢ of A x A into a set A, strictly ordered by sa

relation > - We may define L by the rule

(i,d,k,1)el <= 6553 9 (L)

o k1°
Because the order relation is asymmetric.and irreflexive, L will have
C(n?,2) = in?(n+1)(n-1) elements (we write the binomal coefficients as
¢(n,m)). In most cases, however, there will be some symmetry in the data

such that

8i5 %851 3855 =4 53 (5)

for all, i,j,e N,1 # j. In that case we only have to consider.the mapping
of a subset S of A x A into A, with (ai,aj)e S iff j > i. Because of the
1 n(n-1){n-2)(n+1) elements. In the sequel we shall write Dn for this
E@mber. In othertcases there are mappings of the sets {ai} x A into the

strictly ordered setS‘<Ai, > for all i € N. Evidently this produces

asymmetry and irreflexivity it follows that L contains C(C(n,2),2) =



nC(n,2) = 3n?(n~1) elements in L. In the method of k-ads all possible
sets of k stimull are pfesented‘andbthe C(k,2) dissimilarities in each
of these sets are strictly ordered. This procedure in a similar way
C¢(n,k)C(C(k,2),2) = c(n,k)Dk elements in L. If k=3 we have the method
of triads with n(L) = in(n-1)(n-2). In the sequel the number of elements
in L will be denoted by m. Moreover X is a one-one mapping of L onto

M=, . {1,2,...,m.

2.2 Treatment of ties-

In the previous section we have assumed in most cases that the relevant

subsets of A x A are strictly ordered. Or, in other words, that % is

a weak order aqd that the data structure does not contain ties. As in
most non(para)metric problems (of Kendall 1962,ch 3) the appearance

of ties is a nuisance for NMS-algorithms too. We may handle ties in

two different ways(of Kruskal 196La p 22, Roskam 1968 p 39-40; Guttman
1968 p 477).Consider the case in which gagssubset of A x A into a

subset of the reals with their usual ordening, and let € be a nonnegative
number. The first rule we shall discuss is

(isj’kal) el <= 6.. -39

i3 k1 * € - (6)

If ¢=0 and if sij =8,, then both (i,j,k,1) and(k,1,i,j) € L. If € > 0 and
Gij = 8, then both (1,d,k,1) and (k,1,i,j) # L. The interpretation is
clear: € is an estimate of the precision with which we have measured
our dissimilarities and € = 0 is the special case of perfect precision.
The interpretation is reasonable but the choice of € is in most cases
rather arbitrary. If we have information about the standard error of
the éij (either by knowledge of the sampling distributions or by repli-
cations) then we can choose £ in a more or less rational way. Another
rule is

(1,j,k,1) e L <= 855 = S > ~E (7)
i3 - 8,1 § +€ , then evidently both (1,3,.k,1) -
and (k,1,1,j) e L. All values between the boundaries are defined as ties .

In this case, if -¢ <6

and (as we shall see) must be represented by ties in the representation.

The use of rule (7) seems hard to justify in most practical situations.

%



The treatment of ties is especially important in the analysis of adjacency
matrices of graphd (as in sociometry). The entries of the matrix D={6ij}
-are either zero or one, i.e. Sij=0 iff subject a; has 'chosen' subject aj,

otherwise aij = 1. In this case the rule must be

(i,j,k,1) ¢ L <%5w6ij =1h 8,=0 Ai=kA1> j (89~

We use tie-rule . (6) with 1 ¢ § <

in I equals & {nf &2 - ( % &.)2}.
i 3 J j d

In this case the number of elements

3. The algorithmic problem.

3.1 The nommetric reguirements .

The algorithmic problem can now be stated as follows: the mapping w must

be found in such a way that

(i,5,k,1) € L =452 4 (9)
A more severe set of requlrements would be

(i,5,k,1) ¢ L = a5 % Ay }(10a)

(1,3,5,1) e LA (B,1,8,§) # L = 455 > dp (100)

But we shall see that our algorithm allows for cases with
(i,5,k,1) € L A (k,1,i,3) £ L A a5 = 4y (11)

The same thing is true for the KR- and the GL —approaches (of Roskam 1968
ph3-45). The requirements in the measurement theory of NMS (of Beals,
Krantz and Tversky 1968) are

8:5 3 % T 445 2 4 (12)

If 3 is a weak order and E = 0 this is equlvalent to (10a) and (10b).

The NMS-algorithms. howev»fdy

s Ok o Y

';presentatlons in su¢h”

a way that (12) is optlmally satisfied. Moreover the discussion in the

previous section implies that cases-should be possible with

P T g (13)
(for example inh the case of grapﬁs).
Observe that our algorithmic requirements (9) and (10) both imply

(i,5,ks1) ¢ L A (k,1,i,j) e L = dij = d, (14)



In combination with tie-rule (T)

- € < 5ij_- 80 S € = dij =4, (15)

If €= 0 both tie-rules reduce to

8:5 5% T 4y T A (16)
There are more subtle ways in which (9) requires ties in the representation.
For example

H1,5,0,0), (5,1,47,31),(30,37,1,8)) S L =

dij 91 "G50 (17)
In general: all cycles in the graph of the binary relation corresponding

with L are to be mapped into.equivalence classes of distances.

3.2 Choice of métric

(x.

We write w(a.) = i1

; def ses e e gXs

seooesXe ), Wwhere the x;, are real numbers.
Define
j9) —-R
r
d; 5 "L% | % = %5l (18)
Ifr> 1andR=r"" then d is a metric by Minkovski's inequality. If 0 < r

¢ lTand R=1then 4 also is a metric (Hardy, Littlewood and Polya 1952,
p 30-32).

3.3 Formulation as a system of homogeneous inequalities

In the sequel we shall frequently use the m-element vector t. Suppose we
have already chosen the number of dimensions p and the power r > 0. The
vector t is defined in the following way: if A(i,j,k,1) = b then
b
r r
b - is T *js |7 - E | s T *1s | (19)
s=1 s=1
Because the positive power R in (18) clearly does not affect the ordening
of the distances, we may reformulate our algorithmic problem as finding
a representation of the set A in such a way that the m homogeneous ine-
qualities

t, 2 0 (20)

are optimally satisfied.
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The inequalities (20) have an obvious trivial solution :set X = a for

all i=1,...,m; 8=1,...,p. The value of a is immaterial. Another trivial

solution with all tb = 0 can always be found in n-1 dimensions by defining
' is

X, = &
is

i,8 = 1,.0.,0-1 (21)
Guperscripted 6 always denotes the Kronecker operator), and by setting X o

equal to one of the roots of the equation

(w=2) | vy | T+ |1y | T2 =0 ' (22)

for 8ll s. It is not difficult to see that if r > 0 and n" > 3 then this
equation always has a real root Y, in the opén interval (0,2). In the
Fuclidean case (r=2) the n points are the vertices of a regular simplex

in n-1 dimensions. We have proved: if there is a p-dimensional representa-
tion of A which satisfies all m inequalities (20) and the additional conditin
that for at least oné s there are i,j, € N such that x._ #Vst and if no
solution is possible in less than p dimensions then p € n-1. The example

in which € = 0 and H is-anvequivalence relation that connects the set S
defined in section 2.1 shows that no sharper inequality is possible. For
more specialized situations we have the already famous SSA-I theorems of
Guttman, which read in an adapted version: if the C(n,2) upper-diagonal
dissimilarities are weakly ordered and we use ties-approach (6) with € > 0,
then an (n-2)-dimensional Euclidean representation with't, > 0 for all b

can always be found. If we set €= 0 or use ties-approach (T7) with€ = 0

then such a solution always exists in n-1 dimensions (Guttman 1968, -p LT76-LTT

4. Loss Function

4.1 The class of coefficients f(qg)

A well-known method (of for example Wolfe 1967 p 105) to find a solution

of the m homogeneous inequalities t.2 0 is to minimize the function

m
F= ¢ (max (0,t) - t,) 9, (23)
_ b? _
b=1
with q =0.Evidently tba 0 for all b iff F =0. A more convenient way to write
F is
| -q 2 q I
F=2 g (] tbl - ) (24)
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Because F = 0 iff t lies in the positive orthant of the m-dimensional

space defined by the t, we call this algorithm the positive orthant

b .
method (POM). If q = 2 it is identical to Guttman's absolute value principle

as used, for example, in MSA - I and SSA - IV (Guttman,i1969).

