SMOOTHNESS PROPERTIES OF
NONMETRIC LOSS FUNCTIONS
Jan de Leeuw¥

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The smoothness of some of the more important loss

functions used in nonmetric scaling is investigated. We

prove the following results

Twice
Loss Function Continuous Differentiable Differentiable

Kruskal's Stress Yes Yes No

Guttman's Phi Yes No No
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0: Introduction

In this paper we give some simple examples
concerning behavior of Kruskal's stress and Guttman's phi
in the case of'a linear measurement model. The examples
can be used for teaching purposes, but they also illustrate
some general facts about continuity and differentiability
of the loss functions.

1: A First Example

Consider the linear model

_ T . - _ -
-1 -1 91 Yl —61—62
1 -1 92 ) Y2 ) 61—62
-1 1 Y3 —el+62
L 1 1 i YM 61+62
We desire
Y1 < Y2 < Y3 < YM'

Without loss of generality we restrict ourselves to those

§ satisfying

#0n leave of absence from the University of Leiden, Leiden,
The Netherlands.



We define

1 2 2 2 2
* = ~Y¥ =V ¥ ~Y % -
S*¥(0) TE{(Yl Yl) + (Y2 Y2) + (Y3 Y3 + <Yu YE) },
with Y*¥ a permutation of Y satisfying

* ¥
v¥ < 8

v# Y
.<_ 3 i ﬁ'
We also define

s9e) = %{(YI-YS)2'+ (Y2-Yg)2 + (Y3-Yg)2 + (Yu—Y8)2},

with YO the (unique) vector satisfying

0 . 0 0
Y, < Y5 < Yy <Y

0
3

and minimizing so(e) for fixed Y. Both coeffilicients vary
in the closed interval [0,1].

Moreover,

0

s9) = 0 iff s*¥(e) = 0 1iff YV = y* = v,
y

1Ff ¥, < ¥, < Yo < Y.

1ff 0 < 8, < 6,

3



and
* = ¥ = -
S%(6) 1 iff Y Y 1iff YM < Y3 < Y2 < Y1
iff 62 < 91 <0
and
%) =1 irr ¥0 =0 1ff Y <Y

¢ ¥Y03,07 < Yra,21%0u1 £ Y0,2,3)
A
r‘iff‘ezioﬁel+e2io

We use the notation Y . for the average of

[1n,...,ip]
Y Yi . Table 1l:1 gives the different regions in

i-,...
1’ 3 p
(61,92) space with their different characterizations. Fig-

ure 1:2 gives a plot of S¥(6) using polar coordinates, and
1:3 gives a similar plot of so(e). From the tables and
figures it is clear that both functions are continuous.
Moreover, so(e) is continuously differentiable, while the
derivatives of S*(6) do not exist at the points %ﬂ, %ﬂ, %ﬂ,
and %ﬂ. The second derivatives of S¥(8) do not exist at
all eight "special" points and those of so(e) do not exist
at %ﬂ, %ﬂ, %ﬂ, and 2m. The concave appearance of the func-
tion is deceptive; 1f we had broken open the circle at m,
then the one-dimensional plot would be convex-like. Of

course, this example 1is unrealistic for varlous reasons.



In the first place, a perfect solution exists. In the
second place, there are no real local minima except the
platform of ‘s*(6) between %ﬂ and %ﬂ and between %ﬂ and %ﬂ.
In real exaagies, perfectly flat areas like this usually
will not occur. There may, of course, be a considerable

region with S*(8) = 1 and/or S°(8) = 1.

2: A Second Example

It is clear from Table 1:1 that the linear model

-1 -1 ®1 Y, =6,-6;
11 2 _ || - 81%%;
6.-6
] 1 -l._ Yu 1 "2
with requirements
Y1 < Y2 < Y3 < YM

does not have a perfect solution. The relevant information
is contained in Table 2:1, and the plots are drawn in 2:2
and 2:3.

The results are quite different in several
respects. In the first place, there are a number of sta-
tionary values. The functions S¥(9) has local maxima at
%m, %ﬂ, %ﬂ, local minima at %ﬂ, %ﬂ,(é), and saddle values
at m, 2m. The function is not differentiable at all these

minima and maxima. The function So(e) is more smooth. It
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has a local maximum at %n, and two local minima at %ﬂ and
%ﬂ (both local minima are also global). It 1s continuously
differentiable at all points, but at the special points the
second order partials do not exist.

