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—-<»siuciion

In ihis paper we discuss some applioa.tidns Vof the general techniques
discussed in De Leeuw (1971) to functional learning experiments (De Kler
Te Leeuw, & Oppe 1970).

Protzbilistic concent learning (PCL): I

A ihorouzh discussion of PCL-tasks can be found in De Klerk & Oppe (1966
De Xlerk (1968), De Leeuw (1968 a,b,c, 1969), Lee (1963, 1966), Lee & Ja

(1354}, De Klerk, De Leeuw, & Oppe (1970).
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Si<tuzation
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1: A stimulus spaceFX, can be identified with a p-dimensional BEuclidea

8pacCe.

2: Two multinormal distributions /ZA a.nd ?B on X with densities
N(x; /uA,Z) and N(x,/uB,i) The dlsperslon matrix 2. is nonsingula:
3: An element x € X,

: 70 hyp : : : " two i
4 The two otheses HA A and H}3 ?B' and the two corresponding

Ademsmns D and D The hypo*bheses have prior probab:.lrtles 7/1 and

A B’
| gy Ty + Tg= 1, 05T, Tg<te
5 A pay-=off structure
5y iy
Dy | A B
Dy Apy BB
with A, - XBA, Mpg = A5 >0.
1.2 S% a‘blstlcal analyvgig
1e Posterior probabilities
N(x, /uA,Z)

T ) %) - N<x,m~f-> TN ey 2] !

_ T (s /uB,Z) |
H (HB ’ x) = TAN(X;/KAsz ) + TTBN(X«?;»‘B?E-) ’

Alternatively




ir = log /'/A - log//B.

Dosierior expected pay—off

ny
.

(D, | x) = A T(E, Ex) + 3T (Hy 1),
P(Dy[ x) = AB;TT(HAI x) + AgpT(Hy 1x).

3:  Optimal strategy

p,/Dy if P(D, | x) Z P(Dy | x) iff
logit T(H, {x) = §'2 M x-p) vy T,
with' o o

| Y
?=10g

XBB AB
Aan _ABA

1.3 Psychdlogical analysisg

N Training .
The subject does not know the basis parameters /*A, Mg 2 y 77A. In
fact he does not even know that the hypotheses specify two different
mul-tinor‘mél distributions. In a training-run he is &hown a random
- 4 ‘ i ﬂ v ,. ]
sample from the mixture FA[A + FB,?B’ i.e. he is shown a number of
x € X and in each instance he is told: 'Here HA/HB is true'.

2 Bosic asgumption

It is assumed.that dﬁring training the subject builds up two 'subjec-
tive! mult;lnormal distributi;}ns on X with densgities N(x; myy S) and
¥(x; My S) and prior probabilities p, and Py, and that the subject
computes postérior probabilities in the usual way, i.e. '

logit p(HAx x) =>d'S—1(x -m)+ ey

where d, m, ¢ are the subjective analogues of é, Mo (), .

r—————— ' ——
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if a's"(x = n) <y - o

and g the utility of >\ .

Zvernt-matching gstrategy

(RS
.

p(DA\ x) = p(H, | =)

Logistic strategy

A% )

logit p(DA |x) = v'x + u.
The event-matching strategy is a special case, the all-or-none strategy
is énother‘(limifing) special case.

62 Criticism
Of course 1.3.2 is, essentially, a very primitive type of agsumption,
In 1.2 we described an optimal decision theoretical strategy, in. the
analysis we:describe the gubjects outpu£ by using a model of the same

mathematical form. We estimate the free papameters and compare them

with those of the ideal observer.

1: In a test;run we show the subject a numbér of eiements of X and ask

i himrin each instance to make either decision DA’or Dy on the basis
of the imformation he has accumulated in the previous traiﬁinghruns;

2: We suppose egch dimension Xp is divided inté hp’disorefe classes., This
means.thaf the dafa.cqpsist of an n, x h2 X vee X np x 2 table in
which ﬁhe'first p variables are factors corresponding with the 1inear

dimensiions of X and the last variable is a variate corresponding

.

with the responses DA and DB.