In the NMS-case we know that there always is a (trivial) solution with
F = 0 in one dimension and another trivial solution with F = 0 in n-1
dimensions, In order to exclude these solutions we define the scaled loss-—
function
i a
Lt ] - ty)

f(q) = - (25)
: 29|t |* |

Another advantage of this scaling is that f(q) is invariant under uniform
‘stretching and shrinking of t, while F is not . In other words:we confine
our attention to the points on the m-dimensional closed surface in t-space
whose equation is thb[q = 1, If ¢ # 1 the function f(q) is differentiable
vis-a-vis the tba If ¢ = 1 the derivatives fail to exist at a number of .
points, but in practical computational work this does not create any
difficulties. Throughout this section we shall assume in our discussion
of the f(g) that there is at least one ty # 0.

Two important special cases of f(q) are

z(|tbl -t )2

_ ~ b
T= ip £(2) = ) Zt% (26)
I (el - t)
§ = £(1) = (27)
def oF [ tbl

It is easy to show that (if-M_ and M+ are the subsets of M which tb < 0 and

t, > 0 respectively)

’ = | %|°
£q) = —T - (28)
I | )
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which implies that
_ 0 < flq) < 1. (29)
Moreover f(g) = 0 iff tb > 0 for all tb’ f(q) = 1 iff tbvs 0 for all tb, and
I q____—--—-— q .
£(q) = 2 iff 04 Itb %_E_M;i t |. If we change all signs of the t.,

then the sum of the two corresponding values of f(gq) equals unity.
There is yet another instructive way to write the f(q). In fact
q . q
Z]tb |2(1 - sign (tb))

£(q) = (30)
* 2%zl |®

By checking the possible values of sign (tb) we see that

2 e, |% (1 - sign (5,00 = 2%37'5] ¢ [2 (1-sign(ty)). (31)

b

¥

Define
1

vy = 2 (1-sign (t,)). (32)
Substitution of (31) and (32) into (30) yields

v Yy ‘
p(q) = —ZL2l "o (33)

~ Zitblq

implying that £(q) is a weighted mean of the values Yy Of course
0« Ty € 1 (3k4)

for all b.
A simple geometric interpretation may make the meaning of f(q) even clearer.
If t 1s a vector in Rem, and P(t) is the projection of the vector t on the
positive orthant of that space, then

P(t) = 2(|t] + t). é (35)

Let S be the Lq—diStance between the endpoints of t and P(t), and let T be
the Lq—norm of t. Then
S

)<, (36)

fla) = (5

In pa;ticular

= = sin® 4 (t,B(t)) (37)

The 2% possible choices of the signs in t correspond with the o possible
faces of the positive orthant. Local minima may arise because we find a-
solution with P(t) on a particular face of the orthant, while there may
sxist solutions with lower values of f(q) that project on other faces

Sydow, 1968).
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-.2 Limiting cases of f(q)

2% is clear from (33) that minimizing £(q) with q > O means using a metric error
Tneory. If vy = 1 we meke a nonmetricverror, but this error is weighted by ltb]q,
~.e, according to its size. The smaller we take q, the smaller the influence of
=2is differential weighting of errors will be. The limit of £(q) for ¢ — 0
=xists, and n

¥ = ger Mim £la) = o 30

a—>0

where m_ and m, denote the number of elements in M_ and M. An algorithm that
zinimizes ¢ clearly uses a nonmetric error theory. Because ¢ is a step function,
zinimization of ¢ is imposgible with a gradient-type algorithm. Minimization
procedures that do not use derivatives have been tried out (De Leeuw, 1968c, p L49)
cut with little success, because the algorithms almost invariantly get stuck on
cne of the nonoptimal steps. By choosing ¢ very small in (25) we approximate the
step function ¢ by the continuous and differentiable function f(q), and the

gradient methods can again be used.

At the other extreme end of the g-scale we find that the limit of f(q) for g —> w

also exists, If
m

o = g, mex ()

def =1 (39)

znd s_ and s, are respectively the number of negative elements and the number of

tositive elements of t whose absolute values equal itél, then

s
P = ger 1im fla) = s_+s, (ko)
g—> -
Iz most cases ltbi < ftsl for all b # s and
1 ift <0
s
. (51)
0 ift - >0
s

szoroximating a minimum of p can be done by taking q very large, but evidently

: Is a useless coefficient. Even in this extreme case, however, the requirements

max (itbi) < max (ltbl) (L2)

bsM_ bEM+

=221 have some nommetric characteristics.
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Zoth limiting cases have some remarkablé propértiesvin common. In the first place,
=+ (38) and (40), the ranges of both ¢ and p are the rational numbers between

Zzro and one. In the second place the solutions of the minimization problems for

- and P can be expected to be far from unique. If we choose our representation at
rzndom we minimize p, for example, in approximately half of the cases. TFor ¢ the
sztuation is much less serious and the diameter of the m-dimensional region M which
- ;;¢min can be expected to be quite small. If we generate random representations

“he sampling distribution of ¢ is nearly normal with small variance and mean 3,

~he sampling distribution of p is, of course, a two-point distribution.

Another advantage of using nonmetric error theories is that the statistical aspects
seem to become somewhat mdre tractable. Consider the case in which tb # 0 for all
0, 2, is a partial order, and we use tiesapproach (6). Define
m -m )
T= — =-——-——-—_—_
def ! 2¢ m, +m (43)

. @ k4
Then T is a coefficient of disarray in the sense of Kendall (1962, ch 2). 1In fact,

if % is a weak order, T is identical with Kendall's familiar rank correlation
coefficient and we may use the distributional theory of T to test the hypothesis
what a particular value of ¢ could also have been found by chance. This, however,
is not the statistical hypothesis we are interested in. The distribution of ¢ under
randomvpermutatiOns of the dij is much less interesting than the distribution of
g the value of the coefficient found after application of our algorithm under
random permutations of the éij' In general (for all q) we have that

Z.f . ) = E(f)iff f is constant on the space of all possible Vectors of distances.

“Tmin
“n all other cases E(fmin) < E(f). The unlikely special case occurs, for example,
22 (ky Ly i, J)eLoife (1, 3, k, 1) e L.

&

-z some cases 1t may be important to know how much we have gained by using a metric

z»ror. theory. Define

o

1
L + lQL
B e L by = fla) (4h)
def 1 = . T-9¢"" £(q)
m_ beM_ [t |
ZTidently
lim Y = 1.,

(L5)
q~> 0
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If v is very large this indicates that the value of f(q) reflects mainly the

size of the errors and not so much.their number.

4.3 TInequalities relating the f(q)

For all q the function f(q) is a weighted mean of the Yo It follows that
f(q) - £(q') is a contrast of the Yy There is an interesting inequality for
contrasts that can be used in this case. If o = Zwixi and B = Zvixi are

weighted arithmetical means of the X: then

- < 3 lx. - x. . - V. 46)
Jo -] £ % max lxl xJ] z ]wl vl[ | (L6)
Proof: Define the m-element vector ¢ by c. = . W. = V.. Then Zc. = 0.
1 def "1 1 1
Let the c. be arranged in such a way that c; 2 0 for i=1,...,k and c: < 0 for
1=K+ T 4000 MM«
Then
m m m k
= - . . & . . N -
1£104%; i§1lci!xi i=k+1 [cll *i & 18% (Xl) 1§1| Cli
m m. k ; m m
min (xi) i Ici [ = %(max(xi) -min (x.)) I I ci] <
islot i=k+1 i=1 i=kt1 T =1 %
m m m m m
l 14 - < = 1 -
2 (max(x;) - min (%)) °Z]ci |= 2 _ max | X = X ]i§1] Ci|
1=1 1=1 -1=] 1,9=1

we obtain equality in (L46) iff there are constants c and d such that

X. = cor 0 1= T,000,k-
i ,

X, = a i=ktl,s.0,m . "

C 2 4 \ 7)
n our case

Badgeq 17y - 4l | (
5 q q'
t,| b, |

1 ¥ - ' . (49)
- P e, 19



- 16 -

A necessary and sufficient condition for equality in (49) can be found by

using (32) and (47): sign(e,) = sign(t.) for all b. This case can be realized

b
so no sharper inequality is possible.

b

An important special case is (assuming for the moment that tb # 0 for all b,

and setting u, = l tblq)

def

! BN R
;E -L=a B b, (50)

b o Uy

[f(a) - ¢]s 3 2|

Of course this is a coefficient of variation. The numerator is the mean
absolute deviation of the w the denominator is the mean of these quantities.
The more variation in the w s the more difference between f(q) and ¢ 1is
possible. If we drop the assumption that tb # 0 for all b then the upper
bound is identical to the same coefficient of variation, but in this case
computed for the nonzero elements of t., Of course we may combine (50) with
the well-known fact that the mean absolute deviation s1(u) is not greater
than the standard deviation.sg(u) and obtain (with m(u) for the mean)

s,(u) - se(u)

[f(q) - ¢ < 3 . (51)

n(w) © 2 m(u)

It also follows from inequality (50) that a sufficient condition for the
equality of f(q) for all g is that all non-zero [tbl are equal. Moreover,
if £(q) is equal to zero or unity for one q < o, then it 1s equal to zero

or unity for all q.

