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Yonte Carlo studies ueing Kruskal's Stress (formula one) have shown that the
meximin value of S (maximum over all possiblebda%a structures, mininum over ali
pogrible configurations) is strictly lese than unity. In this paper we give a
rigorous proof of the fact that maximin S {f %-E?: and the existing Monte Carlo
results show that thig bound certainly canno¥ be improved much; and is probably

sharp. (even if we take the maximum over the much smaller class of untied daia

structures). Improvements of +he bound which take into account the number of

points and the number of dimensions n and p are congidered. From the results

of thie paper we conjecture that maximin S§ = Ap) = &(n,p), with ¢ (n,p)
-

. . . . — .
an increasing, nonnegative function of order 0(n ) for each fixed P, and

) 5
fg(p)'a decreasing function of p of order O(p =),
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where the dij are distances between the endpointe of n p-dimensional vectors
whose coordinates are collected in the n X p matrix X, and where *he dij must

sptigfy linear inequality restrictions of the form
¥

Cipaldiy = dg) > 0

Summation in the formula for S ie over all 1 £ i < J € n, the signature
‘fng1 in the inequality constraints is a given set of real numbers., Clearly

£y — .
the vector djj’ with all elements engudl to the average d of the (2) distances,

gatisfies these order restrictions. Congsequently (””’r’ww

v _ A\
[ o =2 VA {I@ é(vdx
sP(x) & (%) & fﬁi*(&ij““) . m;’ ' 2:__,5 1
" I5a? z t L0
ij
and.
m}:iin sﬁ(x) < m}jin Tﬁ(x),

where fthe minimum ig taken over all n x p configuration matrices X, This is
the basic inequality we start with. It implies,that, for any configuration

matrix Y,

min sP(x) £ 1°(v).
b 1 n
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In this paper we compute Tﬁ(Y) for gome interesting special cases, and we make
e . D .

some general comments on the problem of minimizing Tﬁ(X). Of course T is the

ratio of the standard deviation a.? the root mean square of the distances. It

ie a coefficient of vsriation, and configurations with small values of T mustl

have their digtances ag eqgual as posgible (in fact for the regular simplex
1 : g
. 22 . ) - o r«f}n*‘i . " 3 .
in »n - 1 dimengiong the value of ¥ ig equnl to zero). Coungecuently for our

1 cases we investignte vegular counfipurstiong with large tie-blocks of
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2 &2 i< 2 2 2.2
2 ldﬁré—;‘_g;dijw%}:, (1~a)==n§:‘,i-(}ii)-==
j=1 i=1 ¢ C =1 i=t j=1 il i=1 i=1

= % nz(n«é )(2n + 1) - %~n2(n + 7)2 = é% n2(n + 1(a - 1),
and :
n o j n J B, _ -
7 Y= % *(3-1) = £ -5G+ 1)
j=1 i=1 j=1 i=1 j=1

PR 2 1

= 2} I3 nln + 1)(2n + 1) = 3 (o + 1)} = Z n(a + 1)(n - 1).

Thug

hoos 1
d = 3 (n+1),

and substitution of these resulte in the formula for Ti gives

T;(r).;\j““ 2 ’V’"’u -

Consequently T;(Y) increages with » to the limit 33»1‘,5’3 We have proved the

1

_.2 .o %";jpg"i' O(n~1)e
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chain
3 ooy P
nin S°(x) € min 51(x) € min T(x) ST (¥) = \[T5E <1V3,
n n n n 3n 3
X X X
An importent implication is that if we apply Krugkaltls methodology to a
complete get of dis 91mllar1tle° (using qtrass formula one), then any stationar
value larger then MXJB .57735 certainly corresponds with a local minimuwmne.