The use of grouping mekes the role of the multinormal distributions

(VY

comewhat doubtful. Actually, in later experiments, we staorted with

discrete classes and constructed discrete multidimensional probability




which merely looked like multinormal

fig
+iong, and which had the property that the optimal strategy

’l
o’
3]

iesived a nvoerplane cut-off girategy of the type 1.2.3.

T-ie>, r~rcoiheses, techniques

:  Ioiszlion |

Prom now on we Supposel1 * "p. 3. This implies that, for p = 3 for
example, We can write By for p(DﬁI %) With iml,seeyn § Jmlyece,m 3

<=1,++0.41. Moreover zljk = logit 1 ik Suppose xijk ococurred N'jk

*

timee in the tesi-run and the subject has made decigion A in nljk

out of the N, ., cages
ijk o

(A%
.

In order to analyze the data we can use the modified analysie of
variance techniques outlined by Gabriel (1963), and (assuming
repeéted independent trigls with constéﬁt probabilitjes pijk) algo

the full table logarithmic models of Birch (1963), ‘Goodman (1970,

1971), or the split table models of Bighop (1969). We have chosen
whmA_

seems particularly

for the logit model of 'rates'
appropriate here because of 1.2.3. (In fact I cannot think of any
spplication in which it is more appropriate).

Decomp051tlon

(OV)
.

It is well known from the analy31q of variance that we can write

(p=1): . i 3‘!{!‘1 + W;’
(p=2): .Zij =85 F %A + A + A |

v o c o . L
(2=3): 23507 Cig* Py +‘ *ik gt gt Ag Je* %
with o
Soi-Thy=L o
ER 3 bk k
§Q“=Tt.=£& ={u =§t =ju e 0,
5 13 y ik 3 ij 3 ik X ik % ik
—V»].sz%fc..}l'jkm% <1jk=0'

In the following table we have collected the linear dimension of the

gsets of parameters,vi.e..the number of degrees of freedom we loose if




N
e

wE 383 snese paramevers equal to a set of known constants.
Subset -~ Dimension
K& 1
» .
/4 ’ n-1
. v
A m-1
f 1
8 (n=1)(m-1)

A(n=1)(1~1)
(m=1)(1-1)
(n=1)(m=1)(1-1)

ey 0 e

o

I we require, fcr example, éijk = 0 for p=3 we loose (n=1)(m~-1)(1~1)
ifr and nml = (n-1)(m-1)(1-1) free pafameters remain to be fitted.

If we requiré'fui - 0 and K= 1 for p=2 we loose (ns1)+1 = n dfr andA

nm - n = n(m=1) free ?arameters aré 1eff.

Z7ootheses . |

In térms of the deoompositioﬁ of the preﬁious gection the most general.ﬁ
hypotheses we are intefested in is that a particular.suﬁset of the"
parameteré lies in a linear subspace of dimension g, which is not:
larger thanbfhe meximum dimension given in the table. Thus we can
require, ‘f'or eﬁcample, /.ﬁl = é?a,i + é‘bi, 'where a and b aré known

3

vectors of real numbers (lineariy ihdeﬁendent, 2. a; = 2:bi n'O). In
thig éase\welloose (n=1) = 2 &m-3 dfr. In the more general case

that we require that “Kj is a‘polyhomiailfﬁnction of degree ¥ gq of
=z given éetiof constants (with q % m—1)’We loose (m=-1) - q dfr. It

is obvious how to generalize fhis computation of the degrees of

Treedom to more general cases.

Dechnicue ' ‘ .
In order 1o estimate parameters and test hypotheses we can use the
movimum likelihood technicues of Dyke and Patterson (1952) and the

minimum logit chi-sauared techniques of Berkson (1944, 1953, 1955, 1956, )

1348}, Ve have chésen for the minimum logit chi-squared because they




=ms mome 2izmzle comvuiationzlly and probably more accurate in small

z= Zarxeon 1935, 1956, Odoroff 1970, cf however also Silverstone
~'. Tte ireoreiical work of Cart and Zweifel (1967) and the

sczo=iziions of Odoroff (1970) suazest'thaﬁ a good estimate of the

n
i1

lozit is 2, . log n /n with ni - , . %+ a . o =
= 23 4% € ijk’ 11k’ ith n13k = nljk + % and E:ij