L.} Introduction of weights

An obvious generalization of f(q) is

sw (|4, ] - t,)%
£(q) =~ (52)
2 ZWbltb[

where the wb are m nonnegative weights. These weights can be constructed

in several ways. Suppoée the responses of d different subjects generate

d sets of quadruples Lc E_Mh, c=1,...,d, Let ¢c be the indicators of these

sets, 1.e. )
bt M > 10,1 - (53)
define a
M(iL5k,1) T oEr felihdskel). (54)
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Zzis is a simple way to analyze the responses of a set of subjects. If we
zzve numerical values for the dissimilarities we may introduce a metric

slement by using the weights in the following way

)= 855 = 6 (55)

W(i,dk,1)” i T i

-.5 Generalization by partitioning L. .

Suppose P is a partitioning of L into k subsets L1""’Lk' Of course

¢ k € m. A generalization of f(q) is given by

.
. 1
f == .1  f =
= pla) = ¢ 5 J(cl_)
Kk bEL. ([t ] -t )4
=1 2 b..b (56)
B |+, |2
' bEL b
Suppose that, for all j,
q
bng [t 1= # 0. (57)

There are two 'extreme' cases. If k = 1 then fb(q) = f(q), if k = m then

(It | =509 _

ro(a) = ¢ L, By ¥y =9 (58)

1
q ;e n
2% |t |

secause by (57) tb # 0 for all b.

“his generalization of(f(q) can be expected to be useful in two different
ways. In the first place ﬁb(q) with an a priori defined partitioning of L
zan be used to circumvent the problem of defenerate solutions. An important
s=xample is multidimensional unfolding in.which we have a conditional order
cn each row of the off-diagonal submatrix. If we use f(q)a degenerate
sclution in one dimension is always possible (cf Kruskal and Carroll 1968).
Z7 we let the order ?_for each subject correspond with a subset of L, and
“& use ﬁp(q) then such degenerate solutions are not possible. In this
r=spect the generalization ﬁb(q) is analogous to Roskam's modification

2 Kruskal's loss-function (Roskam 1968 p 34-35).



- 18 =

Suppose that we find a partitioning P such that all ]tbi within each subset
;j are either equal to a constant c or equal to zero (not all of them Zero,
<f course)., Then fp(q) = ¢ for this partitioning. This suggests a different
method to minimize ¢ in which we change the partitioning of L. After

each minimization M is repartitioned into groups in which we change the
+alues of !tb I are approximate fp(q) of formula (58), i.e. ¢. This

zethod has not been tried out so far. Theoretically it seems less elegant
~han the other method we discussed, i.e. approximating ¢ by taking ¢ very
smaiho A third method was already tried out in De Leeuw (1968c p 20-21).
Iterationé are carried out on the weights in formula (52) by taking W equal

to the values of ]tbi_% at the minimum in the previous iteration. The

results were quite unsuccessfull.

. The algorithm

J1

-1, Initial configuration

1

The first thing we nead to get our algorithm going is an initial configuration
(IC). The choice of an IC is very important because the function f{g) can

be expected to have local minima. Numerical experiments with the MINISSA-
program (Roskam 1969) show that local minima are very frequent indeed if

we start %ith a completely arbitrary IC such as the one proposed by

Kruskal. Roskam's results also indicate that if we start close to the
absolute minimum of f(q), we shall probably stay away from these local
minima. Our IC is based on the rationale of the canonical discriminant
analysis of relational data or CDARD _series (De Leeuw,1968 b), a slight
modification and considerable extension of some ideas of Gubttman (1941, 1946,
1959). It provides solutions to nonmetric problems by computing principal

components.

Define the m x n matrices S and T in the following way: if A(i,j,k,1) = b then

o s0i Qi ek, caleg
Spq § § 8 §+ 24 (59)

and

bg st _ U, gk _ sal (60)

If x is an n-element vector, then the m- element vectors Sx and Tx contain,
1 .- X.) - - : X. - X.) + -
respectively, the elements (xl X.) (xk xl) and (xl xJ) (Xk' xl)

J
cn the appropriate places. Define g(x) = x'T'Sx, then
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I 2 2
x) = X.-X.)% - -x_ )4 61
g(x) %1,3, 7 ( 5 J) (x, 1) (61)
The relation with (19) for r = 2 is obvious. Moreover

x'T'Sx = x' {(T'S + 8'T)/2 + (T'S = 8'T)/2} x =

x'" {(T'S+ 38'T) /2 }x (62)

cecause T'S - S'T is skew symmetric, which implies that x'(T'S - S'T)x = 0

for all x. Define the Lagrangian function

@A(x) = x'T'Sx - p(x'x = 1). ° (63)

Symbolic differentation with respect to all elements of x simultaneously

¥

zives

30 (x)

= =(S'T +T'S)x - 2 ux (6L4)

Tinding the extreme values of x'T'Sx memns solving the eigenproblem
{(s8'T + T's)/2 }x = ux (65)
Zf course, by (62), we could also have defined

®B(x) =x' {(8'T + T's)/2 }x - u(x'x - 1) (66)

with exactly the same result.,
Z: is quite easy to see that S and T are composed of two m x n matrices, say

=, and 82, with S = 81—8 and T = 8.+ S,. Evidently

2 1 e
1 = t - ' t - i
8'T = 8',8,- 8',8, + 878, -8'8,, (67a)
Smta = 1 _ ' 1 - gt
T'S = §'.5, - 8',8, +8',8, -85, , (67b)
= 1 ! 1 = at - oat .
Q defz(s T+I'S) = 8' 5, - 8 55 (68)

Z=cause the row sums of both 81 and 82 disappear, 8'181 and.S'gsg,are
Izubly centered and consequently, so is Q. It follows that Q is singular,

sz at least one of the elgenvalues equals zero. We may order the eigenvalues:

R P L LU L T (69)

T-= eigenvector associated with Hy has constant elements. Define
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T (1,).k,1)e L lﬁ

—

[T Rie]

b .
z . X, - - 2

=1 1s Js s=1 (st Xls) ] (70)
which makes the relation with (19) even more obvious.

If it is true for all (i,j,k,l)elL that i # j and k# 1, then both 81,and 82
have two nonzero elements in each row, one of them equal to +1, the other

to -1. It follows that

trace (S'.S.) = trace (8'.8,.) = 2m, (71)

11 v 22

so trace (Q) = 0, and the sum of the eigenvalues equals zero,

For each eigenvector with nonvanishing eigenvalue we obtain for its contribution
to the squared Euclidean distances

n
az., =.g
1 713 1=

I 8
i B

iy j)2 =2n I, x% (72)

This means that maximization of x'S'Tx under the condition that ZZ d%j is
some constant value would give us the same results. This fact can be used
<o relate the coefficients pand £(1) =8 in the Euclidean case. Suppose we
scale each eigenvector (corresponding with a positive eigenvalue) in such

s way that the sum of squares of its elements equals the eigenvalue, In that

case, by (72),

n n n
2 - .

iB1 5B 4y T em kg v (73)
zy (70)

m P 2 (71)

b§1 tb - 521 Hs i
“rom (27) it follows that

x tb

B
J-te
4]
wul
e
=1
-
l_l
o
2]
-
o
He
]
1]
©
R
[¢)]
4]
ct
=
[t
(g]
+
l_l
o
O
2]
foT)
(]
2]
D
jo}
B
]
w)
]
el
o
[e]
=
1]
Q
o
o
In}
D
Qs
PJ
A
{
i
s
(]
h
[R2]

+i<h j > i appears 3 n(n-1)-1 = 3(n-2)(n+1) times in the = izmstazces oI

szrmula (19). By applying Minkovski's inequality
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m
1o 2 = Mo 2
w21 ltbl < 2(n-2)(n+1) Ll Kn-2)(n+1) £ &, (76)

Combination of (73)-(76) gives uw the result

n(n-2)(n+1)z g - 21 Uﬁ
2n(n-2)(n+1)z M

(77)

§ g

In the conditional case, in which m = %nz(n—1), Minkovski's inequality

gives us
’ 2 8
Z|t]| < (n-1) zI d42. (78)

and we obtain in a similar way

_ _ o2
s < 2n(n-1) zus zus (79)
kn(n-1) Zus

For the method of triads

2
gty ] s n-2)zzdij , (80)

and )
2n(n-2) Zu - Zyu
§ < = 5., (81)
bn (n-2) Eus

Observe that the inequalities (77) and (79) remain valid if there are

ties and we use tie-rule (6) with £ > 0, because this simply implies that

we delete some of the elements of L. The left side of the inequalities (76)
and (78) decreases, the right side remains constant. Moreover the discussion
in this section implies that (if Q # O) there always exists a one-dimensional

Euclidean solution of our NMS-problem for which § < 3.