3: Some General Considerations

The examples in the previous sectlons illustrate
some general theorems. Define the following general ver-
sions of the loss functions (compare Kruskal, 1964 a,b,

1965; Guttman, 1968).

n
I (65(8)-09)°
SO(B) = i-ln -
¢, (0)
1£1 1
° 2
I (6,(0)-0%)
S*(e) = i=1 -
I 62(0)
i=1

Here ¢i(e) is defined by the measurement model we are con-
sidering. We assume that ¢i(6) is a continuously differen-
tiable function of 6e¢6. As usual ¢g is defined as a set of
numbers, satisfying the order restrictions in the data, and
minimizing S0 for fixed ¢i(6), and ¢§ is defined as a per-
mutation of the ¢i(e), satisfying the order restrictions,

and minimizing S* for fixed ¢i(e). In general, ¢g solves a



quadratic programming problem of a special structure, and
finding ¢§ is equivalent to solving a linear programming
problem with a special structure. It easily follows from
this remark that both so(e) and S*(8) are continuous func-
tions of © for all points for which the denominator does
not vanish. In fact, we can prove more. It also follows
from this representation that the numerators of so(e) and
S¥(p) are convex functions of ¢i(e). If the ¢i(6) are
linear this implies that both numerator and denominator of
SO(B) and S*¥(8) are convex functions of 6. Consequently,
they are continuous and differentiable, except possibly at
a finite number of points. By using a general result of
Rockafeller (1970, corollary 26-3-2 and the remarks follow-

ing it) on the differentiability of the mappings

s(x) = inf |x-y|®
yeC

with p > 1 and C an arbitrary closed nonempty convex set,
we find that the numerator of so(e) is continuously differ-
entiable. Consequently, SO(B) is continuously differenti-
able at all points where the denominator does not vanish.

A more direct proof of this result has been given by
Kruskal (1971). In general, the second partilals of so(e)

and S*(0) need not exist, even 1if the ¢i(e) are infinitely
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differentiable. For computational purposes this is, of
course, not very important, but it certainly affects the
applicability of existing convergence proofs for (modified)

gradient methods.
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Comments on

QW svooTHNESS PROPERTIES OF NONMETRIC LOSS FUNCTIOBS
by JAN DELEEUW
for the author. June 20, 1974

Joseph B Kruskal

In two key places, the author fails to explain what-
the central
point of importance.
The first of these is really vital, since it coneerns
the central point of the whole paper., In the introduction,

the central point concerns the nonexistence of the derivatives

at the desired optimum_- configurations. Nonexistence of the

derivatives on a set of measure 0 could be of very little importance
to a practical numerical method. Nonexistence of the derivative

at the desired solution, on the contrary, has very strong practical
implications. In parttcular, it means that the most common approach
to optimization, which involves finding a place where the gradient
is zero, will at best work poorly, and - depending on the
circumstances may not work at all.

Associated with this failure of explanation is a much more

minor one, which is however still important. —

is something which can occur in many ways. — Where possible,

it is- far better to refer specifically to the manner in which

the derivative fails to exist. This is indeed possible here. -

~



ombining this with the preceding,-l would urge an

introduction which sterts something like this:

. approaches
] "Most of the computational in the nonmetric
® | Most of the com -

scaiing area completely ignore the possibility that the

sharp

loss function — is not smooth, such as at a/ridge

possibility
or valley.— This/is of substantial practical

importance, since optima which occur at such points
efficiently

- cannot be — located/by the most common
approach to optimization, namely, finding the zero of the
gradient function, -
- and in unfavorable cases— may hot be located
%ﬁe shall show that_s
Guttman's rank-image method - usually _ has its
optimum value at such a sharp ridge; and that . this

difficulty is —intrinsic 8 v the rank-image
oscidalations which have been

method. This explains certain

been observed in the Guttman-Lingoes SSA programs. ~

~ 2 Our general épproach,- which rests on

some powerful theorems, also yields much more simply the

theorem of‘ Kruskal(1971) which states that the same

phenonenon does not occur in his monotonic regression approach,

and permits a similar approach to other loss functions in tlke future.