. = niik + 5. A good estimate of the variance of the logit is
2. . = 1K§ijk + 1/£iik' By 'good! we mean in this context that the

gmzll-sample biasm ie usually lees than that of the obvious maximum -

e A

zelinood estimate, while the asymptotic properties are the =same,

crgecuently we must minimize

S B PN . 2

=~ o= JCAAn . & D, sq = 2, .,
- 13k( iik 13k>

over all free pé%ameters of the model. If v is the number of degreey
of freedom we have lost from the original nml ones, then we know that

tre limiting distridbution of Smin is fzz with v degrees of freedom,

- 2
%e slsn know that if model 1 implies model 2 then ?1 lg’smin and
. 1 2. . . : |
g = - ig '
. > Ve Moreover ~12 Smin Smin is asymptotically distributed as

'72(v -v.), and S, , is asymptotically independent of S;in' This

&~ 1 2 12
=rzalysis easily extends to systems of hypotheses which are partially

ordered by implication.

e “-zzanilistic conceﬁt learnin PCL)e II
L g ( ) . irwyern (17@
Same ~en°rallzatlonq of the work outlined in section 1 can be found in
Te Zlerk, De Teeuw, & Oppe (1970), De Teeuw (1971), Oppe (in preparation).
Z2.® Tzzerzlization

‘: Tne first obvious ganﬂrallzetlon ig 1o multlple decigion problems
moPe +than two hypotheses. In fact suppose that weyare dealing

wita ?1,?2,...,Hn. For the posterior probabilities we can write

. e Y
(=0 %) og T N(x5 pyy L)
Tre posterior expected pay—off is

(0. 'x) = 7. ",lh(H %)

b
[
it

Yzking the symmetry sssumptlon that A = ‘kk$;> Akl Afor all k £ 1
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2tz o=TTE = 2 (- T ),

T ™ ms2zzs trzt with 'resular' pay-—off ﬁe must select the hypothesis
%732 322 zizheet posierior probabiiity. If the prior vrobabilities

=c equal this is, of course, equivalent to choosing the
—Tozeeis which maximizes the likelihood.

Tz zl’—or-none and eveni-malching strategies are essily translated,

=== Zozigtic strategy is based on

(D, ix) -
lozg LS = (v. = v )%=+ (u_ - u).
S (p. k 1 k 1
p(D; §x)
1 . v
Coserve that more general logistic strategies are possible here like
(D, 1x) , '
1og mmT I = VX Wy
p(D. | x) :
with vkl = “vlk’ ukl = —ulk. The difference is that in th;a last

nodel additive cancellation conditions like
R I a Yem?
A T Vi T Vi
and no longer true for k % M,
An obviously equivalent model is

o1 o N ‘? b - b 4
z(z3k) = log p(Dkr x)/p(Dng x) vix t u
for all k=Ty¢ve,n~1. This means that our model ig simply the
conjunction of n-1 submodels of the type 1.3.5 with no further
complications because the parémeters are neatly separated.
The logistic analysis from section 1.5 can consequently be very
easily applied. We use the generalized logistic iransform
2(x3k) = log (Qn(Dk bx) + 1}/(2n(Dn§ x) + 1)

for all k=1,...,n~1. This gives us n-1 tables with Z-valueg, on which

n-1 separate logit analyses must be performed.




v

: gezzozi, ecually obdvious, generalizaiion is t0o take N(};f&A,.iA) and

T = .E,jzsﬁ zs hypotheses, with I % Z, in general. This makes the
zTwizzl cut-olf fratégy quadratic, and-the corresponding logistic
z=32l corsecuently must allow for quadratié (and interaction) parémetens

T-a go=-lications which result are not very essential,
T-= rexs logical step is to abandon the multinormal distribution
s l=cseszer. This makes the logistic model somewhat less natural,

T waa

wssestjusing the more general decomp081t10n models for nominal

is a third géneralization we do not ask the éubject to make a decision
as %o what hypothesis is’true; but we ask him: 'If this x & X ocours

¥ times in a sequence 6f randoﬁ_independent trials, hbw many times
w221 H, be true ?' Our prevmous problem was. the qpec:.al case with’

A
¥ = 1, This generalization is an attempt to get more information

Zr= crevious PCL experlmonts people s1mply asked:*What is your
cgterior probability that HA ig true 7° Responses were treated'as
17 shey were estimates of the pouterlor probabllltles on which, for /§
could S
exzmple, the 1og1qtlc transformation e=e be applied..Compared’ w1th
<ze procedure in the previous section ‘thig has a number of serious

- sziventages, and can not be recommende& any more.