Our IC is a generalization of the IC used in the GL-SSA-I and MINISSA-I
programs (Guttman 1968 p h99—562, Roskem and Lingoes 1969). To prove this
we apply our procedure to the complete case in which all n2 dissimilarities
are ordered. Because of the definition of Q it is immaterial whether we

use

Glj = le = (i:jsk’l) e L A (kpl:inj) e L, (82)

or

sij =6, = (i,3,k,1) ¢ LA (k,1,1,]) £1L (83)
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for the tied elements. Let aij denote the number of elements of A less than

§.., and b.. the number of larger elements. Clearly a.. + b.. < n2-1. It
1] 1] 1J 1

e; is the n-element unit vector, the vector ei—ej appears aij times as a

row of 81 and b. ij times as a row of S . The vector eJ-el appears aJ times

in S, and b. i times in S,. It follows that the elements of C(1) = S!s
1 Ji 2 def 171
are given by
{1 a6l 3 (a +a.) - (ar. + 8.l (84)
iy k=1 ik akJ ij Ji’?
and the elements of C(2)= S!S, by
: def 272
(2) _ (ii 3
¢;5 = 8 K1 (bik + bkj) - (bij + bji). (85)
So i n
L. = .- + -b.. .
94 =9 W21 U (e 0s) (akJ ka) {(a ) (aJ le)} (86)

In Guttman's technique the matrix

¢ =¢ -25 (nI-J) (87)
is factored. In (87)
n

= o1d
e = 870 I, (Dik-+ ij) - (Dij + Dji), (88)

J is an n x n matrix with all elements equal to unity, the D. ij are
arbitrary numbers with the same rank order properties as the Glj’ and D
is the mean of the Dij' Formula (86) can be simplified by letting rs
denote the rank number of Gij (as usual, for tied elements the relevant

rank numbers are averaged), and by using the identities

n n
_ . _ 2
aij_bij =%, Z; sien (Gij - le) = 2rij (n“+1). (89)

Substitution of (89) into (86) and simplification yields

1q.. = §id -
2q.. = & I (r1k+rk,3) (rij+rji)

§390(n241) + (n2+1). (90)

Substituting (86) with Dij =Ty in (90) gives
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Q=C - (n° +1)(nI-J). (91)

Nl=

n2+1 we finally have

Because 2r
10 = & (92)
if we use Dij = rij' This proves that the two techniques.are essentially
identical if applied to an important special case. In the case of missing

data we obtain again formula (92), where E is now defined by Guttman's formula
(106). In the case of (complete) conditional matrices (86) is valid again

but T3 of(89) becomes the rank number of Gij in the relevant row (or column).
The formulas for the rectangular case can be easily obtained by using Guttman's
notation for missing data.

We have obtained two significant extensions of Guttman's results. In the

first place a generalization of the IC to an arbitrary binary relation over

A, in the second place an optimal property (within the framework of maximizing
gp) of the rij’ compared with other possible.choices of Dij' Both Guttman's
technique and ours give us & prelimary upper bound for popt’ the optimal
dimensionality. Because gp will increase as long as we add new dimensions

with positive eigenvalues, a reasonable upper bound is the number of positive

eigenvalues of Q.

Our IC can be modified. to permit the introduction of weights. They must be
collected in a diagonal matrix W of order m, and

Q= s;ws1 - S'Ws (93)

2" 2’

This generalization is used in the CDARD-T program that constructs an
optimal representation of the cognitive space by using the dissimilarity
estimates of a number of subjects at the same time, with values of g(x)
computed for each dimension and eachrsubject separately. The NMSEMS-program
(De Leeuw 1968c,p 11-14) is a more simple version, where the weights must

be part of the input (EMS stands for Euclidean maximum sum, because in (19)

r=2 and the program maximizes the sum of the elements of t). The
NMSPOM-algorithm, described in this paper, uses the EMS-solution as an

initial configuration, the NMSEMS-progrem gives it as an independent

solution of the multidimensional scaling problem. In general the EMS-rationale
provides us with a very good.IC (even if r#2 and g#1), and in some cases

the results are even more satisfactory than those obtained with NMSPOM. The

reasons are clear: NMSEMS computes the absolute maximum of the function gp(x)
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for all p. In fact, because the eigenvectors of 8 are the same.as those

of C (Guttman 1968 p 502) and because C is Gramian (Guttman 1968 p. 493),
maximizing gp(x) is equivalent to maximizing.a concave function. Moreover,

in cases where a so-called degenerate solution (Roskam 1968 p L3-L5, p 61-6L,
p 122-126) is possible, NMSEMS ' may be much better than NMSPOM. Nevertheless
at the moment I do think it wise to include NMSEMS in the class of NMS-algorithms,
because there seems to be at least two necessary conditions for calling an
algorithm nonmetric. In the first place the results must be invariant under

a strictly monotonic increasing. transformation of the data. This is true

for NMSEMS, as it is true for all CDARD-type techniques. But in the second
place the algorithm must minimize a loss-function with an a priori known

lower bound, and the coefficient must equal its lower bound if and only if

all nommetric restraints are nontrivially satisfied. This second condition

is not met by the CDARD-techniques (and of course this is exactly the reason
why they are more robust against inherent degeneracy in the data) It is

true of CDARD that the %ogs—functions have a lower bound, .and that a necessary
(but not sufficientyofg%téggaining this lower bound is that all nonmetric
contraints are satisfied. The same thing is true, however, for maximizing

the PM-correlation between dij and Gij: if r(8,d) = 1 then Gij > §, . iff

k1
2 dkl' Techniques for which only the first criterion is satisfied will

d..
bZJcalled semi-metric. The most important fact.that follows from both theoretical
and computational developments in psychological measurement and scaling theory
since the book of Coombs, is that the additional requirement that the
representation must be nonmetric as well is unnecessary restrictive (Shepard

1966).

5.2 Variance algorithm

Both the KR- and GL-methods use a simple gradient (SG) algorithm to minimize
their DPF-coefficients. An alternative is to use revised gradient (RG)
algorithms such as those of Fletcher and Powell (1963) and Fletcher and Reeves
(196L). These methods have a faster eventual convergence because they converge
for a quadratic function in a finite number of steps(not greater than the
number of variables), and because each twice-differentiable function is

dominated in the neighbourhood of the minimum by the second order terms in its
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Taylor expansion. Moreover the RG-methods .provide additional useful
information about the curvature of the function at the minimum. The

prize we must pay for these advantages is an increased amount of computatiocnal
work in each iteration and an increase of the memory space required for

the storage of the relevant arrays. Comparative studies of the RG- and SG-
methods have been carried out by Box (1966), and, for a more specific
psychometric problem, by J&reskog(196T)(cf also JSreskog 1966). The
conclusion from both studies is that in general RG-methods were superior,
where superiority is defined in terms of quite a number of different criteria.
In the J8reskog study the only serious rival of the RG-methods was a Gauss-
Seidel-type technique, but algorithms of this kind can only be applied in
very specific cases and even in these cases the algorithm must be rederived

for each new problem (Harman and Jones 1966 is also relevant in this context).

In our NMSPOM-program we use a recent RG-algorithm due to Davidon (1968).

It is called the variance algorithm and it is comparable to the older
variable metric algorithm devised by Davidon (1959) and perfected by Fletcher
and Powell (1963).ABéth algorithms build up an estimate of the inverse matrix
of second partial derivatives of the function (because of asymtotic maximum

likelihood theory this matrix is called the variance matrix by Davidon).

Explicit calculation of the second order. derivatives is extremely time-consuming
in the NMS-case, so we have preferred this approach to the classical Newton-
Raphson method. We have selected the variance algorithm rather than the

variable metric algorithm because the former is, at -least theoretically,

about twice as efficient as the latter.

The reasons to use an RG-method (and not an SG-method) at all in the NMSPOM-

case are following. The relative efficiency of RG compared with SG increases

if the main burden of the computational work in each iteration is the calculation
of the function values and the gradient. In other words, if updating the

estimate of the variance matrix uses only a small portion of the time required
for each iteration. In NMSPOM this definitely is the case because.of the

large number of elements in L. A second reason is that our IC enables us

to start close to the minimum we are looking for. It is well-known that SG-

methods are quite efficient if the function is still far from its minimum,
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but that convergence in the neighbourhood of the minimum is very slow. It
can be improved by modifications such as subrelaxation, diagonal-step,. and
partan (cf Wolfe 1967), but it cannot be remedied completely. RG-methods

are definitely superior in the neighbourhood of the minimum.