This is true for p = 1, and it is a fortiori true for p » 1. It is aleo

iprelevant which one of the power metrice we use to compute &ij’
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sam= methode as before we find
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table of TE(Y) ig given below,

ir difference with the previous example is that both the average distanc

sequences, In fact

) 2/, 2
b ‘l‘n(Y) n Tn(Y)
2 0 10 0.337854 - 331432
3 0 15 0.371315  2.362
4 0.169102 20 0.387654
2 0.229753 25 0.397339 2 30«
6 0.267307 30 0.403747
1 0.293122 40 0.411705
8 0.312013 . 3p 8% 50 0.416452 3
9 04326452 3209 75 0.422749
n T2
n
1E2 0.425885
1E3 0.434305
184 D.435143
155 0.435227
186 0.435235
1E7 0.435236
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Tz 2 » 2 we do not have a complete sequence of geometriocal examples, but we

. . D . ’
TzTs pomTutasd TA(Y) for some of the regular polytopes discussed, for example,

1
[#7]
[}

smmerville (1929/1958, p 179~185). The results are

=3 ,'
3 2. 127813

“eirzhedron | T =0 ’rs s - ?
Y

scishedron ! ‘I‘g = 0.151249

cube Té ~ 0.202805

icosahedron T?E = 0,242322

dodecahedron ~ T;O = 0,279158

D=4 .

5‘—(2911 ‘ T‘{; = 0

16-cell , Té = 0.135583

8-cell ' %'fg = 0.211457

24—cell T’§4 - 0.229238
4

s (3 2 p s
600~-cell 1T2O 0.

Using a rather conservative extrapolation rule we conjecture thet

min T3_(X) g 03331
x ¥

min 1H(x) & . 265,
X n

for all n. Thie can be compared with our previous resulis

X) & ,436,
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- === previous sections we have studied examples in which p was fixed and in
- veried., We now consider an exzmple in which n and p vary together, The
——i:zznsional octahedron has n = 2p vertices with coordinates & X where e,
z»= *he p-dimensional unit vectors (the rows of the identity matrix of order v
— . . : ' 2 . . s 1

~+is obviously implies that among the dij with 1§ i< j € n there are n

. , ; 5 1
slements equal to four and $un(n — 1) = 2n = $n(n - 2) elements equal o two.

=1 1i=1 J . y
2 Jd 2 > Yot 2n (h-2) 7 dn
3. a7 = n(n~2) + 20 =2 1 |
i=1 i=1 * | = 2”(”)_2)
R L . ¢ g DEmSmeemiiioy ’
Zn \j %2:? E? Poie D -
Tn(‘l)w {3*2({2, - @ Ejin"-i 30(1’1 ).

Consequently T converges (to zero), but covvergence is slower than iv the
examples with p fixed, Observe : 3

d = gl?+ O(n“1).

Convergence of T to zero is due to the fact that almost all distaunces are

o . . Tl -1 |
equal to % o (4the proportion of distances not equal to {2 is O(n ') as well).
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o7 A(p) we interpret it as the expected value of the sgquare root of = proporiioen
"in a Binomial model with probability of success equal to $. From staunderd large

=z Ti= trevicus section we studied an example in which both n and p varied
T suis o2 way that their rates of ivncrease were equal. We now study a case

iz wzick 1 ircreares faster than p (if fact faster than any vpower of p)e.
' 2

vé?tices of the unit hypercube in p dimensions., The n

{
- - . { .y - jo]
sTiersd distances assume the values 0, 1, ... , p with frequencies (b)Ep,

i

§32p, ceeny (g)Zp, Thus

hel 3 o) ‘ |
< - L2 - p~1 w= /Dy .. ¢ f ) » j
~ = Qi . 2 «-;?m (k) ke g{ ( i ) P < ‘