The second key place where De Leeuw fails to make his

central point clear occurs on page 2, starting at.the middle.

- This failure-contains several components.

(a) He rails to make clear - how the- model function A( )
and the -loss function are related.

(b) He fails to make clear that he is introducing the Kruskal

and Guttman loss functions at this point as illustrations of

(c) He says which properties of the loss function 'he is
not concerned with, but does not say which ones he is concerned

with.

) et .

Based on all this, I would suggest that the section

labelled "Theoretical Results" start something like this:
"In this paper we consider loss functions of the form
S(0)= NL A® - T(MoN] / NLA®]].



,//

Here N is the usual nox'n‘ consisting of the sum of squares

of the vector. The mppping y = A(g) - defines

the model in question. For example, 1in the case of

multidimensional scaling, A is the mapping from _

a configuration of points to the vector of all interpoint
A:OD—=>Y M &
distances. In general, — (not necessarily

linear) vector-valued mapping defined on some open subset

into the space of all y vectors.
@ of Euclidean spaceﬁ Finally, T:Y~>Y 1is a

‘mapping which depends on the data, and —

- embodies the distinction between the Kruskal

monotonic regression approach, the Guttman‘ rank-image

related approaches. -

approach, and other

‘He define To(y) to be the vector yo which

— satisfies the rank order restrictions of the

data (that is, which is monotonic in the observations)

and which P minimizes -N(y-yo)'. We define T*(y)
to be the vector y* which is.the permutation of the

elements of y which satisfies the order restiictions in the

d_a\t\g and which minimizes N(y - y¥). N>

e s° —

and 8% be the S functions using

('I’his i{s a slight generalization of Guttman's rank-image idea,

which makes gsense for partial orders as well as complete




S is the square of Kruskal's ‘ stress function,

and S* is _is relsted to Guttman's
K

coefficient of alien&tion/by a simple relationship,

namely, K = ﬁ_-/Eﬁ P

There . is a host of results - in the mathematical

0
literature on the properties of the maps - y—=>T (y)

and y‘raNBr - To(yﬂ . We mention .e... ‘

TOA(Q))
is a unlformly continuous, almost everywhere

differentiable ‘ function of- G .

and that

Some- of these results have parallels . for

3¢ *

T and S, though the material is not so well-known.

— However, as the examples in the next section

will show, one crucial result does not hold, namely, the
derivatives of S¥ rail to exist at a number of points,
Furthermore,

even if A is linear. — when A is
linear, the derivatives of s¥ always fail to'exist
at the — optimum (that is, the minimum) position for
g, When— A 1is non-linear, it is difficult‘to s tate
any precise theorem, but it would appear that the derivatives

_ "asually" fail to exist at the optimum. What

does hold for T and S¥ is this: eeee.. "



SMOOTHNESS PROPERTIES OF NONMETRIC LOSS FUNCTIONS

Jan Deleeuw¥
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\Tntroduction

One of the more spectacular/ingredients of most
th papers/oﬁ is a long and compli-

‘ cated formulalyhich purports to

e nonmetric scaling are
ive the partial deriva-
tives of the los

function wi respect to the parameters.

The question of ex these derivatives is usually
ignored. A notable exgepfion 1s the paper by Kruskal
(1971). The general 1 ession, however, is that most
authors think that the nongxistence of the derivatives at
a number of points/is of litXle practical consequence. In
a sense this is ¥rue. The computer programs are not
bothered by thgse difficulties d -
‘for some of ghe more important apprpaches to scaling the
results of /Kruskal guarantee sufficiant dlfferentlabllity
In this aper‘we'shall show that the risults are important

‘ for the practical implementation of Guttynan's rank-image

We first derive some results on §ifferentiability

and/review some of the relevant literature.

re illustrated by some examples, which are also of some

/The results

‘ independent interest. 1In fact they are the first examples

hich show the complete behavior of nonmetric loss functions

¥0n leave of absence from the University of Leiden, Leilden,
The Netherlands.

ing their iterations, and




Zover”the whole parameter space, and they clearly illustrate

ethod joins the pleces
ank image method Jjoins

1: Theoretical Results

the plecewise smoothness of these loss functions.