For a detailed development and thecoretical analysis of the variance algorithm
we refer the reader to Davidon's paper. For our purposes it suffices to

know that the algorithm produces a nonincreasing sequence of function values,
that it computes a matrix that converges to the variance matrix, and that

it provides us with an estimate of the excess of the function value in a

particular iteration above its minimum value.
5.3. Derivatives

Of course the POM-approach can be used for all nonmetric measurement models
based on differentiable functions. Therefor we develop the derivatives of
f(q) in two steps. The first formula can be used for any measurement model.

Let

= q
T = jer thbl (92)
and suppose for the moment that q # 1, r # 1 (again, in actual computation

these assumptions cause no loss of generality). Then

3 f(q) q
3t or

((1 - 2f(q)) sign(t,) - 1)»|tb|q'1L (93)

The secand formula is for the specific NMS-case: if A(i,j,k,1)=b then

r-1 ig jeg
ih xjhl (672 - 67%) -

sign (xkh - xlh)l Xy - xlh|r-1 (6kg - Glg;]. (96)
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The formula's must be combined by using

3f(q) _ 3 _2f(a) | "y, (97a)
axgh b=1 Btb axgh

It is interestingto observe that a sufficient condition for the numerator

of f(q)to be a convex function in the variasbles x is that tb is a concave
function of x for all b. Because tb is the difference of values obtained

by applying the same functional form to two different subsets of the

variables, this functionsl form must be both concave and convex, i.e. linear.
This may be an explanatién of the fact that the algorithms for additive conjoint

' measurement using the POM-approach always seem to converge to the absolute

minimum (cf also Roskam 1968 p 41). The same thing should be true for
scalogram anslysis, nonmetric discriminant analysis, and nonmetric multiple
regression. Derivatives for the generalizations of f(q) in sections 4l

and L5 are easily found. Suppose there is a partitioning of L into 4 subsets,

then

3f_(q) ;4 afc(q) 8t
3% 3 vl v o (970)
c b gh

5.4. A matrix interative process

In the Euclidean case Guttman (1968) managed to.rewrite the stationary
equations that give necessary conditions for an extreme value in the form
AX = X. This was done, of course, for the Kruskal-Guttman type of approach
only. In this section we show that the same thing can be done for the
POMvrmethod. We use Guttmen's definition of the signature of the data
(Guttman 1968,1969). The signature,i; a function Gijkl defined on x with

-1 if Gij < le
6.0 =4 +1 if 8.9 > 6 (98)
19kl 0 othe%&ise- kl

Using this function t can be redefined as

= 2 - 32
isk1 = Sisen (855 ~ 4 ) (99)

and f(q) as
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q
EE Utipal - t5a)
q q
271 F L 0§ %50l

This formulation is more elegant than the one we used in the previous

(100)

sections, but special provisions must be made if Gij and le ere compared
more than once (as in the method of triads). For all these cases.Guttman

has developed a notation that fully deserves to become standard. Now

of q
~ =37 § 5: EE (( 1-2f)sign(tijkl)~1).
gh
q-1 ot..
|tijkl| axlﬂkl. (101)
gh

In the Euclidean case

-

i SRV TIT:
= (5%, -X. - -
X Egi,i-‘ci“ ih th)(6 8°%)
gh et
L7 kg  1g
. 2Oijkl(xkh-xlh)(6 -87%), (102)

. —’"v-

Substituting (102) into (101) and a considerable amount of algebraic

manupulation gives

of 2
T j§1 (xgh-xjh)cgj’ (103)
gh
with
= iq. » q-1 . .
53 R oijklltijkll ((1-2f)sign{tijkl)-1). (104)

A necessary condition for an extreme value is, according to (103)

ZcCc .x.. =X Zc. .. 10
J 81 Jh gh J g (105)
If we collect the row sums of C in the diagonal matrix D, this suggests

the iterative process

-1
X(s+1) T P(s) C(o)¥(s)” (106)
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In this paper the process (106) is introduced.as a curiosity. We do not

investigate the deeper properties of C and D any further.

6. Comparison with other algorithms

6.1 Data

The NMSPOM-progrem can handle a more general type of data than both the KR-
and GL-series. From the program description of Lingoes(1968) it can be seen
that NMSPOM can be used to analyze the data. for SSA-I, SSA-I , SSAR-1 tot
SSAR-V, and MSA-II. The prize we must pay for this generality is that the
data must be coded in the form of a large number of quadruples, i.e. (n-2)
(n+1) times as many numbers as for the comparable GL-or KR-program. This

made it necessary to write a special program, SMPUNCH, that punches all quedruples
to be included in L.The program allows for various options: the numerical
matrices can be interpreted as conditionally or weakly ordered, off diagonal
or complete, symmetric or asymmetric. The diagonal elements can be included
in or excluded from A, the ties approach used can be either (6) or (7).

The difference between our tie-rules (6) and (7) can be interpreted as a
difference in the definition of a tie in the data structure. A tie is defined
as a member of the binary relation = over . A. If we use ties-approach (6)
with € >0 then =, is empty. If we use ties approach (T) with € > O then

8 8 +€ . (107)

8 <= _£ < §

1571%k 157°Kk1 §

Observe that in this case =1.is not necessary an equivalence relation (it
is reflexive and symmetric, but it may be . intransitive)., If € = 0

both approaches define

§.. =, 8, . <= §,..=§ . . (108)
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6.2 Algorithmic problem.

Both Kruskal and Guttman define Gij and le as tied.if Gij = le. Kruskal
considers two different sets of algorithmic requirements (1964 a,p22). The

primary approach is defined by

855 7 %k1 T 445 % 9 (109)

The secondary approach requires (98) in conjunction with

8:5 = Ox1 755 = dyq- (110)

Using the definition of = in the previous section, we may formulate our

algorithmic requirements (for numerical dissimilarities) as

Si,j > 6k1=> di,j 2 4, (111a)

. =8 =>d..=d_Kl. (111p)

The primary approach corresponds with (6) and €>0 (which implies that =,

is empty). The secondary approach with (6) with € =0, or with (7) with

0 < £ < min |6..—6 . (112)

. . 1 kll
1’J ’k’l J

The main practical difference between our treatment of ties and that of
Kruskal is that, once we have defined what elements are to be considered

as tied, no further preprocessing is required in each iteration. We use

Gij =, 8q = (i,J,ks1) e L A (k,1,i,j) € L (113)
only once: in the construction of L.
A very important aspect of both the KR-and the POM-algorithms is that they
may tie distances even if the corresponding pair of dissimilarities is not
an element of = They do not require the reverse implication in (99) or
(100b). Guttman tries to circumvent this possibility, but we shall try to
show that the devices he uses are theoretically unsound and based on a
nonrigourous formulation of the algorithmic problem. The requirements (100)

are called the weak monotonicity requirements by Guttman.
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He also considers semi-strong monotonicity. In the complete case this

requires

%55 7 %1 T 4437 (114)

whenever i # j and k # 1. For tied elements of A there are no requirements.

Strong monotonicity corresponds with

W

aij 8 < aij > 4 (115)

whenever i # jJ and k # 1. It is easy to see that (104) implieés both (103)

and

dij = dkl <= dij =4y, (116)

whenever i # j and k # 1. Verbally strong monotonicity requires that tied
distances must only occur on the places where we want them to occur.
Now suppose that there are v dissimilarities in A. We reformulate the algorithmic

problem by introducing v additional variables e, (1=1,...,v). The problem

1
is to find a representation of A (for given o and r) and a set of numbers

el such that

s = - (117)
Zdl

.

PR

is minimized, subject to the conditions

(118a)

1 1 k?

81=1 6 = ey = e, (118pb)
where =, Lay, of course,be empty. If there is a configuration w(A) with
distances 31 and a set of numbers 21 such that this problem is solved, then
21 also solves the problem: find numbers e such that

aY
- 2
z (d e;)

(119)
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is minimized, subject to the conditions (107)._Because188 is a convex function
of the e only two cases are possible: either gl = alfor all 1=1,...y, Or

Zl lies on one of the boundaries of the convex defined by (107a). If we
consider the conditions (103) or (104) then a necessary condition for these

conditions to hold is that min(S) = 0. In general, of course, min(S) > O

In the POM-case we may force strict monotonicity by requiring

§.. > & = 1t

ij K1 A(i,k,1) >

i35 51 % T T,k T O (1200)
where 82 is a positive constant. A similar device is used by Guttman (1968
p 496). The choice of €, is of course extremely arbitrary. If we consider &,

es an additional variable, then it follows from our discussion that min(f(q))

> 0 implies that €2 = 0 at the minimum.

