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Estimation in latent Class Analysis
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Iz <=ig paper we iniroduce several different methods for estimating the parameters

of the discrete latent class model for manifest dichotomies,

1

Tne nodel is meant for n different m—dimensional binary variates Zi' We assume
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It follows from LC1-LC3 that
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It follows from LC1—LC3 that
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Obviously the p(J) can be estimated consistently by
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ie nopgingular with probability tending to one. Suppose moreover .
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By using the 'O(J) we can estimate gv bg and its inveree Xvabﬁ . The statistic

AL 3 P - pENGE) - 20

a=1 b=1
can be uged for estimation and testing purposes. The estimates of é%q and TT? will
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for all a=l;eee47Ty but in general they do not use all the information in the data

and they are not efficient in the complete model 1,C1-LC3, If we use the restriction

RQ7 only, end we forget about RQ2 and RQ3, then
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By changing the latent clase frequencies according to
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If we change the latent marginale of item 1 mecording to

-1 e

Wedfind

%:/S DAt e AWA,

with IEPRNE NIRENRE |
2-0, 2 Z ) - S0) b (Y

o~




*= .= B8 i s . P05) py(%) b, (1) @y (1)
et s Y = ab b '
a=1 b=1 TS -!Tt
1 1
with
3 () {1 if1ET,
l = ~ .
a 0 otherwise

The computational procedire agsociated with these approximations is to minimize tj
for given latent marginale Tfi over the é%s. If ég gatiefies the resitrictions

3%1 and RQ2, then we must require
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gsatisfies the inequality restrictions, then it ie the optimal golution. Otherwise

we must use quadratic programming.

Other subproblems minimize TS over "ﬁi with all ”ﬁ§ with jﬁ# 1 and all és fixed,

We use the restrictions RQ3.
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patisfies these restriétibns it is the optimal solution. Otherwise we use quadratic
programming,
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The developments in the previous section makes it desirable to have @& fast and
preliable method for solving the bounded variables QP problem
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i=g1me, without loss of generality, that

for all i, Start with a feasible xo, set k = 0, Let
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Let A be therpart of A formed by all indices i€ T(k). Then the solution to the
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unrestricted subproblem is

ka..A;(gk

and the solution to the restricted subproblem is
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If 1;3;2 0 then stop, xk is optimal, If 'b: < 0 then-

Ik+1 =Bxk.
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We set
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This procedure ends in a finite number of steps (W.I. Zangwill: Nonlinear
Programming, section 8.3-, Englewood Cliffs, Prentice Hall, 1969), Observe that

the major computational work is the inversion of Ao If Tk+1 = Tk v ( m? s then

the step from A;' 1o A-I:M is gimple. In more complicated cases we can still uee

the Gauss-Jordan method efficiently (i.e. we can pivot in a simplex-like tableau).
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Taite k¥ € Zm arbitrsry and define 71{ = 7’“ - .{k} o Take J(¢ ;k and L C’;k
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These are simple asymmetric eigenproblems which can be solved for Ck (and fo?
éq‘and AL)f The estimates in this sécjion are (Fisher) congistent, and also
aéymptotically normai. Théy generalize the 'baéic solutions' given by

Lazarefeld and Henry (1968, p 52 and further). Other consistent (but not
necessarily asymptotically normal) estimates are given by‘Mooyaart (1973).
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We wfoﬁe an APL program LCA for the procedure of gection 3 (without incorperating

the inequality constraints)., The exgkle usred wags the two-clasgs four-stimuli

example from Lazarsfeld & Henry (1968):
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He gemerated raundom data on the basis of this model. The results of the runs

are given below. Pipet column: we used either 180 sete (all sets of one and

+wo stimuli) or 14 sets (all eets of ome, two, or three stimuli), or 15 sets
(211 subsets). Second column: 1, the size of the random sample. Fifth columns
nunber of cycles (a cycle ig a single step which changes P and m steps that
change the M ) We always uced the configuration on the basis of which the
data were generated ag a starting point. The precision (stop criterion) is the
maximum change of any one of the parameters in a cycle. It is given in column
8, In column 7 the number of parameters that converoed to values not in 45,{‘
ig given, and the CPU time used is presented in column 6 (this CPU time includ

the time used to consiruct the random qample)

Ag a preliminary conclusion it seems that a batch version of the program in
PL/I or Fortran could be practical for 1arger sete of stimuli. The unrestricte
versions can be used if the gample is large enough. A very good starting
configuration is needed (some runs with random starts proved this). If the
pumber of ﬂubﬂetq ig relatively large compared with the number of sample
elements we shall have to use the restricted vorﬁlon. In thie casge the aﬁymntr
tic distributional theory has to be modifled (formula's for asymptotic disper-
cions of the egtimates in cection 5 and in the restricted and unrestricted

versions of section 3 will be presented in another paper).

10 25 x2 - 1.272 afr = 1 NCIC = 89 CPU = 2 TIMPR = 2 EPS = 1E-3
10 50 X% = 7.238 dfr = 1 NCIC = 13 CPU = 7 IMPR = O EPS = 1E-4
< 100 %% = 461 dfr = 1 NCYIC = ‘5vCPU = 7 IMPR = 1 EPS = 1B-3
12 100 x2 - .500 dfr =1 NBYC = 5CPU= 7 IMPR = 0 EPS = 1E=3
10 250 %% o 1.645 dfr = 1 NCIC = 7 CPU = 36 IMPR = O EPS = 1B-4
10 1000 X2 = 2.516 dfr = 1 NCYIC = 8 CPU = 114 INMPR = 0 EPS = 1B-4
14 50 X% 210,431 dfr = 5 NCIC = ? CPU = ? INPR = 3 EPS = 1E-4
14 100 x2 . 8.848 dfr = 5 NCYC = 37 CPU = 7 THPR =1 EPS = 1E-4
14 100 X2 2,760 dfr =5 NCIC = 47 CPU = 108 IMPR = 1 EPS = 1B~4
14 250 x2 = 4.165 dfr = 5 NCYC = 23 CPU = 87 INPR = O EPS = 1B-4
15 100 %2 = 2,219 dfr = 6 NCYC = 24 CPU = 7 INPR = 1 EPS = 1B-3
15 250 %2 213.290 dfr = 6 NCYC = 32 CPU = 113 INPR = 0 EPS = 1E-4
15 250 %2 = 4.760 dfr = 6 NCIC = 18 CPU = 2 TNPR = 0 EPS = 154




