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S x ¥, and a real valued logs function on H x H.
Mhe ivws=wuciion of en DL experiment exvlains the nature of. the

cets S and H, and the n

ature of the function.ﬁz.

ia the result of N repeated indenendent triale

on S x 1 according %o 77 (=,h).
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n a particular h'E& H, and we give nim

¥ we sleo use a set of M elements from

s x % (not necegesarily a block), we algso show the subject the

fire} coordinates only,
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In cleassigal vaired agsociate learning S and ¥ have the same numbe
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of elemente and there is a one—to—one map . of § onto H such that

P

“T(s,n) £ 0irf A(e) = 2

In olassical concent carning S has more elementa than H, and thez

!‘»

ig o map W of 5 onto X such that %J(s;h) 4 0 iff Q5(3> = h.

Tn probabilistic |
agaih S hag more elements than H., For each h & f there is® 2
probability dietrivution ‘N h(s) on S,A and each he H has A nrior
probability < (n). ine T (s ) A (h)A,( 2)e

In nrob90111¢tlc ccalar concepdtd learning (De Xlerk 1968) we are
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really dealing with a MPDL experiment with a somewhat unfortunate

ingtruction.

(De Xlerk, De Leeuw, Oppe 1670) bvoth § anl
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wihers ond there is a gmooth functd i
definition of functional learning rung into
v what we mean by gmooth.

(Vlek 19{@) we are dealivg with

+the degenerate gpecial cage in which S has only one element.
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the usgual case) +hen agssumpt 3 1, 3.2, and 3.3 prediocy that

. .
such that n(s,h)’%'ﬁ i o {a) £ h.

The subiects geners (&urind toaining) o subjective probability
: } P . = n T ks
distribution p on S x H.end a real utility function u on H X H.

; ' ’ ject de h i
the utility funcition is regular. then the gubjiect responc s

b¢

. . = H o . a4 P s e .,
with probability p(u; =) if presented with s+

. . _ .
Fluctuations in P during test-runs are small (in DTObaﬂl¢1ﬁj).

| ) ' bability)
Pluctuations in u are alweye small (in probability/.

on i ' 1,1, 4.2, and
Tf the utility function is vregular then ass umptions 4.7, 4.2

. H.
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4.3 predicf n(s,h) ¥p(s,h) for all 8& S and hé
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‘ ion i i if v amber the
4 gimplification of the votation is possible if we number

i i 1! eg ag h, R R
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the Furction defined by the optimality criteorion
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" in De Leeuw (1971b).




"is a smeguence ¥ __ in «° such that lim o= 14
v - ‘ ij v
Vo34
I+ follows that the hypothesis H: Dy 5 = fij(£~)t4rﬁz&
ij ;

Freedom equations

.
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Suppose there iz o oven subset W of Buclidean k-zvace

i

. _ - .
and resal valued functions fij on 7 eguch that f

Suppose moreover that for the function §/ defined in 5.5
— ;

F&

the all-or-none strategy 3.2 and the event-maf

a2 zpecial cases (proviaed, of course, that D = and w o= A4 ).

a3

In general the multinomial BAN theory allows Tor two tvpes of

1] 1]

v

testing. We can tegt the parametric gpecification p. . = f..(g,)
within the géneral nultinomial model 5.3, and we can test
(hierarohical) hypétheses about & within this ﬁpecification.
Exemples are given in De Leeuw (19710), and in‘artioles by

De Klerk and/or Oppe on probabilistic functionai learning and

multinomial probabilistic concept learning which are being prepared

for publication,

Congtraint equationg
Suppose there are functions fk (k=1,,;,v) on the set of all

stochastic 'n X m matrices such that‘fk(T?) = 0 for all k, where

—

T stapds for the mairix fﬁ(hjﬁ si).

Suppose moreover that fk(Q) = 0 for ail k if Q is the stochastic

. N . . e L AT
(binsxy) matrix defined by the function W of 5.5.
¥

Agein the ‘*objective’ versions of the strategies 3.2 and 4.2 ave

special cases of the hypothesis H: £ (P) = 0.
Lgain we can test within the hypothesis discussed in T.3 by

of equations implied by (but not ecuivalent

m .

oonéidefiﬁg gystem
t0) fk<P>.= 0. Examples arve again given in the references nentioned
in,6.4.
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