The e can also be interpreted as a function of the dl (and, thus, as a

function of the xis)‘ In fact, if &, is the set of real numbers that minimizes

1

s (121)

under the conditions (107), then each of the e. is related to the dl by a

1
continuous function (Van Eeden, 1968, ch I). Guttman's rank-image transformational
principles use the additional requirement that ey must be a permutation of

the elements of dl. The set of values e® that results is not continuously

1
related to the dl' Moreover

. (122)

The interrelations between the two approaches were thoroughly analyzed by
Roskem( 1969a,b). For this purpose he uses Guttman's distinction between

soft-squeeze and hard-squeeze approaches. The soft approach concentrates

on the minimization of S* given by formula (121), the hard approach on the
minimization of S. Moreover a distinction can be made between split-step

end joint-step .algorithms. They both start with an initial configuration

«(0) io)

Iy ] - %
and values of e. (either &. or e. ).

1 1 1
In the split-step algorithms the first step is minimization with respect

, and corresponding distances d

to the-xi , for given (fixed).values of 31' The. minimization problem does

S

not have to be solved completely, it is sufficient that the value of S




- 33 -

is decreased. If the first split is finished, we compute new values of d
and e (second split), and repeat the first split using the new e.
Split-step algorithms correspond with the well known relaxation methods

in which a subset of the variables is held.constant during minimization.
If we have reached the minimum another subset is held .constant, and so on.
A well known example is the Gauss-Seidel method. The .joint-step algorithms
also minimize S (or Sﬁ), but now the 21 are considered as functions of the
x; .+ In the aim?gamation case the derivatives of the,‘e‘l vis-8-vis the

Xs g vanish (essentially because the & are constructed by averaging the a),
in the rank image case the derivatives do not wvanish in general (at some
places they do not exist, and they most certainly are not continuous). This

has unpleasant consequences.for the convergence properties of the rank-

image process.

6.3 Loss Functions

We continue our comparative analysis with a discussion of the different loss-
functions. Of course all coefficients have the property that they attain

their lower bound (zero) if and only if all nomnmetric constraints are
(nontrivially) satisfied. Another desirable property would be: the loss-functions
have a priori known upper bound that is attained if and only if all

nonmetric constraints are violated. Our coefficients f(q) have this property

for all q< «. They share it with all members.of.the class of generalized
correlation coefficients (Kendall 1962, ch 2). The KR- and GL- coefficients

do not have this property. For the GL-approach we have (for normalized phi)

*,2
_Z(dy) - ep) _ d'Pd
8y = 5 =1-350 (123)
2 1d]

where P is a permutation matrix. For the upper bound we have (for a
given set of weakly ordered distances with dk < dl if k < 1)
151 49y 141
S 1 - 1. (12k)
¢ d2
1

(cf Hardy et al, 1952, p 267).

This means that the upper bound depends on the values of d, which is not

A
A

very elegant.
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Kruskal's original loss-function (stress-one) is

2 (q - 8)°
s, =V X 1
1 a2 (125)
1
For a given set of dl the maximum value of S1 is given by
- 2
(max) o , | 2 (4 -d) (126)
S v
1 5 d2
1
. . o(max) . . ) .
The maximum value of S1 is reached for an arbitrary partial order 1if
dk = g for one k, and d vanishes for the other v-1 elements. This situation

can be realized, and we have
slmax) /[' 1‘—‘—] : (127)

For the complete case the maximum is attained if x = a for one k, and X

vanishes in the other n-1 cases. Then

1 Pl

n

g(max) o [n-2 ] (128)

The upper bound given by (128) is sharper than that given by (127), as it
should be (substitute v = C(n,2) in (127)). The fact that the upper bound
depends on n may explain one of the results of Young's Monte Carlo studies
(Young 1968). He found that the expected value of s, increased with the
number of points for fixed p and level of error. Observe moreover that the
upper bound gven by (126) is a coefficient of variation, because it is the
quotient of the standard deviation and the root mean square of the

elements of d.

In the complete case the minimum value of ngax) in the one dimensional case
is attained for x, = i(i=1,...,n). In that case
(max) n° + 2
S = /[ (129)
1 2
3n
(min)

It follows that, if S is the value obtained by applying the KR-algorithm

1
to the complete case, then:

(min) 1
8, $ 3 v 3 (130)
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This may be an explanation of a result of Wagenaar and Padmos (1968) who
inveriantly found ngin) < 3 in extensive‘Monte”Carlo studies (of also

Klahr 1969). The approach used in finding inequality (129) can be generalized
In the seme way we can prove that the minimum value of S1 in two dimensions

(no matter what the order-relations are) is given by

(min) . n2 -8
51 s ‘/(—_—H?_ } (131)

Kruskal's modified loss-function (stress two) is

(a, - 8)°
5, =7 — |- (132)
(4, -d)
For any set of distances Sémax) = 1. Observe that
S1
s = (133)

2 SSmax)

where SQmax) is given by (126). A sufficient (but not  necessary)

condition is that all nonmetric constraints. are violated. In general S. seems

2
more satisfactory than S1. Because

8. =1 4 (134)

1 1’

S% is the ratio of the residual variance after fitting the model to the

total variance of the 4, 82 is a coefficient of alienation, and ¥/( 1—85 )
can be interpreted as a measure of (monotonic) correlation. Observe

that 82 excludes the regular simplex solution discussed in section 3.3.

6.4 AMgorithm

For a discussion of the convergence of the procedures we must distinguish

the various special cases. It is, of course, always true that the loss-functions
S and s* are bounded below by zero. Both the hard Joint and the hard split
almagamation processes produce (with suitable choices of step-size) a
non-increasing sequence of S-values, which means that they converge to a

value §. Because the derivatives exist and are continuous everywhere
Kruskal 1969) this value corresponds with at least & local minimum.The

same thing is true for the POM-approach. The rank image processes do not
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always produce amnincreasing sequence, and the derivatives. are not
continuous, which means that the familiar theorems on the convergence

of gradient methods cannot be used. In fact Roskam(1969a) did indeed find
that the GL-SSA programs do not converge.

In the soft squeeze almagatior processes convergence to a.local minimum
of S® is also assured, but this value may .very well correspond to a trivial
solution. In general soft- squeeze processes do not minimize the complete

loss-funtion S (ef De Leeuw 1968a).

Some theoretical considerations of Guttman (1968) and some numerical results
of Roskam (1969b) indicate that split step-algorithms are less vulnerable
to local minima than joint-step algorithms. The same considerations and
results indicate, however, that the nature of the IC has a more profound
influence on the freugency of local minima. The one used by Guttman is very
good indeed, and it can even be improved upon a good deal by using some
soft-split procedure. The discussion in this section implies that we must
always end our iterative process with hard joint almagamation. The soft
split rank image options can be looked upon as devices that can be employed
to perfect the IC. And this is exactly the way they are used in Roskam's
MINISSA programs.

In the case that perfect solutions are possible the rank image principle

is more likely to produce. strictly monotonic solutions (Roskam 1969a,c,
Lingoes & Roskam 1970), but this is not very important. If such a perfect
solution is possible we are sure that there actually is a set of perfect
solutions and we need additional criteria to make a selection from this set
(such as the maximin approach of Abelson and Tukey, or the pr nciple of least

squares).

A degenerate solution arises, for example, if A can be partitioned into two
subsets A1 and As and the following condition is also satisfied. Let wij = 1

iff a; and za\,j are both elements of the same subset and wij = 0 otherwise. If

Vs = TA ¥y =0 =(L0k1) ¢ L - (135)

for all i,j,k,l € N then a degenerate solution in one dimension is possible.

If a and b are two real numbers, a # b, and

a; € A1 = x. = a (136a)

a; € A, = x, =D (136b)
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then f(q) vanishes for all g (and so do the loss- funtions for the KR-
and GL+ approaches). In the NMSPOM-case with q >>0 we may expect to reach
the degenerate solution quite fast, because of the weighting of errors.
The negative elements. in t will soon be made very small. In minimizing
f(q) with q very small the successive iterations will probably use a
route with more acceptable solutions. Using NMSEMS may be a satisfactory
way out. The same thing is true for a reanalysis of A1 and A2 separately.
These separate analysis may be carried out by partitioning the elements
of L into those that correspond with within-group-distances and those
that correspond with between-group-distances. The weights for the second
set .are set equal to zero. A much more elegant solution is using fp(q)
on this partitioned set L. In NMSEMS the first dimensions invariantly
contrasts the groups, and the additional dimensions can be expected to
give information comparable to the separate analysis of A1 and A2. It -
is of interest to note that Roskam(1968 p 45, also 1969a) found that

the GL-programs produce trivial solutions whenever the KR-programs do so.
This means that the GL-algorithms essentially produce weakly monotonic

solutions too (at least in the critical cases).