=1 i=1 Y k=0
“rom the theory of the binomial dietribution
n

D 1 )
=0 E - - T Oy,
=0 K P 2P fp K

e
#

3 . .
3 af . p 2PE | |
i=1 T

For the sum of the distanceg we find

2 g R
S Foa, =21y l;k ()
0

1 j=1 1 k=

'8
(|

A closed form for this sum does not scem ¢ exist., For the asynptotics we

define

D4 e

Alp) = 2\ (1) (37,
k=0 P f
n+1
3(p) = “f%~—- .
27 -1

Sy substitution we find

) = \[1 - 00200

Of course B(p) decreasss +to 2 faster than any power of p. To evaluvuate the 1limit

f oy RO Par-y I ~1
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cllowing table geems useful,

e A(p) B(p) Tﬁ(Y)
4 0.5 4 0
2 0.603553 2.,666667 0.169102
3 0.647692 2.285714 0.202805
Z 0.669171 2.133333 0.211457
5 0.680585 2.064515 0.209102
5 0.687134 2.031746 0.201757
7 0.691173 2.015748 0.192452
8 0.693839 2.007843 0.182758
3 0.695709 2.003914 0173449
10 0.697091 2,001955 0.164862
20 0.702155 2.000002 0.114509
30 - 0.704062 2.000000 0.092706
40 0.704843 2,000000 0.079963
50 0.705304 2.,000000 0.071353
100 0,706214 2.000000 0.050223

Cbserve that we have not developed the asymptotice intterms of the number of
points, but iv terms of the number of dimensions, The impression that the
convergence in thie example ig of the same order as the convergence in the
; . ; . - 0
brevious exXemple is completely wrong. In fact we find that gcaling 2

. . 0 . . . . . L
(1.e. more that 103 ) pointeg in 100 dimensiong can e+ill give stress values

of Qt05o




ave established a number of bounds based on the inequalities

v,

3 T°(X) ~ TE(Y).

¥z Zi3 ro= atiemot any systematic theory for fixed D >- 2y mainly because we
i1 r27 rave g satisfactory theory of equal spacing in p » 2 dimensions (1
¥Io-2 coznjecture, however, that a more syetematic use of nonlinear coordinate

FFETems guch ag multidimensional polay coordinates would make guch attempts

=zfzivle, MHoreover for none of our choices of Y have we proved that

re have not at all considered the question whether

ey min aP = mi 'Y
TeX m;n Sn(X) m;n Tn(X),

L

s

. ; . . ) 2 .
¥Zere the maximum ig taken over all posgible signatures éijkl' In +this
fection we give some fragmentary results on these questions.
<7 the clage of signatures we admit congists of al1l poggible four dimensional

structures of peal numbers, %hen any signature with Gijkl = eﬁLlij » 0 for

)
"3

eg

211 i,3,k,1 implies that SE(X) = T;’(:{)' for 211 X. For this class of signatu

. P . ‘q- . . . N
tound based on Tﬁ are sharp (in multidimensional scaling terminology this is

tZze case iy which the dats contain arbitrary many ties and we usge semi-gtrong |

»

nronotonicity, or, equivalently, the gecondary approach), If Gijkl = - ifk‘i

wda

L

dijkl A0 for all 1,3,k,1 (if the data do not contain ties), then the
conmputations of Lingoes and Roskam (1971, table 10) show that

zin §1(X) <€ 0,170,

X

while the analysis in section 2 gives

win Thx) < 08409,
r': o

woich is quite a long way off. It seems obvious however +that guch a large

Siszcrepancy is at least partly due to the small number of points, and other

svilznee (fronm Hontela




oo o flair (1353, feble 1), Entry (n,p) in the table is actually a lower

C.471  0.218 . 0,096 0,000
C.477 0.212 | 0,101 0,025
0.470 0.260 0,122 0,079
0.498  0.267 ' 0.147 0.096
0.445 0,288 0,178  0.131
0.505 0,300 0,207 0,152

bty

LI ¥

£

TR L

= 0.56 0,38 0.30 0.24

-Ze lower bound in the final row is derived from Stenson & Knoll (1969).
Comvparison with the values we computed in the previous section shows that our
tounds cannot be improwed much, especially for larger values of n (or large

vzlueg of n/p)- Agymptotically the bouﬁds_seemito be sgharp.