= series f M Bernoullll trlals ag descrlbed the probmblllty of ‘é:;’

Tre ezsected pay-off of decision,Di is

t:"‘ ‘! “’;\’ﬁ !a (n‘laX}o

= m=0
-2 T - i llj> X = A for a1l 1#mvthen

= AT x) + A(1 —T(l EX)),




. w==ox Is zozmotoze witk TT(1 }x), the binomial expression,
Tz g generalized logistic strategy becomes

L . . : M
=I_ix =0} p(DA lx)m (1= p(DAE x)) mﬁ

- oty
=+ T3, (X o= vz + u.
Tz Tz= Zz%z can be collected in an By XN, X 4. X X (M+1) table
’ p
21X Sreguencies n(Dm i x).

Tzz first hypothegis of interest is
) is a binomial distribution for each x&X.

Tzrwzer nypotheses can be formulated within HB on the structure of

<Zs pzremeters of these binomidl distributions, which means that we-
are back in the situation discussed in section 1, and the binomial

. ) 3y '
Teremeters now replace the posterior probabilities.

Tz ihze case of binomial PCL maximum likelihood seems to have some

zZTzxniages over minimum logit chi-squared. We introduce the notation

z_ix, for p(D_]

- ol x), nm(x) for n(DmE x), p(x) for p(DA gx), z(x) fbr

czis p(DA §x), n(x) for zlnm(x), and_e(x) for. Z,nm(x)m. The
rTothesis is that z(x) is a particular linear function of the

zzrzmelers, il.e. we can write

P 2,
= o2(x) = La (x) B,

wish av(x) a known set of constants. For the loga#ithm of the LF we

- .
Tirxd ¢
o X '
~= - 2 n(x)logp (x)=

X m=0 .

it

= - z(x)e(x) + M ig; n(x) log (1 = p(x)).
==X ' CoxeX

= ig true we find for the derivatives

- 2 e(x)a (x) =M 7 n(x)p(x)a (x),
P . v + v
-V =X X X
—— == 7 n(x)a(x)a (x)p(x)(1-p(x)).
A x:X

7y : ;
=3 follows thet A is a concave function of the parameters, and that




wne TSl LSWSoT—LaATLSOon-VyDe working logit methods will be very

< -,

Ex Iefiez T X, = ec:;fﬁ. An obvious consequence of the binomial hypothesis

= 2.3 = o=},

== =-"Taws that a consequence of the hypothesis H of the previous

- - o a -
T2 ozt 3(x) = La-v(x) ;ﬁ)v

I<z=ci=z poinis for the jterative ML procedure of the previous section

I

zz= T2 Tound by anplylng the ugual minimum logit chi-squared methods

s-= sz=imating & on the values of 1ogit'§(x). wheye i) moeshimct

a2

.. Tmmiher generalizations result if we take gamples of 91z€>‘h Mathema~—

<ipz 1y this is trivial, because s sample of size r is equivalent to

z z=—7le of gize 1 from the p-fold cartesian product w1th the product

Zizsrisution.

117

Iz ?s*viofogically the true generalizaﬁibn is taking a sample of size T
zz==aziially while telling the subject that one cf the hypbtheses is
-—z 211 the time. The idea i® that the subject has to revise his

-ss<erior probabilities with each new element., Asymptotically this

crocedure becomes identical to the familiar bookbag & pokerchip

T amfa=z1 lezrpning (in)

vace X, can be identified with a p-dimensional Euclidean

T L ozmi—zinug 8
=TzCE.
- : “:i-i<a get Y of decisions.
i;  Ts» ezch x & X a probability distribﬁtion px(y) over T.

cey—cit funotion.‘k on ¥ x Y.

b




s  T_ iz z zemeralizations of PCL in the sense that the px(y) are not
sz=2csed io pe generated by applying Bayes' rule fo likelihoods énd
—-ior probebilities any more, ﬁhe’px(y) are given directly.