In order to compare the POM-approach with the other algorithms we rewrite

the loss=function as follows

£t -t |9
_ b b
f(q) = : (137)
Zl‘t |q,
b
where %b must be nonnegative for all b. If we substitute
o= 36| + ) (138)
b b b

into (137) we obtain our original formula (25). This formulation of the
problem makes it possible to distinguish between hard-soft and Joint-

split in the POM-method too. The algorithm outlined.in De Leeuw (1968a) for
nonmetric discriminant anaslysis is a soft-squeeze POM-process, the algorithm
in this paper a hard—squeeze.joint~step POM-process. An important observation
in this context is that in the linear case (De Leeuw 1969) we do not

need the distinction between split and joint, both minimization problems

can be solved in one step, i.e. without using gradient methods at all

There is a remarkable conceptual .correspondence between the KR- and the
POM-approaches. The main difference is that the two algorithms work in

a different space. In the KR-case each distance defined a dimension, the
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nommetric restraints define a polyhedral convex cone in this space, d

is the projection of 4 on the cone, and

S1 =sin £ (4,3). (139)

(In the S, case the vectors d and d must be replaced by d - d and 4 - d).

2
In the POM-case each difference of distances defined a dimension, the
nonmetric constraints again define a polyhedral convex cone in this space
(the positive orthant), t given by formula (138) is the projection of

t on the cone, and

I = sin® % (t,%). (1%0)

In which of the two spaces we prefer to work depends on. the nature of
the data, more precisely on what we consider as 'observed'. If we
observe differences of distances we may prefer the POM-space, if we observe

numerical similarities we may prefer the KR-space (cf also Roskam 1969 c,p 21).

The KR-method can be easily generalized to partial orders. We have done
this by solving the quadratic programming problem (1074 ( 110) by the
Hildreth-d'Esope method. By using the familiar Birkhoff-theorem.on the
decomposition of doubly stochastic matrices into a weighted mean of
permutation matrices we may show that. finding the optimal rank-image
transformetion for a partial order reduces to a linear programming problem.
In this sense the rank-image transformation is easier to find, even in
the general case. Both the KR- rnd the GL- approach are faster than the
POM-approach, but they may be called less subtle because they do not
include the possibility of weighting each inequality separately and
approximating ‘& nommetric error theory. The KR-approach is, however,

a theoretically sound and completely acceptable alternative. In my
opinion the GL-approach has no (theoretical) advantages whatsoever over
the KR-approach, except for the initial configuration, which can, of

course, also be used in the KR-algorithm.

The CH-method cannot be. considered a serious alternative any more, because
of two reasons. In the first place it takes too much time, because it

must be done by hand. In the second place the representation is. far from
satisfactory. In NMS, even more so than in factor analysis, we must pay
attention to the structure of the configuration and not to the projections

on arbitrary axis (Guttman, 1966,1967T).



- 39 -

The conclusion from this comparative analysis is clear: for each problem
separately we have to make a .choice between the KR-approach with loss-
functiongzand NMSFOM. Which one of the two we choose depends on the
number of elements in L, on the nature of 2> , on the value we agttach

to & nonmetric error theory, and EBEEi%iy*glso on other considerations.

If the programs produce a degenerate solution we may even prefer NMSEMS.

7. Remaining problems

7.1. Algorithmic problems

There are a number of problems that must be solved before we can make

an optimal use of the variance algorithm. In the first place we want

to find an optimal way to choose the initial estimate of the variance
matrix, V(o). This may have a considerable effect on the speed of convergence
(Davidon 1968 p L09, cf also J8reskog 196T). The variance algorithm has two
additional parameters a and B , O < a < 1 < B, that regulate the rate

of change in the variance estimate within one iteration. In the current
version of NMSPOM we have teken as an initial estimate of the variance
matrix a scalar matrix: V(o) = 0I, so the first iteration is a steepest
descend step. Moreover we have chosen o= 10-3, and B8 = 10. The problem

is to find the optimal choice of a,B and 6.

Another problem is the influence of the value of gq.on the convergence

of the procedure. We may of course expect that taking g very small me&ans
that convergence will be less smooth and more difficult (because f(q)
behaves very much like a step function). A related problem is to find

the optimal way to minimize ¢. We may choose q very small at the outset,
but a safer procedure seems to be to start with a relatively large value
of q (because of the initial configuration it may be wise to choose

q eround unity), obtain the optimal representation for this value

of q and use this configuration (and possibly also its variance matrix)

as an initial estimate for iterations with a smaller value of q. This
possibility is build into the NMSPOM-program (as is the possibility of
keeping any part of the configuration constant throughout the iterations).
Of course the question whether the variance algorithm itself is an optimal
choice from the class of minimization algorithms is also an algorithmic

problem. In earlier versions of the NMSPOM-program we used SG-methods.
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Some of the examples in the appendix are computed with these earlier
versions. It is very hard to compare the computational efficiency of
SG and RG in this case, because of two reasons. In the SG-case we used
Q=2 throughout with fixed binary exponentiation, in the RG-programs q
was made a (short) float decimal variable., Moreover we made no attempt
to optimize step~size procedures in the SG-case, nor did we experiment

with the RG-parameters o and 8.

7.2 Comparative problems.

Another class of problems compares the results om NMSPOM.with those of
other approaches (this may include approaches to NMS we did not.discuss

in this paper such as those of Shepard, McGee, Sydow, and Young-Torgerson) .
We may use the output of each of the programs as initial configuration for the
other programs and see how there loss-functions are related, how well

the output of approach A approcimates a minimum in approach B, etcetera. In
particular we may compute the values of ¢ & the minimum of each of the
different loss-functions and compare them. This was already done by Coombs
(1966) for one single example. One of our relevant results is, for example,
that if we use the KR-approach in additive conjoint measurement, start
with metric (least squeres) estimates of the parameters, and compute

the calue Ttof (43) in each iteration, then the. optimal soclution in KR-
terms often has a 71— value that is slightly less than that of initial
configurafion. Other examples (from nommetric discriminant analysis)

also indicate that minimizing I' can easily result in.an increase of ¢

(a number of small errors is created to eliminate one large error).

7.3 Determinateness problems.

We start with known underlying configurations with varying number of
points and dimensions, compute the distances and comstruct L. In addition
we may add various degrees of random error before we compute the distances
used to construct L. Then apply the algorithm and compute a measure

of correspondance between the error-free distances and the recovered

distances (the cosine between the two vectors seems an appropriate measure,
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more so than the correlation). Studies of this kind have already been
carried out by Young (1968), and Sherman and Young (1968) for the complete
case, More restricted studies (error-free data, two dimensions) had already
been carried out by Shepard (1966),‘whilé Green and Maheshwari (1969)
investigated the conditional case. All studies used stress one, which

is unfortunate.

An important measure in the context is the completeness index n defined as
(141)

Obviously for small values of n, our salution.will.be.less determinate.

For the complete case without ties n = 1 for the method of triads
n=_—->,. (1)4'2)

and for the conditional case (without ties)

hn
n = . (143)
(n+1)(n-2)

In the Green and Maheshwari paper the effect. of:the number. of.ties

elements in each row of a conditional matrix was studied.(using.the TORSCA-
program with the primary approach to ties). In NMSPOM the ways to vary

the value of n are®of course more subtle than in other approaches. Moreover

we may study the effect of q on the determinateness of our solutions.

A relasted problem is the effect of upgrading the date on the solutions. In
the case of an arbitrary binary relation we may input the corresponding

L, but we may also find the best fitting partial order . first. Partial
orders may be converted into weak orders by a technique such as CDARD2

(De Leeuw 1968b), by using Goode's A-method (Coombs 1964), or Abelson

and Tukey's maximin approach (Abelson and Tukey 1963). Conditional matrices
can be made symmetric by averaging.. Responses in the method of trieads

can be put in numerical form by summing over subjects. In the Green and
Maheshwari paper the effect of doing things like this was studied on

a small scale.

Another very important problem is more or less specific for NMSPOM.