memomzs mizimizaition of T'
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nly the firvest (quadrstic) restrictions

. N , . D .
study the behaviour of the function TA(X) ig ‘to compute

firet order conditions for a stationary value. OFf

ig equivalent to maximization of

we find the conditions for a

value. They "can be written as the matrix equation

=X 7,
A= {a.. ie defined by
1]
-1 . : .
- d, . if i j
f ij % Jr
= =f#’ 3 -
- Lz.d‘. if 1= je
#. ij
1
Tollowes that A is pogitive semidefinite of rank € n ~ 1 for a2ll possible
ices of X, Moreover A ig doubly centered, which means that we can suppose

ot

and ¢

na

check:

m -

»ot

ory

loss of generality that X satisfies the second set of conditions we did

in the derivation. The optimal A must have an eigenvalue of mulfiplicif

ongequently it is not very surprising thét the optimal A gives regular

we could uge these gtationary equations to compute optimal values of

to check if the configurations we have chosen correspond with
o=

vy vales, wo do not do this gystematically. It is comparatively easy

L%

that most of our configurations do satisfy the COﬂdlilOnh, but this

e they correspond with absolute minima. Perhaps more satis-

prove that

the i

m

results could be obtained if we uge what little convexity re

more satisfactory characterization of the sva

cond. order

fe)

o g

K

1l results could algo be derived from th




zmiiticns, Again, as in gection 7, we rvemark that progress could possible b

Pt
t
3]
|
']
&3
1
U3

vendoning the Cartesian coordinates, and by studying the problem

T —--ilinear manifolde

I% iz, Lowever, intereﬁting to observe that iv the one~dimensional casge the
/

=iiz=7ilon is besically much more simple. We suppose, as in section 2, that

f
|
I,\( Xz <""oo { ch NOW

j’ (x, - :sc.j)“'i if 1%,

aij = ) —1
(x, - x.) ifr i & i

3 i
Comeoquently
- i1 x, i~1 x, n x; n_x,
Z e Fm e e Y + S S e
- 133 e X, = X, : X, - X, e X e X, = X, - X,
=1 J=1 71 J J=1 71 3 J=i41 7] i J=i+1 T i

2= (i -1)=~(n=1)=2i - (0 + 1),
Consequently the unigue solution of the stationary equations in the casge D=
is obtained by taking x proporitional to the centered rank numbers, i.e.
eguall& spaced. Thig corresponds with the absolute maximum of Hi(X), and we

Fzave proved

o 1) (X) = ’T %—1?
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= T2 Tuite misleadin%. In Honte Carlo research it has already been conjectur:
%==zT —=x nin Si(X) < (Wagenaar and Padmos, 1971, p 108), the results in’ this

=D=T zive a rigorousg proof of this fact.

Iz <-e second place the idea that SFORMY may be systematically biassed towards

#r2=11ly spaced configurations in the no-struciure case may be interpreted ag 2

tZszdvantage. In this context we observe that Stress (formula 2) can be defined

¥

Z=
«P
- 5. (X)
E:mu) = .
(%)

f
mn
m
o
(e}
=
n
ot
=
B
ot
ot
[
L]
@
pie]
5
3
=
2
2
[
<
(0]
5
2
5
o
}-—J
o
- 0
0
I
]
g
e}
d.
e
(o]
B
D
b
o
I..J.
o
[£4]
(_}J
]
}-J
fo]
Q
0
[/
’-—'-
o'
‘-—l
)

%o SFORM1 because of this effect., This seems a somewhat too hasty conclusion

1"

ow., Az far as there is real structure in the data the distorting effect will

e sglight,

Ciher Monte Carlo results can also be explained (or made more easily understan-—
2zble) by our results. Svence (1970, p 69) dicovered, for example, that the

zezan of SFORK2 (qu given level of error, and for given number of pOinﬁs) did
zot change as much as the mean of SFORH1 when the dimensionality of the space

- b

w28 incresased, .
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