The main

echnical result is that Kruskal's monotone regression

in a smooth way, while Guttman's

them in a nonsmooth way.

In this paper we are not concerned with the prop-
erties of the loss functioﬁ that are due entirely to proper-
ties of the model (or the combination rule). It 1is clear
that for some of the models discuésed by Young (1972) the
differentiability properties of the loss function are
destroyed by the nondifferentiability of the combination
rules. In our development we shall use a completely gen-
eral model of the fofm y = A@)with A a general (not neces-
sarily linear) vector valued mapping defined on an open
_subset © of a Euclidean space. We define the following

versions of the Kruskal (1964 é,b, 1965) and Guttman (1968)

..> loss functionsf: Prﬂ%ﬂ
L \ ! (y-3°) J;(, y=y A
. { y ",,;‘v:"' D
% 15’/;/
F
, (y—y*)yz-y*)
¢ Fr e &
i o vy

. a

Here yo is defined as the vector that satisfied the order



prine

restrictions in the data,land minimizes S0 for fixed y.

The vector y¥ is defined as that permutation éf the ele-
ments of y that satisfies the ordér restrictions in the
data, and minimizés S¥ fdr fixed y. This last definition
is a slight generalization of Guttﬁan's idea, which also
makes.sense for partial orders. ‘There 1s a host of results

in the mathematical literature on the properties of the
0

.maps y > yo and y »N~. We mention Moreau (1965), Kruskal

) .
(1969, 1971), Rock¢fellar (1970, p. 255), Asplund (1968,

1973), Holmes (1973). Using these results and assuming

that y*§ does not vanish on © and that 4@313 sufficiently

many times differentiable, it follows easily that SO is a

continuously differentiable, almost everywhere twice dif-
ferentiable, function of 6 and that yo is a uniformly con-

» bl
tinuous, almost everywhere differenti@}ﬁ%, function of 6.

For S* and y* the results are less well known. It remains

true, however, that lly%-ygll < |lyy=y51], which implies
that y¥*¥ is an almqst‘Véf§;di§ferentiable function of y.
Together with the‘ﬁsagiﬂéésumptions on A8 this makes S¥ an
almost everywhere differentiable function of 8. The exam-
ples in the next section will show that the derivatives of
S¥ actually fail to exist at a number of points, even if A6

is linear.



2: A First Example

Consider the linear model ~23:;//&(d?) A4 -ver La

~ _ £ -
-1 -1 6, Y| 88,

5 \ ‘
~3
I

|._I
(-]
n
il
|...<
i

i
D

+

[e>}

T e C(\Wwﬂ 2% SN X(/ A X &< X, <k, “Xy
A Tk e wad Twe Yo f & 4 a powpl il

Y, < < Y. < 2

[

-

Without loss of generality we restrict ourselves to values

of 8 on the unit circle..
/"‘; /

We define

S¥(9) = f%{(yl-yi)2 + (Y2-Y§)2 + (Y- 2 4 (Yu-Yﬁ)2},

X C A
d W'T 'ﬁ‘)"!ﬂft .

witf'i"‘%" a permutation of X" satisfying

* * *
Y3 < Y% < Y3 < Y.



We also define

%) = E{(Y 192+ (1,-YD7 + (15-¥D? + (v,-¥))%),

'%%hé (unique) vector satisfying

< Y9 < vy

0
3 —
N ; . , . ‘ S‘t
{ PO
and minimlzlng a%&g? for fixed ¥. Both coefficientsﬁﬁ&?

rescaled in such a way that they vary in the closed inter-

0. L0
Hheyh

val [0,1].