- 4o -

In the case of a consistent partial order some of the.elements of L are
'inessential', because the fact that they are included follows.by transitivity
from the inclusion of other 'essential' quadruples. If.the essential
elements of t are nonnegative, then it follows that the inessential elements
are nonnegative too. Perfect solutions for the complete L are also perfect”
solutions for the reduced L. In the compete case without ties the number

of essential quadruples is C (n,2) - 1, which is very much less than

Dn (this suggests an alternative measure of completeness: the ratio of

the number of essential elements in L to C(n,2)-1). We are interested

in the effect of deleting inessential quadruples frem L on the solution,
because this reduction of the number of elements in L considerably decreases
the time needed for each iteration. Moreover the effect can be expected

to be influenced by the value of q, although for all values of q it is

tfue that the values of f(q) for the reduced set are not a monotonic

function of those for the complete set.

There is yet another way to study the degree in which nonmetric constraints
determine the configuration. Suppose we start with an arbitrary
configuration X and a set of requirements which are satisfied by this
configuration. There exists a set of configurations (in Re"P) that satisfies
these requirements. How large is this set? Of course we limit our discussion
to configurations whose centroid is the origin, and whose root mean square
distance to the origin is some constant value. In the case that r = 2

we may restrict the set even further by requiring that the dimensions
coincide with the principal components. Te answer this question we do not
need any NMS-algorithm. Some relevant theoretical work has been done by
Abelson and Tukey (1963), and Benzécri (1964,1965). The complete answer

can be given by the complete description method of De Leeuw (1970).

7.4 Statistical problems.

The most interesting statistical problem for us is the distribution of
the minimum value of f(q) for fixed values of n, n, p, and q. In the
complete case ( n = 1) this was already investigated (for stress one)

by Wegenaar end Padmos (1968) for n = 7 (1) 11 andp =1 (1) 5.

Stenson and Knoll (1969) investigated the expected value of 8 in TOF

n = 10(10)60 and p = 1(1)10. Klahr (1969) repeated the Wagenaar - Padmos

study over a somewhere wider range of n and p. The principal result from
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these studies is that it is useless to devide the.range:of the loss-functions
into intervals and to label.these as 'fair-to-good','excellent', 'poor',
etcetera. The signigicance levels were strongly dependent upon the values

op p and n.
7.5 Conclusion.

A1l four classes of problems have one. remarkable aspect.in: common: they

must be solved by extensive sampling experiments. The reason is, of course,
that a purely mathematical approach to their solution (although theoretically
possible) very soon becomes extremely compliceted, and, somewhat later,

even prohibitive. Of course ultimetely a rigorous theoretical solution

must always be preferred to a set.of Monte Carlo results, but in some

cases one of the alternatives is simply unfeasible. Using the Monte Carlo
method costs an enormous amount of machine time, but at least it can be

done.
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Appendix I: Coxrechions

p. T, line 12 For ‘(of Kendell...' read
p. T, line 1k For '(of Kru-ial...' read
p. 8, line 6 For '1 5, < 0' read '0

p. 8, line 18 For '(of Rosizm,..' vead

p. 8, line 10 Tar '(of Beals...' read

p.30, line 28

"(ef Kendall ...'.
"(ef Kruskal...' .
SRRL

*(ef Roskem...'.

. - . oo, . Q.
Ty CHNE RS toos S A
p.12, line k Tor ' Lt 17 7 zead STy e
p.15, line 23 Tor '!f(c)wf(q’)l' reed ’!f(q)uf(q')l'.
p.18, line 24 ihe serlence beginning wish 'After each...’
rues be replacad by:' Afscr each minimization

approxd

ned into groups in which the

=ately equal. By

the certitlonings finer end finer we

apmrorinate ©_{g) ot formula (58), i.e. 6.7

I

p.22, line 25 Tor "(88)Y rend (83!

p.24, linc 28 v '"DPF coefficients' read 'loss functions’

p.25, line | Fop TO0A-T,0SA-IZ," read 'CIA-T, S3SA-IT!

p.30,line 5 Fox'{03)" read '(109)'

p.30, line 21 Toe 1059)7 read ' 110)0

v.30, line 22 Tew (17705 read (111b)!

p.30, line b Tom 1(100)7 raza 1109}

p.31, line T Tt (A Yteand (11507
ap (a3t read'(1i4)"

p.31, line iu 1 {for given o and v)' read '(for given
n end o)

p.32, line 1 oz (107)F rend '(118)°

p.32, line 32 Por 'eonvex defined' read vex r n defined'
For '{1072)% vead '(118a)"

p.32, line L Tor {1733 rend FO11R)?
For '(1ch4)" read '(115)°

p.32, line 16 For {(i07)" read '(118)°

p.-33, line 27 Tn +he mrueerelor of formula (124 'dcz'
should 1ond '3 2T

p.35,line b For °8,' read '8

p.35, line 28 For ‘A" rend ‘vt

p.38, line 15 Tor '(107)7 read *(i00)!

Ter (110} read '(i21)'
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Appendix I (vervolg)

p.38, line 21
p.40, line 1

p.40, line 20

For'rnd' read ‘'and'
There is no appendix with examples. Some
of the 5¢ examples can be found in RN010-68.

For'calue' read ‘value'.




Appendix II : Addenda:

IT.1:

The main parts of this report were written about two years ago. This
implies that it is not representative any more for the way in which

I write on NMS. One of the things that must be changed is the notation
Guttman's signature notation is much more compact and much easier

to manipulate as my (i,j,k,l)eL. And in the second place the
terminology has been improved in my more recent report 'The Euclidean
distance model' and in an unpublished paper 'The abstract structure

of scaling theories'. Those reports will be referred to in this

appendix as EDM and ASGST.

II.2:
EDM has a new derivation for the EMS-rationale, which uses signature

notation and is, consequently. more elegant.

IT.3:

In EDM we have derived very sharp versions of the SSA-I theorems.

The method of proof is similar to the method used in Lingoes' recent
MMPP-report, though more ccapact and elegant. £ more general and
more elegant v-sion is possible, using the geometrical language

of EDM. A semimetric is the samething as a metric, only it is not
necessary that the triangle incquality is satisfied for all triples
of points. In the space of all real symmetric n x n matrices the
semimetrics are a polyhedrai convex cone P.

The matrix D is defined by dij = \—éij, the ray T by Td={X|X = AD AX 20}
Moreover the £ ts EX are those real symmetric matrices whose elements
can be interpreted as qth powers of the Euclidean distances of a
configuration in p dimensions. Our representation theorem covers

the case in which there are p square matrices Ai, q square matrices Bj
and vecorsc and d with, respectively, p and q elements. The system

of linear inequalities and equations

Tr(Aix); c; i=1,000, D

Tr(BjX) = dj J=1,00.5a
has solution set S = Sxf1 SB with SX a convex polyhedron and SB a
subspace. Moreover §A is the convex closure of SA, and

Q= {X | Tr(BjX) = 03 j=1,...,q}.



Vervolg II.3

Theorem: If S{*P # ¢, D € éAn Q , then Er'l_1ﬂs #¢ . If
in addition S # T_ then E._, S # ¢

II.h:
Formula (131) is the " imit for n > » of
. 2 I
Sgmln) < V|- 2 cot o ,
n(n-1)
(max)

which is the value of S for n points equally spaced on a circle.

1

I1.5.
If we apply partitioning to Kruskal's 82 for the case of paired
comparisons of pairs of distances, then
Sﬁ=jﬁz(dij-aij)2+(dkl-akl)2 S
“ ' %(dij—dkl)2 e

if dij # dkl for all 1,j,k,1.

I11.6
A better definition of f(q) would be
9
[ zzrz (Itijkl| tijkl)
f(q) = 3 3
2 zzzzltijkl)

1 =1 i =1 ise. set ., =0.. .. -
with @ =1 if q < 1 and Q =V qothervwise. Of coursetaakl olel(dIJ 1

This improves the limiting behavior for q > «

vim £(q) = P8% Utisg [-8550)
q » 2 max ltijkll
Consequently f() = 0 iff tijk7 > 0 for 211 i,j,.k,1 and > O for at

©) = 1 +ther 1 .. .
least.ane, (=) = 1 iff there is a t13k1< 0
Thus f(») = 0 iff we have a perfect nontrivial solution, and f(=) = 1
iff we have : cijpcrfect,nontrivial solution.

In the terminilogy of ASST f(«) is a binary loss function



II.T:

S -
Let _ q |Q
Sg i ZZeij( ¢ (dij) ¢(dij))

- "
zz eij(¢(dij) - ¢rdijj)

with ¢ strictly monotone and ¢(0) = 0, and let Fi'be defined as

f(q) with tijkl = tijkl(¢(dij) - (dkl)).

Q q
Theorem: F; < S
© ¢ )
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