I: izein nx(v) must be interpreted as the‘probability that y is true
ireinfbrcedl given x.
I T-e statistical analysis of meotions 1 aﬁa 2 again is i&enticél if
we szcevitute the px(y) for the posterior probabilities. |
: Y2 <z % about functional learning only if {he probability distributions:
¥ vary smoothly with x, for examples thé'expected values ex(y)
-z 2 low-degree polynomial function of x, the variances are constant

L4

.meybe even zero). Or: the expéctéd &alﬁes ére.constant, the variances
ivcrease slowly with (the real numbers) x. Previous attempts to

ze =& éleér boﬁndary between functional learning experiments and
z==e> experiments satisfyiﬁg 3.1 have failed rather miserably. A

en% proposgal is to call all experiments in class 3.1 decigion
Zszrring (DL) experiments, and to speask of functional learning only

:= we have tried to make the rélationghip between x and px(y) smooth
srguzh, An experiment is a functional learning experiment onlj if

=z zave degigned it as such.

i2ipm learning (DL)

asion of DL—tasks is given in De Leeuw (1971). General approaches

- -
oy Ay
- - (LT RER A

cting models and analytic techniques are also descussed there.

~ 2 —z—cm magiricts itself to the case where both X and Y are finite, but

s ~z=ses no real loss of generality.

- e T




and 2.3.8 the

following sections

seem more appropriate.

5
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%2 IzT-oizce ke nofation pm(x) for p(Dml x), nm(x) for n(DmI x),
iz S 33| %), a(x) for 1ogit p(DA}x), n(x) for n_(x),

L
=z Serloam D (x) / M, and p {x) for n (x)/n(x) The hypothesis Hj,

L p_(x)
;: C':‘\I/ = log‘——ﬁ = ‘t(m) + z(x)

Tor all m=0,.4¢,M~1 and for all x& X. Here

).

_7 we congider the t(m) as a set of free parameters, the weaker

T.m) = log ( e log (m+1
i;tc:;.s1< H Qpecnf:.es merely the add1t1v1ty of the matrix Q. It
is equivalent’to. o
Z—'?: pm(x) - A{x)B(m) [{;:(xy m, |
i.e. to the hypothesis that pm(x) ié'a generalized power meries
i:giridution with finite'range. |
or ezch x € X the &m(x) are asymptofically normal ‘with dispersion
—z=rix 5{x) defined by J

(=)™ (3N + (2D (5, )" -0
s (=)™ (o e SR Cm=l-1)
" ~(n(x))™" @gxn” SR v (m =0+ 1)

0. , , - | _ (otherwise)

Tris is a tridiagonal matrix, which is easy to invert. Its (generalized

izverse is written as T(x). The modified chi-square measure we use

Z:Xdﬂ-vu>-ﬂ'ﬂw<<w;gwy-wf

_L\AL
T:oe Tlz) is T(x) with (nm(x) + 50 =1 substituted for (n(}c))"l‘(;nm(x))"1
‘s he H-vector with elements log (nm(x) + %) = log (nmf%)+ %),
:s he M—vector with all elements equal %o z(x). If we want
HP we must minimize S over z and t, and compare Smin with
TS a2V {(1=1)., If we set 1 equal to the known constants from the

= cection and minimize over z we have a test of HB with




IR

S

=<z e ireated by minimizing over the free parameters of

e =r zf=in
iz z=r=gz== consecuence of the hypothesis HZB is
-, :
- . = [
T = Xy P X/
Ay 4
T.: Tozit plx) = logit p(x).
] .

ral hypothesessabout the Logits cen be tested within Hy by
<z2 Tsz2” minimum logit chi s‘qﬁared ‘methods, in which we estimate

=z, =7 o{x) -}_"'m pm(x) / M.and the variance of the logit by

() n? = (L (x) m)?

n(X)g_}\i ;(X)U—;(X)QEQ

L
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