Moreover,

0
s0() = 0 1iff S¥(8) = 0 iff Y = ¥* = Y.
1Pf ¥, < ¥, £ ¥y S Yy

1ff 0 < 6, < O

N

and

S¥(8) = 1 iff Y*¥ = -Y iff Y4 <Yy ¥, 2 Yy
iff 0, < 6, < 0

2291 <

and

0 op 40 f
S¥(e) =1 iff Y =0 1ff2r£2 3, 4] [l]

> )
3,01 = 711,210 = 7,2,30 ¢
iff 6, < Qk?l +'6, < 0

-




~around-the—eirete) in (91,6 ) space fwith their different
' characterization43 1gure l :2 gives a plot of S¥(6) using

_ _ - _ _
-1 -1 6 Y, =0,-9,
| 11 % | |y _ 6,9,
= . - 2 N

\/ -6 -
e

p

“ We use the notatio ' i'ﬂ?ﬂ . for the average of |
/" SIAEEE

Table 1: l glves the different regions {goimg

Y, ¥
,-é.—i-';‘."‘.’ Ty ‘lp

PR

Aantuler
f&&ar coordinates, and 1:3 gives a similar plot of S (6).

From the tables and figures it is clear that both functions
are continuous. Moreover, so(e) is continuously differen-

tiable, while the derivatives of S¥(8) do not exist at the

3

points %ﬂ, %ﬂ, zm; and %ﬂ. The second derivatives of S¥(8)

do not exist at all eight "special" points and those of
so(e) do not exist at %ﬂ, %ﬂ, %ﬂ, and 2m. The concave
appearance of the function is deceptive; if we had broken

open the circle at m, then the one-dimensional plot would hch

pgﬁponvex-like. Of course, this example is unrealistic for
various reasons. In the first place, a perfect solution
exists. In the second place, there are no real local

minima except the platform of S¥(8) between %ﬂ and Hm and
between Hm a d Eﬂ In real examples, perfectly flat areas
like this usually will not occur. There may, of course,

be a considerable region with S¥(6) = 1 and/or SO(G) =1,

3: A Second Example ) B

It is clear from Table 1:1 théyﬂthe linear model

M@I WYL

.’Q;A/) L?’ IL/

7



with requirements

does not have a perfect solution. The relevant information
is contained in Table 2:1, and the plots are drawn in 2:2
énd 2:3.

The results are quite different in several
fespects. -In the first place, there are a number of sta-
tionary values. The function S¥(8) has local maxima at
%n, %«, %ﬁ, local minima at %ﬂ, %ﬂ, %ﬂ, and saddle values
at m, 2m. The function is not differentiable at all these
minima and maxima. The'function SO(G) is more smooth. It
has a local maximum at %ﬂ, and two local minima at %ﬂ and
%ﬂ (both local minima are also global). It is ‘continuously
differentiable at all points, but at the special points the
second order pértials do not exist.

4: Practical Implications

The most important practical consequence of our
result is that it seems to be quite common that the deriva-
tives of S¥ do not exist at local miﬁima, and, more seri-
ously, are bounded_g;ﬂ§y azéay from zero in éggg neighbor-
hood of those minima. This implies that ordinary gradient
methods cannot work very well in the minlmization of S¥;

6 ﬁ >

it also means that thEmpappessneﬁmbhemrahkﬂ1mage method



cannot’ be formulated as finding a stationary point of S¥,

Fortunately there exists an extensive literature on alterna-
Ve

tive necessary conditlons for a local minlmum and alternatg

minimization algorithms for functions which are merely

directionally dlfferentlable

MC\W Mf?% W{M W'
N W 2 Y | CWFCW Cnns/

T s
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Bell Laboratories

600 Mountain Avenue
Murray Hill, New Jersey 07974
Phone (201) 582-3000

March 27, 1974

Professor L. Guttman

Israel Institute of Applied
Social Research

George Washington 19

P.0.B. 7150

Jerusalem

ISRAEL

Dear Louis,

I recently came across a difficulty in the rank-image
approach which seems to be quite fundamental from a
theoretical point of view, although I am not altogether
sure what the precise practical consequences are. Consider
the linear model y = A6 with A equal to

-1 -1
+1 +1
-1 +1
+1 - -1

and with ordinal restrictions Y < Yo S‘ys < Y- We study
the behavior of the rank-image loss function

5% = 1% (y-v*)" (y-v*)

on the circle ¢'6 = 1. The factor f%—is chosen so that

0 < S* < 1. The rank-image transformation differs, of course,
from one region to another. We have to distinguish eight
different cases
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Region Order Relations - S* das*/at
1 ylgyugyBSya i cosge -,cosi sin ¢
2 vy < y3 < vy <95 1[1-sinf cost ] %[sin%i —cosgi]
3 Y38V Sy Ly 1[1+sint cost) %[co‘sge—sinztg]
4 y3Sygsyj__(_:n1L %cos?& - cos £ sin ¢
5 y2§y3_<_yu§yl sin2&+50052& cos £ sin ¢
6 Vo < vy < V3 <vy 1[1+sintcost ] %[cosgg—singg]
7 Yy < ¥, < ¥y, < V3 1[1-sint cost ] | %[sinzg-cosgi]
8 ngyl_yBSyg singg + 3 cosei cos £ sin ¢
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At the special points this gives the followlng derivatives

v ) S¥
li]] left derivative rightderivative value classification
0] 0 0 1/2 saddle point
1/4r -1/2 0 1/4 local minimum
(global)
1/2m 1/2 -1/2 1/2 local maximum
3/l -0 - V2 1/4 local minimum
(global)
m 0 0 1/2 saddle point
5/l /2 0 3/4 local maximum
(global)
8/2r -1/2 1/2 1/2 local minimum
7 /b 0 -1/2 3/4 local maximum
(global)
e 0 0 1/2 saddle point

Some additional information is contained in the enclosed
memo. It is obvious from this example that the derivatives
of S* may not exist at the minimum, even for.linear models.
I think this sufficiently explains the zigzagging behavior
of the SSA programs when they approach convergence. The
example also shows how the purpose of SSA can not be formu-
= 0, but it

lated as solving the stationary equation 3S*
must be formulated as the minimization of S¥*.

these two problems are quite different.

stationary points are actually saddle points.

In general

In the example all

This means

that we must use the more general theory for the minimization
of directionally differentiable functions (also called
nonsmooth functions) which has been developed in recent years,
mainly by Soviet mathematicians, and both from a theoretical
of view. I hope these remarks are of
some use to you, and I hope you don't mind my sending a copy
of this letter to some people who may be interested.

and practical point

" MH-1229-JD-mm

Copy to
See next page

Best regards,

cm

J. Deleeuw
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L e R

Copy to:
Dr. J. D. Carroll
Dr. J. B. Kruskal
Prof. J. Lingoes
' . . Prof. E. I. Roskam
. Prof. R. N. Shepard
Prof. F. W. Young



THE UNIVERSITY OF MICHIGAN
COMPUTING CENTER
1075 BEAL AVENUE

ANN ARBOR, MICHIGAN 48105

April 10, 1974

Dr, Jan Deleeuw

Bell Telephone Labcratories
600 Mountain Ave.

Murray Hill, New Jersey 07974

Dear Jan:

Reur letter to lLouis anent "Smoothness properties...": my first general
comment is that special examples such as you have illustrated while

of theoretical interest, do not have much relevance to the multivariable
case addressed by our various algoritlms. A second observation relates
to your formulation of the problem for rank images as being essentially
a single-phase algorithm & la Kruskal- neglecting the strong importance
of the double-phase G-L algorithm, for which your comments are
irrelevant, Neither I, nor Louis, nor Eddy have much (if any) faith

in the d*-single-phase solution!

I'm not sure what you mean by "zigzagging", but that is not the way
I would have characterized the behaviour of the G-L algorithm.

Relating the above comments to a misconception advanced at the bottom
of p. 5, i.€sy «..minimizing S* for fixed Pi(8)", I would refer you to
the monograph (shortly to appear in Psychometrika) by myself and
Roskam, which tries to clarify the various algorithmic distinctions.

I would hate to believe that after this heroic attempt on ocur part
that "we all" would once more be engaged in a "correspondence musical
chairs" on these issues ( although I must admit that my comments were
unsolicited).

Thank you again for keeping me abreast of your work, which I have
followed for some time with great interest. If you have a copy of
your thesis I would be most grateful to obtain it.

Singerely,
T

K N
df}(//i‘ 'oé—zi;/L &
- goes .
-~ Assoc. Prof., Dept. Psychology

& Assoc. Res. Scientist, Computing Center

Copy to: Dr. J.D. Carrol Ry
Dr. J.B. Kruskal [~
Prof. E.I. Roskam
Prof. R.N. Shepard
Prof. F.W. Young

JCL/de



